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Fig. 1. Analyzing relationships using our framework: The conditional distribution of the dependent variable natural gas consumption
is visualized over partitioned input features (a) and feature pairs (b), which are ranked by measures quantifying their relevance (c).

Abstract—Regression models play a key role in many application domains for analyzing or predicting a quantitative dependent
variable based on one or more independent variables. Automated approaches for building regression models are typically limited
with respect to incorporating domain knowledge in the process of selecting input variables (also known as feature subset selection).
Other limitations include the identification of local structures, transformations, and interactions between variables. The contribution of
this paper is a framework for building regression models addressing these limitations. The framework combines a qualitative analysis
of relationship structures by visualization and a quantification of relevance for ranking any number of features and pairs of features
which may be categorical or continuous. A central aspect is the local approximation of the conditional target distribution by partitioning
1D and 2D feature domains into disjoint regions. This enables a visual investigation of local patterns and largely avoids structural
assumptions for the quantitative ranking. We describe how the framework supports different tasks in model building (e.g., validation
and comparison), and we present an interactive workflow for feature subset selection. A real-world case study illustrates the step-wise
identification of a five-dimensional model for natural gas consumption. We also report feedback from domain experts after two months
of deployment in the energy sector, indicating a significant effort reduction for building and improving regression models.

Index Terms—Regression, model building, visual knowledge discovery, feature selection, data partitioning, guided visualization

1 INTRODUCTION

Regression analysis is a statistical technique for modeling a quanti-
tative dependent variable Y as a function of one or more continuous
or categorical independent variables X1 to Xn. Common applications
of regression models include prediction and sensitivity analysis of Y
with respect to changes of independent variables. The field of sta-
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tistical learning has developed many types of regression models and
techniques supporting the process of model selection [21]. This pro-
cess comprises identifying suitable values for model-specific parame-
ters as well as selecting a minimal descriptive subset of independent
variables, also known as feature subset selection [19] (we use the term
feature as a synonym for independent variable in this paper). Benefits
of having a minimal number of features include an improved model
interpretability, reduced training times, and a reduced probability of
overfitting while still providing an accurate fit [21].

In general, the trade-off between model complexity and accuracy
explains one challenge in building regression models. Another chal-
lenge arises from the inability of incorporating domain knowledge into
common automatic feature selection techniques (e.g., step-wise re-
gression [13]). As different techniques may yield different results and
often reflect aspects of the training data rather than domain knowledge,
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Fig. 2. Synthetic examples motivating goals of our framework. (a - c) Local variations of the conditional distribution of a dependent variable Y1

explain X1 as relevant due to a non-monotonic relationship with Y1, X2 as locally relevant, and X3 as irrelevant. Green rectangles indicate local
dispersion and gray rectangles show global dispersion of Y1 as measured by interquartile ranges. (d) Another dependent variable Y2 is explained
by the interaction of two features X4 and X5.

“automated variable selection procedures are no substitute for careful
thought” [1]. Additionally, many types of regression models imply
structural assumptions (e.g., linear relationships). Knowledge about
complex or local relationships (see Fig. 2a and b) as well as about
interactions of variables (see Fig. 2d) is thus crucial for selecting an
appropriate model type and for identifying suitable transformations
of variables such as the logarithm, polynomial basis expansions (e.g.,
X2 = X2

1 ) or binary operations (e.g., X3 = X1 ·X2). According to recent
studies of Kandel et al. [24], feature selection and transformation are
two of the most time-consuming challenges in data analysis.

This paper proposes an interactive framework for building regres-
sion models addressing these challenges. The approach combines a
visualization of relationships between features and a quantitative tar-
get and a quantification of these relationships for ranking them by
relevance. Using derived quantities like residuals as target supports
different tasks of model building including feature subset selection,
model validation, and model comparison. A central goal is to enable
the identification of complex relationships (e.g., having discontinuities
or local extrema) and local relationships (i.e., features explaining the
target across a part of their domain, see Fig. 2b). To achieve this goal, a
key idea is partitioning the feature space into disjoint regions for visu-
alization and for quantification, providing an adjustable level of detail
between a point-wise and a global analysis [29]. The framework sup-
ports inspecting individual features as well as pairs of features in order
to enable the discovery of arbitrary bivariate interactions (see Fig. 1).

The application background motivating this work is the need for
accurate prediction models in the energy sector. Most figures of this
paper and an exemplary case study (Sec. 5.1) refer to predicting the
consumption of natural gas in a large city. In this domain, a precise
knowledge of the combined effects of meteorological and other factors
on the consumption is crucial for minimizing costs and guaranteeing
supply. Operating on generic continuous or categorical data, however,
the proposed framework is not limited to any domain but addresses
very general issues of regression analysis and knowledge discovery.
Specifically, the contributions of this paper include:

• techniques for ranking variables and pairs of variables by their
usefulness in predicting a quantitative target.

• a design space of partition-based visualizations showing local
structures in the target distribution over one or two variables.

• applications of the framework for model validation and compar-
ison, and an interactive workflow for feature selection.

• an evaluation of the framework based on a case study of a real-
world modeling task and user feedback after two months of de-
ployment in the energy sector.

2 RELATED WORK

Interactive pattern discovery and model building are key issues of Vi-
sual Analytics. Examples include clustering [30], classification [47],
and learning distance functions [8]. This paper focuses on regression-
related tasks, such as feature selection and model validation.

Regression has traditionally been a key issue in statistics, resulting
in a variety of model types [21] as well as methods supporting model

selection [19], model comparison [27], and model validation [43]. Nu-
merous measures have been proposed for quantifying relationships,
many of them being limited to certain classes such as linear or mono-
tonic relationships (e.g., Pearson correlation). As a more general indi-
cator, the Maximum Information Coefficient (MIC) measures the mu-
tual information of two features based on partitioning them at multi-
ple resolutions [37]. Similar to our approach, the partitioning of MIC
largely avoids structural assumptions, but we do not require a catego-
rization of the dependent variable. More importantly, quantifying a
relationship by a single value incurs a loss of information which may
hide important structural aspects, e.g., due to data quality issues. For
this reason, a comparison of multiple measures is advisable [1].

The Rank-by-Feature Framework (RbFF) [39] has been proposed as
an interactive approach to support a comparison of statistical measures
in combination with a visualization of qualitative aspects. The ability
to handle univariate and bivariate measures and the good scalability for
high-dimensional data motivated us to adopt the layout of the RbFF for
our framework. However, the RbFF was neither designed to support
regression-related tasks in general, nor the detection of relationships
to a quantitative target in particular. The same is true for other tech-
niques supporting an exploration of high-dimensional data by ranking
visualizations based on screen-space metrics [50], class consistency
measures [41], and the interestingness of point clouds [44].

A variety of approaches addresses the identification of multi-
dimensional relationships in a more general sense. Besides common
multivariate visualization techniques like scatterplot matrices [11] and
parallel coordinates [23], some approaches explicitly denote a quan-
titative dependent variable. Guo et al. [18] support the discovery of
multivariate trends. An interactive visualization of the model parame-
ter space enables to detect multiple trends but is limited to linear mod-
els. Barlowe et al. [3] display distributions of partial derivatives for an
identification of multi-dimensional relationships. The authors describe
an interactive workflow for model construction, dimension reduction,
and knowledge discovery. However, the interpretation of the visual-
izations may require significant training and it remains unclear in how
far distributions of partial derivatives convey complex local structures.
Other approaches support an exploration of relationships based on vi-
sualizing high-dimensional scalar functions by showing topological
structures [16] or projections based on slicing [48, 45]. While use-
ful for understanding an existing model, most tasks related to model
building are not directly supported by such visualizations.

While some approaches address sensitivity analysis [17, 9], provid-
ing dedicated support for regression-related tasks has received little
attention in Visual Analytics so far. Friendly uses shaded mosaic dis-
plays [15] to visualize averaged model residuals or target values across
combinations of categorical dimensions. Described as a static dia-
gram, this approach does not address aspects of high-dimensional data
such as ranking and iterative feature selection. Moreover, handling
continuous variables is not discussed. Berger et al. [6] use regression
models for a continuous exploration of sampled parameter spaces, but
do not cover model building. HyperMoVal [32] addresses the valida-
tion of regression models by relating validation data to function graphs
of models based on slicing. However, this point-wise level of detail is



inappropriate to provide an overview over local structures.
Partition-based visualization techniques address this shortcoming

by providing an intermediate level of detail. Converting continuous
data to a frequency-based representation is often referred to as bin-
ning [40]. The goal is reducing complexity and ensuring the scalabil-
ity for many data samples while preserving local structures to some
degree. Variable binned scatterplots adapt bin size to the character-
istics of the data for visualizing large data without overlapping [20].
Slingsby et al. [42] explored the effects of alternative layouts in space-
filling hierarchical displays to show multiple aspects of large mul-
tivariate datasets. We provide a discussion of different layouts for
partition-based visualizations of 1D and 2D domains in the context
of regression.

Using partitioning for iterative feature subset selection, the work by
May et al. [29] is most similar to ours. Mutual information measures
between a target and partitioned features are visualized individually
for each partition to show the local relevance while global aggregates
rank features by relevance. Operating on a categorical target, their
approach also supports classification while the required categorization
of continuous targets introduces a problematic loss of detail for regres-
sion. In contrast, our framework does not categorize the target. This
enables the visualization of local distributions as required for many
tasks in regression. Moreover, our framework supports pairs of fea-
tures as needed for detecting interactions between features.

3 A PARTITION-BASED FRAMEWORK FOR REGRESSION

This section introduces our framework for regression-related tasks.
The approach is to support an exploration of relationships between
a feature space X of continuous or categorical independent variables
X1 to Xn and a quantitative target T . As shown in Fig. 1, the main
layout elements of our framework comprise tables of measures quan-
tifying the relevance for individual features (1D) and pairs of features
(2D) with respect to T as well as corresponding small-multiple visu-
alizations conveying structural details of relationships. These visual-
izations include a list of plots (1D) and a half-diagonal matrix of plots
showing all pair-wise combinations of features (2D). Ordering a table
by a measure also ranks the corresponding small-multiple visualiza-
tion as a guidance to potentially relevant plots (inferring an ordering
for the matrix is discussed in previous work [31]).

The basis of visualization and ranking is the fact that relationships
between a feature Xi or a pair of features Xi,X j (henceforth abbreviated
as Xi[,X j]) and T manifest in local variations of the conditional distri-
bution P(T |Xi[,X j]) (see Fig. 2). Expressing the local mean values
of the conditional distribution as a function is the fundamental con-
cept of regression [21]. The key idea of our framework is approximat-
ing P(T |Xi[,X j]) by partitioning the one- or two-dimensional domains
into disjoint regions. Inspired by May et al. [29], the rationale is to
provide an adjustable and computationally efficient level of intermedi-
ate detail between a point-wise and a global analysis.

The subsequent sections describe different aspects of partition-
based exploration of relationships: Section 3.1 discusses general con-
siderations and approaches to partitioning Xi[,X j]. Section 3.2 de-
scribes partition-based visualizations that approximate the conditional
distribution of T . Section 3.3 discusses a partition-based quantifica-
tion of relevance. In addition to exploring relationships between X
and a user-selected dependent variable Y (i.e., T = Y ), Section 3.4
describes the application of our framework to common tasks in sta-
tistical modeling by using various derived quantities as T . Details on
how to perform the partitioning, the visualization, the ranking, and the
application are to a large degree independent of each other and can
be extended separately, which is the motivation for us to refer to our
approach as a framework. Section 3.5 then extends this framework to
support an interactive workflow for feature subset selection.

3.1 Partitioning Xi[,X j]
This section discusses general aspects of partitioning Xi[,X j] which are
the basis for partition-based visualization and ranking in subsequent
sections. In computer science, subdivision is a key concept to reduce
a complex problem to a set of more simple ones. In the context of
multidimensional data, examples of hierarchical subdivision include

search algorithms [12] and image processing [38]. In statistics, tree-
based methods in general [21] and regression trees in particular have
received substantial attention in literature due to their ability to flexibly
capture relationships of complex structure [7, 14].

Our approach to approximate P(T |Xi[,X j]) is inspired by regres-
sion trees in that an adaptation to complex structures is based on con-
sidering disjoint regions of Xi[,X j] separately from each other. How-
ever, we have different goals and constraints than most approaches to
building regression trees. Rather than building an accurate regression
tree for prediction, the goal of our approach is to locally approximate
P(T |Xi[,X j]) for a potentially large number of features. Due to this
goal, an individual partitioning is required for each Xi[,X j], as opposed
to applying the same partitioning to all features [34]. The result of par-
titioning Xi[,X j] is a set of disjoint regions where any data sample is
contained in one region. For one-dimensional partitioning, each re-
gion is described by either a category if Xi is categorical or an interval
if Xi is continuous. For two-dimensional partitioning, these restrictions
independently apply to Xi and X j, i.e., a region of two continuous fea-
tures is an axis-aligned rectangle. Besides simplicity, the main reason
for these restrictions is to enable a flexible visualization (see Sec. 3.2).

We identified three requirements for partitioning Xi[,X j]: 1) Gen-
eral applicability: Assumptions about the distribution of Xi[,X j]
should be avoided. 2) Fast computation: In the sense of Visual Analyt-
ics, the ultimate goal is to provide an interactive framework enabling
workflows which tightly couple user-centric and computation-centric
steps (see Sec. 3.5). Significant delays should thus be avoided when
users change T , X or partition-specific parameters. Therefore, parti-
tioning all Xi[,X j] should be feasible within at most a few seconds also
in case of a large number of features for 1D and especially 2D analysis.
3) Adjustability: The degree of detail should be adjustable intuitively.
This implies that regions should have a similar size in some sense in
order to make regions comparable for a given distribution of data.

Concerning adjustability, the size of a region can be interpreted in
different ways, i.e., as the size in the domain of Xi[,X j], or as the size
with respect to the number of data samples. As a consequence, our
framework supports two different approaches for partitioning Xi[,X j].
Domain-uniform partitioning. This approach subdivides each con-
tinuous feature Xi into N intervals of equal domain size between the
minimum and the maximum of Xi. The parameter N thus adjusts the
degree of detail of the partitioning. For categorical features, the cate-
gorization is taken as subdivision. For feature pairs, the regions are the
Cartesian product of the individual subdivisions of Xi and X j. Domain-
uniform partitioning has linear effort and is very fast. However, the
distribution of data samples within Xi[,X j] is ignored. While this may
be desirable, it is generally a problem in the presence of outliers and
non-uniform distributions. Specifically, many resulting regions may
be empty or contain a statistically insignificant number of samples.

Frequency-uniform partitioning. The goal of this approach is to
define regions containing an identical (or at least similar) number of
data samples, i.e., having a same relative frequency. Inspired by Kd-
trees [5], the key concept is based on a binary hierarchical subdivision
of continuous features by recursively splitting the data at the median
of the respective subset of samples. In order to be also applicable to
ordinal data, our consideration is that data samples having identical
values in Xi[,X j] must be assigned to the same region. In this case,
we shift the splitting location into the direction that generates more
equally-sized subsets. For nominal data, the categorization is taken
as the subdivision even for differently sized categories. For feature
pairs, the subdivisions of Xi and X j are interleaved, starting with the
feature where the median is closer to the center of the domain. In case
of a categorical feature Xi and a continuous X j, the approach splits X j

separately for each category of Xi, i.e., the subdivision of Xi is done
first. The recursion stops if either (1) the entire subset of data sam-
ples has identical values in Xi[,X j] or (2) a split would create at least
one region having less than a user-defined minimal significance Smin

of data samples, or (3) the recursion of any dimension has reached a
maximal depth Dmax. The reason for criterion 3 is to enforce a com-
parable degree of detail for any feature Xi in different pair-wise com-
binations Xi,X j and Xi,Xk which is largely independent of X j and Xk.
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Fig. 3. Our design space of partition-based visualizations of relationships. While domain-preserving layouts are more intuitive to interpret,
frequency-preserving layouts compensate for non-uniform distributions of Xi[,X j ].

Without criterion 3, X j being categorical could lead to a much more
fine-grained subdivision of Xi than achieved for Xk being continuous.
In general, Dmax is the key parameter for adjusting the degree of detail
while Smin ensures the significance for subsequent processing indepen-
dently of the number of data samples.

An alternative to domain-uniform and frequency-uniform partition-
ing could be to maximize homogeneity of a region with respect to the
structure of P(T |Xi[,X j]), as done for building regression trees [7].
However, finding optimal positions for splitting involves more com-
putational effort, contradicting our requirement of fast computation.
Moreover, changing T in the course of a workflow also requires a
complete re-computation of the partitioning, which is not the case for
domain- and frequency-uniform partitioning. For these reasons, our
implementation of the framework currently does not support partition-
ing approaches that depend on the structure of P(T |Xi[,X j]). Con-
ceptually, however, supporting these approaches would be compatible
with the visualization and ranking mechanisms described below, pro-
vided that the shape of the resulting regions complies with the require-
ments stated above.

3.2 Partition-Based Visualization of Relationships

As motivated above, the key idea of our framework is to support an
analysis of local variations of the conditional distribution P(T |Xi[,X j])
by partitioning Xi[,X j] into disjoint regions. This section discusses
considerations regarding the representation of this partitioning for
visualization. As opposed to quantitative relevance measures (see
Sec. 3.3), the goal of the visualization is to convey qualitative aspects
of relationships such as location, shape, and significance of structures.
In addition to considerations regarding the partitioning itself as dis-
cussed in Sec. 3.1, we identified two central design issues regarding
partition-based visualizations of P(T |Xi[,X j]): How to layout regions
within a plot, and how to visually represent P(T |Xi[,X j]).

3.2.1 Layout

As for partitioning, the size of each region Rk can either be interpreted
as the covered part of the domain Xi[,X j] or as the number of con-
tained samples, i.e., the relative frequency of Rk. Our framework con-
sequently discriminates two options for using the visual attribute space
in order to assign a size and a location to each Rk. As will be discussed
below, these layout options affect the X-axis for 1D domains and both
axes for 2D domains (see Fig. 3).

Domain-preserving layout. Space is used to linearly represent the
domain Xi[,X j] between the minimal and maximal values of data sam-
ples in Xi[,X j]. As for traditional function plots, extents of structures
in Xi[,X j] are thus directly perceptible.

Frequency-preserving layout. Space is used to represent the rel-
ative frequency of each region, i.e., the X-axis in the 1D case or the

entire plot in the 2D case represent 100% of the data. This layout thus
generates a space-filling visualization as discussed extensively in the
literature [4]. In 2D, the layout depends on how the data has been par-
titioned. For frequency-uniform partitioning, we directly represent the
hierarchical structure of the subdivision, i.e., at each hierarchy level,
the split of the respective axis is proportional to the frequency of the
hierarchy nodes. For domain-uniform partitioning, we first subdivide
the visual space in proportion to the feature being distributed more
uniformly, and then to the other one (compare to Mosaic plots [15]).
The benefit of a frequency-preserving layout is the optimal utilization
of visual space and the direct perception of the significance of regions.
The main drawback is a difficult interpretation regarding the extents
and relative positions of regions in Xi[,X j].

In our framework, options for partitioning Xi[,X j] and for layout
can be chosen independently from each other. This defines a design
space of partition-based visualizations where each combination has
different advantages and disadvantages (see Fig. 3). In general, a suit-
able partitioning for visualization depends on the distribution of data
samples. Less uniform distributions typically increase the necessity
of distortion by frequency-uniform partitioning in order to guarantee
a significant degree of detail for dense areas. To ensure flexibility,
the partitioning granularity is controlled by the user. As a commonly
used choice, we set the default number of splits per dimension to 4

√
n

for domain-uniform mode, with n being the number of samples. For
frequency-uniform mode, we use Dmax = 4 and Smin = 10 as default
subdivision limits. A suitable layout depends on the task. In context of
model building, for example, detecting transformations benefits from
a domain-preserving layout, while assessing the significance of local
structures requires a frequency-preserving layout. We briefly discuss
each combination individually:

Domain-uniform partitioning / domain-preserving layout. In
our experience, this combination is the easiest to interpret. While
particularly useful if large parts of Xi[,X j] are uniformly distributed,
entirely disregarding the frequency of regions introduces a visual bias
for non-uniform distributions and makes it very sensitive to outliers.

Frequency-uniform partitioning / domain-preserving layout.
This combination may be a suitable compromise to avoid distortion
for non-uniform distributions. It is less sensitive to outliers which are
included in outer regions. As a non-intuitive aspect, however, the dif-
ferent size of regions may falsely suggest a different significance and
makes very dense regions difficult to perceive.

Domain-uniform partitioning / frequency-preserving layout.
This combination is suitable if domain-uniform partitioning is required
for application-specific reasons, but the significance must be visual-
ized due to a non-uniform distribution of Xi[,X j]. However, the parti-
tioning may provide an insufficient resolution for dense regions.
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Fig. 4. The goodness-of-fit varies with the number of recursive subdivi-
sions performed by a piece-wise linear ranking model QXi
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Frequency-uniform partitioning / frequency-preserving layout.
This is the most effective combination to compensate for non-uniform
distributions and outliers. A sufficient degree of detail is provided
also for very dense regions. The layout ensures a sufficient size for
perceiving the result at the cost of introducing a potentially significant
distortion regarding the location of regions in Xi[,X j].

3.2.2 Representation
After assigning a size and location to each region Rk, a key design
issue concerns the visualization of the distribution P(T |Xi[,X j]). We
distinguish between visualizing features and pairs of features (Fig. 3).

Visualization of P(T |Xi). While the X-axis is used to represent
the domain or the relative frequencies, the Y-axis depicts P(T |Xi).
Many options have been proposed in literature to visualize univari-
ate distributions, e.g., variants of box plots [46, 35] and color-based
histograms [28]. Very similar to box plots, our approach displays the
median (black line), the quartiles (dark gray) and the 0.05 and 0.95
percentiles (light gray). As the main benefit, visualizing the median
along multiple regions resembles familiar function graphs and the lo-
cal dispersion is directly readable. The main drawback concerns the
inability to adequately visualize multi-modal distributions.

Visualization of P(T |Xi,X j). In this case, the layout defines both
axes and the visual proportions of each region may vary significantly,
making a direct representation of P(T |Xi,X j) difficult. In order to limit
the visual complexity, our current implementation visualizes a single
distribution measure at a time by color, i.e., the average, the median,
the variance, or the interquartile range. Depending on the task, the user
may choose between a linear and a diverging transfer function (see
Sec. 3.4) and may adjust its scaling. In future work, we intend to exper-
iment with techniques for displaying multiple aspects of P(T |Xi,X j) at
the same time, e.g., using saliency to display variance.

3.3 Partition-Based Relevance Ranking of Features
While the visualization of relationships provides qualitative informa-
tion, many applications also require quantitative measures. In particu-
lar, a purely visual inspection of a high-dimensional feature space X is
impractical especially for a pair-wise analysis. This section thus dis-
cusses methods for ranking Xi[,X j] by quantitative measures that ex-
press the relevance for P(T |Xi[,X j]). In statistics, a common approach
to automated feature selection is based on fitting a regression model for
each candidate and ranking respective goodness-of-fit measures (also
known as wrapper approach to feature ranking [27]). We adapt this
approach by building a separate model QXi[,X j] for each Xi[,X j] in a

way that flexibly adapts to the structure of P(T |Xi[,X j]). As discussed
in Sec. 3.1, regression trees comply with this requirement [7, 21]
and are used as the model type of QXi[,X j]. More specifically, we

build piece-wise linear regression trees in order to exploit local linear-
ity [36]. The hierarchical subdivision of QXi[,X j] (i.e., the tree) is based

on frequency-uniform partitioning in order to enable an adaptation to
non-uniform distributions. Conceptually, however, piece-wise linear
models in our framework may be based on any subdivision approach,
including domain-uniform partitioning or hierarchical subdivision ap-
proaches seeking optimal splits (see Sec. 3.1). The partitioning can
be chosen independently for the visualization and the ranking, as they
address different goals and face different constraints.

In automated approaches to model building, feature ranking is often
used to incrementally refine an existing model M by adding or remov-
ing features (known as forward- or backward step-wise selection) [21].
This typically involves fitting variants of M that differ by the added or
removed feature. In contrast, our ranking quantifies the relevance of
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Xi[,X j] for P(T |Xi[,X j]) without making assumptions about the source
of T (see Sec. 3.4). If used for interactively building a model M
(Sec. 3.5), the models QXi[,X j ] are independent from M with respect

to the model type and complexity. Being used for an approximation
of relevance rather than for prediction, QXi[,X j] also has a different pur-

pose. For this reason, shortcomings of our type of regression trees
are less problematic in our case, including discontinuities and a sub-
optimal choice of split-points by frequency-uniform partitioning.

After fitting QXi[,X j], the quantification of relevance is based on the

goodness-of-fit measure R2 which is well-known and can be computed
with linear effort [1]. Conceptually, integrating additional measures
into our framework is straightforward (e.g., correlation measures).

As a general issue of statistical learning, model selection faces a
trade-off between maximizing accuracy and minimizing model com-
plexity, also known as the bias – variance trade-off [21]. In our case,
the ability of QXi[,X j ] to adapt to high-frequency structures depends

on the number of splits which is determined by the parameter Dmax

as introduced in Sec. 3.1 (see Fig. 4). While a coarse subdivision is
less prone to noise, the detection of complex structures may require a
fine-grained subdivision. An appropriate model complexity thus de-
pends on P(T |Xi[,X j]) and on domain knowledge about the features.
In statistics, a common approach to analyze the effect of increasing
model complexities is by plotting them against error metrics as curves
(see Fig. 5a). Motivated by this approach, we compute a sequence
Seq{QXi[,X j]} of models QXi[,X j] for each Xi[,X j] for increasing values

of Dmax, and we compute R2 measures for all variants of QXi[,X j].

As shown in Fig. 5, detecting high-frequency relationships requires
more splits while the number of splits has hardly any effect on low-
frequency relationships and irrelevant features. This holds as long as
each leaf contains a significant number of samples, as ensured by the
parameter Smin of frequency-preserving partitioning. For this reason,
the ability to detect complex structures depends on the overall number
of data samples, which is true in general for statistical learning [21].

The result of the quantification is shown as a table where columns
represent increasing complexities of QXi[,X j] and rows correspond to

the features or pairs of features Xi[,X j] (see Fig. 5c). Each row thus
represents a goodness-of-fit curve which is visually indicated by the
background color of cells (see Fig. 5b). Vertically, each column can
be considered a cut through the curves that can be used for ordering
the table and for ranking the coordinated small-multiple display.

3.4 Applying the Framework to Model Building Tasks

The previous sections focused on task-independent concepts for rank-
ing and visualizing relationships between features and a general quan-



a) Analyzing prediction bias b) Comparing two point-wise predictions c) Exposing uncertainty of model ensembles

model residuals (Y - YM) superior accuracy indicator variance across 5 models+ M2 0- M1

local over-estimation

local under-estimation

^

M2 generally more accurate

local superiority of M1

generally high variance

increased local uncertainty

Fig. 6. Derived quantities as target T support different tasks in building regression models. (a) Residuals show the local prediction bias of a model,
i.e., a tendency towards over- or under-estimation. (b) The difference of residual magnitudes indicates local superiority for a pair of models. (c) The
point-wise variance of predictions by multiple models represents their local uncertainty.

titative target T . This section describes the application of the frame-
work to common tasks in statistical modeling. The key idea is using
different derived quantities as T . Henceforth, Y denotes actual obser-
vations of a dependent variable and ŶM denotes corresponding predic-
tions of Y by a model M. We identified the following set of tasks:

• Identification of explaining features (T = Y ). Relating fea-
ture candidates to actual observations of Y helps in determin-
ing the features or pair-wise combinations of features having the
strongest explanatory power (see Fig. 1). The direct visualiza-
tion of P(Y |Xi[,X j]) resembles 1D and 2D function plots which
typically makes the interpretation straightforward for domain ex-
perts. However, dominating relationships tend to obscure less
distinct relationships for ranking and visualization (e.g., the ef-
fect of Temperature is dominating in Fig. 1).

• Analysis of prediction bias (T =Y −ŶM). Visualizing the resid-
uals of M reveals areas of over- or underestimation, i.e., the local
bias of M. An appropriate scaling of T should be symmetric
around the neutral value 0. In 2D, we use a diverging transfer
function as suggested for this purpose [49] (see Fig. 6a). The pre-
diction bias provides important information for detecting effects
currently not captured by M. This includes relevant features be-
ing not yet part of M, in which case the prediction bias supports
incremental feature selection (see Sec. 3.5). Another application
is detecting an insufficient model complexity. For instance, mod-
eling a non-linear effect of Xi by a linear term will show distinct
areas of over- and underestimation in plots of Xi. In general,
consulting the shape and size of areas comprising visually simi-
lar regions may facilitate identifying suitable transformations of
features for model building. Conversely, small and incoherent
areas often indicate noise rather than real effects.

• Assessment of prediction accuracy (T = |Y −ŶM |). Visualizing
the distribution of residual magnitudes of M reveals local differ-
ences in the prediction quality, exposing badly fitted areas.

• Comparison of two models (T = |Y − ŶM1| − |Y − ŶM2|). Vi-
sualizing the point-wise difference of residual magnitudes of the
models M1 and M2 provides an overview of local model supe-
riority (see Fig. 6b). The sign of the regional average of T in-
dicates which model tends to be locally better (negative for M1,
positive for M2), while the magnitude indicates by how much.
The scaling of T is symmetric around 0, suggesting a diverging
transfer function. Typical applications include model selection
and the identification of composite models. In this case, ranking
supports the selection of useful classifiers and the visualization
may suggest decision boundaries.

• Exposing uncertainty of model ensembles (T =
Var(ŶM1 ... ŶMn)). In this case, T is the point-wise vari-
ance of predictions of Y by the models M1 to Mn. In other

words, for the kth record of the dataset, the n predictions ŷkM1

to ŷkMn
are aggregated by their variance or other measures

of dispersion. Sources of model ensembles include different
training data sets, variation of model-specific parameters, and
different types of prediction models. A common application of
ensemble data is analyzing the uncertainty of a prediction [22].
Our framework supports the identification of areas in 1D or 2D
feature sub-spaces causing uncertainty (see Fig. 6c).

It should be noted that the tasks involving models operate solely on
point-wise predictions of these models. They neither make assump-
tions about M, nor is access to an evaluable representation of M re-
quired. This makes the framework applicable to the validation and
comparison of any type of quantitative prediction from any source. In
the context of renewable energy, assessing and comparing forecasts of
meteorological quantities from different providers is of great practical
importance (e.g., day-ahead forecasts of temperature at a specific lo-
cation). In this case, the prediction is based on physical rather than
statistical models. Analysts in the energy sector do not have access
to such models themselves, but still, the framework has successfully
been applied for assessment and (composite) selection of providers.

3.5 Interactive Feature Subset Selection
This section describes extensions to the framework supporting an in-
teractive workflow for feature selection (Sec. 5.1 illustrates an exam-
ple). The principle of the workflow is based on forward selection of
features in step-wise regression [1]. The key idea is to iteratively add
features and transformations thereof to a model predicting a depen-
dent variable Y . Each iteration seeks to reduce the remaining variance
while ensuring that the selection is reasonable according to the domain
knowledge of the user. In contrast to previous sections, this workflow
requires the ability to create an evaluable regression model M for any
number of features by fitting M to existing training data. A prereq-
uisite of the workflow is thus the availability of training data DT . In
order to avoid overfitting, we also support the discrimination of sepa-
rate validation data DV for visualization, goodness-of-fit quantification
and ranking. Both DT and DV must contain known values of Y .

We distinguish between two stages: During initial model identi-
fication, M does not yet exist and the framework shows the actual
observations (i.e., T = Y ). The goal of this stage is to verify the ex-
istence of useful features, potentially inferring a particular regression
model type from the structure of relationships, and building an initial
model M1 based on a relevant feature or pair of features. The sub-
sequent model refinement stage analyzes the local bias of a current
version Mi of the model (i.e., T = Y − ŶMi

). The goal of this stage
is to identify relevant additional (transformations of) features for fit-
ting Mi+1 by extending the independent variables of Mi and continuing
with model refinement, or to quit the workflow.

Our framework supports both stages, e.g., comparing different mea-
sures for ranking (pairs of) features with respect to T and partitioning



the data for visualization depending on the distribution of samples.
Features can be added to Mi by clicking on their visual representation.
This triggers the fitting of Mi+1 which is set as the current model vari-
ant after completion, updating the ranking and visualization to con-
sider the residuals of Mi+1. As a desirable effect, including a feature
in Mi+1 reduces the explanatory power of redundantly correlated fea-
tures which are ranked lower in the next iteration as well. During
model refinement, a list called Quantitative Model Overview (QMO)
displays the root-mean-square-error (RMSE) and optionally also the
global bias (i.e., the average of Y − ŶMi

) for all variants of M. The
QMO thus quantifies the gained accuracy for each iteration. Being
computed on DV , increasing model complexities may cause increas-
ing values of the RMSE, which is a typical stopping criterion [21].

Additional feature candidates can be added to the investigation at
any time, as well as transformations of features. An example offered
by our implementation is a user-defined categorization of continuous
values. This can facilitate the modeling of differently structured areas
by fitting separate models for different parts of the data (i.e., building
treed models, see Sec. 5.1). Other examples include bivariate feature
transformations like multiplication in order to model interactions, as
well as simple transformations like squaring and taking the logarithm.
However, the interactive specification of transformations is a topic in
its own right and details are beyond the scope of this paper.

There are several options for extending the workflow. First, vi-
sualizing Mi as a high-dimensional function during model refine-
ment provides additional means for validation. Our implementation
of the framework offers an interactive visualization based on hyper-
slices [32] for this purpose (see Sec. 4). Second, multivariate visu-
alizations like parallel coordinates help to relate the distribution of
residuals across multiple variants of M. Third, it may often be reason-
able to return to previous variants of M and to try out and compare dif-
ferent choices of features, e.g., if the QMO shows only modest gains
of accuracy. Our implementation preserves previous model variants
and supports back-ward steps. However, providing an adequate visual
support for hierarchical branching of models is up to future work.

A limitation of assessing single Xi[,X j] for step-wise model re-
finement is that useful higher-dimensional interactions of individually
weak features might not get noticed. In contrast to best-subset selec-
tion methods (e.g. see Hastie [21]), manual step-wise selection is not
guaranteed to produce feature subsets yielding a minimal RMSE, es-
pecially in the context of high-dimensional data (|X | ≫ 10). However,
a model with the minimal RMSE is not necessarily the best choice in a
given application context. Additional reasons for choosing a step-wise
approach are a superior run-time performance, comprehensibility and
straightforward incorporation of expert knowledge. While identify-
ing two-dimensional interactions is supported directly, a detection of
higher-dimensional interactions is left for future work (see Section 6).

An application by real users (Sec. 5) has shown that this workflow
supports two tasks. First, it supports interactive feature selection for
building interpretable regression models. Conceptually, the workflow
is applicable to any type of regression model. However, training times
of at most several seconds are beneficial for smooth working. As the
second task, the workflow supports the detection of more subtle re-
lationships which are otherwise masked by more dominating effects.
In this case, the model itself is of less interest, as it is rather used to
subtract dominating effects from the data, exposing more subtle ones.

4 SYSTEM INTEGRATION AND IMPLEMENTATION

Our framework has been implemented as part of Visplore, a system
for visual exploration and model building. Additional views of Vis-
plore like histograms, scatterplots, and parallel coordinates support a
flexible analysis of multivariate data by linked ad-hoc selections and
derived data columns. In context of model building, they enable an
interactive specification of training and validation data for ensuring
an appropriate data quality (e.g., by removing outliers). Regression
models can be identified and managed by the user. Supported types
of models currently include generalized linear models, support vector
regression based on the library LIBSVM [10], and piece-wise linear
regression trees. Internally, a common interface for fitting and evalu-

ation enables an integration of additional model types. An implemen-
tation of HyperMoVal [32] supports a detailed point-wise validation
of identified regression models (see Fig. 7i). All parts of Visplore im-
plement a multi-threading architecture [33] to maintain interactivity
regardless of the data size and the effort of involved computations. In
case of the proposed framework, multi-threading is used for comput-
ing the relevance measures and the visualization. Intermediate results
such as subsets of plots or ranking measures are displayed as soon
as they become available in order to minimize delays. All parts are
written in C++ and use OpenGL for rendering.

Regarding the performance of frequency-uniform partitioning, stor-
ing the order of values for each feature as a re-usable index enables an
efficient implementation also for analyzing feature pairs. Specifically,
computing the indices of 35 continuous features and 42869 data sam-
ples took 0.03 seconds in our implementation (recorded on an Intel
i7-2600k CPU @ 3,4 Ghz). Computing the partitioning with Dmax

set to 10 and Smin set to 8 took another 0.19 seconds for the 35 fea-
tures (1D) and 3.30 seconds for all 630 feature pairs (2D). Regarding
the performance of ranking, computing the measures took addition-
ally 0.38 seconds in 1D and 11.8 seconds in 2D. As a computationally
cheaper yet less accurate alternative to fitting a linear model per re-
gion, fitting a constant model (i.e., the median value of each region)
only took 0.15 seconds in 1D and 4.44 seconds in 2D. In general, com-
puting percentiles of the distribution P(T,Xi[,X j]) as also required for
visualization benefits from storing the order of T as an index, enabling
linear effort and re-usage across all Xi[,X j].

5 EVALUATION

For evaluating our framework, Sec. 5.1 demonstrates a case study of
interactive feature selection in the energy sector. Sec. 5.2 then reports
user feedback by 11 analysts after two months of deployment.

5.1 Case Study: Modeling Natural Gas Consumption
This section demonstrates our framework by building a regression
model predicting the natural gas consumption of a large city as the
dependent variable Y . Based on real data, this case study has been con-
ducted by an analyst in the energy sector to investigate the influence
of meteorological and calendric aspects as the independent variables
X . This represents a direct application of the workflow described in
Sec. 3.5. The data comprise hourly measurements for approximately
five years (42869 samples) which are split into three years of training
data DT and two years of validation data DV (annually interleaved).

For initial model identification, the 1D overview shows the con-
ditional distribution of the consumption for each feature, i.e. T = Y
(Fig. 7a). Ranking the features by relevance immediately identifies
Temperature and Day of Year as having a dominant effect on the tar-
get. Comparing their measures shows a slightly higher relevance of
Temperature for coarse subdivisions while the relevance of Day of
Year increases with the level of detail and exceeds Temperature for
Dmax = 5 (Fig. 7b). Knowing that the data only comprises 5 years, the
analyst considers Temperature as the more useful feature for an initial
model M1. Since the visualization suggests a non-linear relationship
with at least one point of inflection, M1 is fitted based on DT as a third
degree polynomial, i.e., a linear model including squared and cubic
basis expansions. The Quantitative Model Overview shows an RMSE
of 24853 units for DV (Fig. 7c), confirming the information gain by
M1 as compared to the standard deviation of Y (52812 units).

Building M1 updates the 1D overview for an analysis of its resid-
uals for DV in order to identify effects explaining the remaining vari-
ance, i.e., T =Y −ŶM1 (Fig. 7d). Temperature now ranks much lower
as well as Day of Year, whose effect is partly captured by M1 due to
correlation with Temperature. In contrast, the ranking now identifies
Hour as most relevant for the target. The visualization of the condi-
tional distribution shows a consumption profile as a function having
multiple local extrema (e.g., a distinct rise to a morning peak). This
complex structure precludes simple low-degree polynomial basis ex-
pansions as before. Instead, the analyst categorizes Hour into morning
[0am,6am), day [6am,8pm) and evening [8pm-0am) in order to build
M2 as a treed linear model. For each identified category of Hour, M2
thus comprises a separate function including linear, squared, and cubic
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Fig. 7. A case study for model building. (a, b) Ranked overviews suggest Temperature as most relevant for predicting the target Natural Gas
Consumption by a model M1. (c, d) Analyzing the local prediction bias suggests Hour as additional feature for reducing the error measure RMSE.
(e, f) Frequency-preserving layout reveals the insignificance of a trend caused by a non-uniform distribution of Wind Speed. (g) Analyzing the local
prediction bias for feature pairs reveals multiple interactions that inform further model refinements (c). (h) Comparing two model variants enables
an assessment of local model superiority. (i) Additional views support an application of the final model for sensitivity analysis.

terms for Temperature as well as linear and squared terms for Hour.
This enables a substantial reduction of the RMSE to 14384 units.

Another update of the 1D overview to analyze the residuals of M2
(T =Y −ŶM2) shows that the effect of Hour is captured well (Fig. 7e).
Being correlated with Hour, the relevance of the feature Global Ra-
diation is also reduced while Day of Year, Wind Speed, and a classifi-
cation of days into weekends and working days lead the ranking. The
visualization of Wind Speed suggests a strong effect which seemingly
contradicts its ranking below Day of Year. However, switching the lay-
out to frequency-preserving reveals the low significance of high wind
speeds due to the sparsity of the data (Fig. 7f). Since no single feature
seems to explain the remaining variance well, the analyst now turns to
inspecting pair-wise interactions of features in the 2D overview.

Considering the average local prediction bias (T =Y −ŶM2) for vi-
sualization and ranking in fact suggests useful pair-wise interactions
of Day of Year, Temperature and Wind Speed (Fig. 7g shows the ma-
trix for the five top-ranking features). The top-ranking pair reveals
that the effect of Temperature significantly depends on the time of the
year. Another plot shows a substantial underestimation for high wind
speeds at low temperatures. The analyst hypothesizes that the reason
might be a meteorological effect known as ”wind-chill factor”. While
previous 1D overviews indicated a general tendency of increased con-
sumption at high wind speed, the analysis of interactions enables a
more comprehensive understanding of the influence of Wind Speed.
Furthermore, 1D and 2D views suggest a general overestimation of

the consumption on weekends, e.g., due to the different consumption
by industry. Capturing these effects by refining M2 enables a further
reduction of the RMSE for DV (Fig. 7c): M3 extends M2 by adding
cubic, squared and linear terms for Day of Year and refines the regres-
sion tree by a discrimination of summer (April to Sept.) and winter
(remaining months). M4 further refines the tree based on Weekend.
Finally, M5 extends M4 by adding linear, squared, and cubic terms for
Wind Speed plus interactions of the form A ·B, A2 ·B and A ·B2 between
Wind Speed and Temperature to account for the wind-chill factor.

Compared to M4, however, the significant additional complexity of
M5 only reflects in a modest reduction of the RMSE. In order to val-
idate the superiority of M5, assigning the difference of residual mag-
nitudes as target of the 2D overview enables a local comparison of
M4 and M5 (T = |Y − ŶM4| − |Y − ŶM5|). In order to compensate
for non-uniform distributions of features like Temperature and Wind
Speed, the analyst applies the frequency-based partitioning and the
frequency-preserving layout (Fig. 7h). While the dominance of yel-
low tones confirms the superiority of M5 for large parts of the domain,
the visualization also indicates areas where M4 is superior. The ana-
lyst is surprised that considering Wind Speed increased the prediction
accuracy especially for weekends while a coherent blue area in the
combination of Day of Year and Temperature indicates a negative ef-
fect for certain temperatures especially during spring and summer. In
general, however, the analyst is satisfied with M5 as the final result of
the workflow. An implementation of HyperMoVal [32] as an addi-



tional view of the system enables a detailed follow-up analysis of M5,
e.g. regarding a sensitivity analysis of natural gas consumption and a
model-based detection of outlying data samples (Fig. 7i).

5.2 User Feedback

Our framework has been deployed to 11 experts of two companies in
the energy sector, i.e., an IT-service provider and a national power grid
operator. The growing share of renewable energy and the advent of
smart grids increasingly necessitate accurate prediction for risk man-
agement in this field. The experts have been dealing with prediction
models for years and use MARS [14] as the prevailing model type.
They have been using our framework on a daily basis for two months.
While operational models are still built using external software, the
experts employ our framework for the identification of useful features,
interactions, and transformations of features as well as for the valida-
tion and comparison of identified (MARS-)models.

Before using our framework, these tasks were based on the inspec-
tion of data tables, static graphics, and correlation coefficients in tools
like Excel and Matlab. They reported that generating, validating and
comparing models was intransparent and required extensive trial-and-
error. Establishing and validating hypotheses for new data or new
models required approximately the work of one day.

According to the experts, our framework enables them to obtain the
same insights within half an hour. A formerly empirical process of
knowledge acquisition has been turned into a systematic one, saving
substantial amounts of time. They consider the involved visualization
as intuitive and fast to interpret and also suitable for a presentation to
decision-makers and other stake holders. One expert stated that the
process of communicating findings and arguing model deficiencies to
end customers in the energy sector has been sped up from hours or
even days to minutes using our visualizations.

Technologically, one analyst claimed that our ranking mechanism is
more helpful in analyzing relationships than previously used correla-
tion metrics, as it unveils non-linear structures of arbitrary shape. The
1D- and 2D-visualizations are consulted at a ratio of around 30:70 per-
cent during the analysis, as interactions of two or more features gener-
ally play a very important role. The analysts generally prefer domain-
uniform partitioning and -layout for their superior interpretability, but
they usually employ the frequency-preserving approaches to check the
significance of unexpected findings. In conclusion, the interviewed
domain experts envision a high relevance of our framework for the en-
ergy sector. Their key suggestion for future work concerned a direct
integration of the model type MARS in our framework.

6 DISCUSSION AND FUTURE WORK

As the key idea of Visual Analytics, our framework tightly integrates
visualization, computation, and interaction at three levels. First, quan-
titative measures based on regression trees rank visualizations by rel-
evance. Second, visualizing derived quantities supports diverse tasks
in model building. Third, tightly coupling model visualization with
model training enables an efficient loop of incremental discovery, re-
finement, and validation. Our framework thus supports all elements of
the Visual Analytics Process as described by Keim et al. [26].

Furthermore, our framework addresses all six high-level tasks of
visualization-based knowledge discovery as defined by Amar and
Stasko [2]: 1) It exposes uncertainty of single models by showing
the local variance of their residuals and of model ensembles by vi-
sualizing their point-wise variance. 2) It concretizes relationships by
depicting and quantifying the conditional distribution of targets over
domains of features and pairs of features. 3) It supports to formulate
cause and effect by explicitly distinguishing between dependent and
independent variables and expressing their relationship as regression
model for investigation. 4) It directly addresses the determination of
domain parameters by the workflow for step-wise feature selection.
5) It enables a multivariate explanation by considering pair-wise in-
teractions between features as well as via the identification of multi-
dimensional regression models. 6) It confirms hypotheses which are
formulated as target dimensions or prediction models by visualizing
the local structure of their conditional distribution.

Regarding scalability, a key benefit of partitioning is to avoid clut-
ter for any number of data samples. The goal to enable interactive
workflows restricts the computational complexity of methods for par-
titioning and ranking, which informed several design decisions as dis-
cussed in previous sections. The achieved performance supports tens
of thousands of data samples and dozens of features even for a pair-
wise analysis (see the measurements in Sec. 4) and can further be in-
creased by using piece-wise constant rather than linear regression trees
for ranking. In fact, sparse data is much more limiting the detection
of significant relationships than large data which is a general prob-
lem of statistical learning [21]. Due to ranking features by relevance,
the framework scales well for an individual inspection of truly high-
dimensional data (i.e., hundreds of dimensions). A pair-wise analysis
is inherently more challenging due to a quadratic growth of combina-
tions. However, ranking also supports this case and enables to show
only the most relevant part of the matrix.

Operating on generic categorical and continuous data, the approach
is generally applicable to regression tasks in any domain. While the
examples and the evaluation in this paper refer to the energy sec-
tor, preliminary tests also indicated a direct applicability to regression
tasks in engineering, process optimization, and clinical trial analysis.

We see many directions for future work. 1) Partition-based ranking
is conceptually also applicable to higher-order interactions but faces
challenges regarding the exponential growth of combinations and the
visualization. We intend to address these aspects for triples of fea-
tures involving volume visualization for representation. 2) We intend
to design and evaluate concepts to simultaneously visualize bias and
variance of distributions in 2D. 3) While the current workflow sup-
ports a rather linear process for model building, we intend to design
concepts for addressing a hierarchical process, i.e., supporting multi-
ple model variants as refinements of a common base model. 4) The
identification of feature transformations is currently solely based on
the interpretation of the visualization by the user. An automated sug-
gestion of suitable transformations could be an important help. 5) As
suggested by the experts evaluating our approach, we intend to inte-
grate additional types of regression models (e.g., MARS [14]) or even
support a direct integration with statistics software such as R [25]. 6)
While explicitly designed for regression, we intend to investigate an
adaptation of the framework for classification.

7 CONCLUSION

This paper proposed a partition-based framework to support multi-
ple tasks related to building regression models. As a key benefit,
the framework provides a global overview over local relationships
of any structure for features and pairs of features. We described a
model-based method for quantifying relationships that provides guid-
ance by ranking relationships for an efficient investigation of high-
dimensional feature spaces. Both ranking and visualization flexibly
adapt to non-uniform distributions as well as categorical features, and
are computationally sufficiently inexpensive to scale for large and
high-dimensional data. We discussed the application to a variety of
tasks in building and validating regression models. A workflow for
interactive model building enables a seamless integration of domain
knowledge in the selection of features and transformations, and it sup-
ports a discovery of subtle relationships by compensating for dominant
effects using regression. A real-world case study illustrated the appli-
cation for building a complex model, and feedback by analysts in the
energy sector suggested a significant effort reduction for model build-
ing. Motivated by these results, we believe that our framework will
have a positive impact on regression in many fields.
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exploration of continuous parameter spaces using multivariate prediction.

Comput. Graph. Forum, 30(3):911–920, 2011.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Wadsworth and Brooks, 1984.

[8] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function: Learning

distance functions interactively. In Proc. of the IEEE Conf. on Visual

Analytics Science and Technology (VAST 2012), pages 83–92, 2012.

[9] Y.-H. Chan, C. Correa, and K.-L. Ma. Flow-based scatterplots for sen-

sitivity analysis. In Proc. of the IEEE Conf. on Visual Analytics Science

and Technology (VAST 2010), pages 43–50, 2010.

[10] C. Chang and C. Lin. LIB-SVM.

http://www.csie.ntu.edu.tw/ cjlin/libsvm/, Last visited 2013-03-04.

[11] S. Cleveland and M. E. McGill, editors. Dynamic Graphics for Statistics.

Wadsworth and Brooks/Cole, 1988.

[12] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[13] M. A. Effroymson. Multiple regression analysis. In A. Ralston and H. S.

Wilf, editors, Mathematical Models for Digital Computers, pages 191–

203. 1960.

[14] J. H. Friedman. Multivariate adaptive regression splines. The Annals of

Statistics, 19(1):1–67, 1991.

[15] M. Friendly. Extending mosaic displays: Marginal, conditional, and par-

tial views of categorical data. Journal of Computational and Graphical

Statistics, 8:373–395, 1999.

[16] S. Gerber, P. Bremer, V. Pascucci, and R. Whitaker. Visual Exploration

of High Dimensional Scalar Functions. IEEE Trans. on Visualization and

Computer Graphics, 16(6):1271–1280, 2010.

[17] Z. Guo, M. Ward, E. Rundensteiner, and C. Ruiz. Pointwise local pattern

exploration for sensitivity analysis. In Proc. of the IEEE Conf. on Visual

Analytics Science and Technology (VAST 2011), pages 131–140, 2011.

[18] Z. Guo, M. O. Ward, and E. A. Rundensteiner. Model space visualization

for multivariate linear trend discovery. In Proc. of the 4th IEEE Symp.

on Visual Analytics Science and Technology (VAST 2009), pages 75–82,

2009.

[19] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-

tion. Journal of Machine Learning Research, 3:1157–1182, Mar. 2003.

[20] M. C. Hao, U. Dayal, R. Sharma, D. Keim, and H. Janetzko. Variable

Binned Scatter Plots. Information Visualization, 9(3):194 – 203, 2010.

[21] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning, Second Edition. Springer New York Inc., 2009.

[22] J. C. Helton. Uncertainty and sensitivity analysis for models of complex

systems. In F. Graziani, editor, Computational Methods in Transport:

Verification and Validation, Vol. 62, pages 207–228. Springer, 2008.

[23] A. Inselberg and B. Dimsdale. Parallel coordinates for visualizing multi-

dimensional geometry. In Computer Graphics 1987 (Proc. of CG Inter-

national ’87), pages 25–44, 1987.

[24] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Enterprise data anal-

ysis and visualization: An interview study. IEEE Trans. on Visualization

and Computer Graphics, 18(12):2917–2926, 2012.

[25] J. Kehrer, R. N. Boubela, P. Filzmoser, and H. Piringer. A generic model

for the integration of interactive visualization and statistical computing

using R. In Proc. of the IEEE Conf. on Visual Analytics Science and

Technology (VAST 2012), pages 233–234, 2012.

[26] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler.

Visual analytics: Scope and challenges. In S. J. Simoff, M. H. Böhlen,
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