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A PARTITION THEOREM FOR PERFECT SETS

ANDREAS BLASS

Abstract. Let P be a perfect subset of the real line, and let the «-element subsets

of P be partitioned into finitely many classes, each open (or just Borel) in the

natural topology on the collection of such subsets. Then P has a perfect subset

whose «-element subsets he in at most (n — 1)! of the classes.

Let C be the set of infinite sequences of zeros and ones, topologized as the

product of countably many discrete two-point spaces, and ordered lexicographi-

cally. For X C C, let [X]n be the set of «-element subsets of X. When we describe a

finite subset of C by listing its elements, we always assume that they are listed in

increasing order. Thus, [C]" is identified with a subset of the product space C,

from which it inherits a topology. A subset of C is perfect if it is nonempty and

closed and has no isolated points.

The purpose of this paper is to prove the following partition theorem, which was

conjectured by F. Galvin who proved it [3] for n < 3.

Theorem. Let P be a perfect subset of C and let [P]n be partitioned into a finite

number of open (in [P]") pieces. Then there is a perfect set Q E P such that [Q]n

intersects at most (n — 1)! of the pieces.

Before setting up the machinery for the proof of this theorem, we point out some

of its consequences. First, the therem remains true if C is replaced by the real line

R with its usual topology and order. To see this, it suffices to observe that every

perfect subset of R has a subset (a generalized Cantor set) homeomorphic to C via

an order-preserving map and that any one-to-one continuous image in R of a

perfect subset of C is perfect in R. Second, the hypothesis that the pieces of the

partition are open can be greatly relaxed. Mycielski [6], [7] has shown that any

meager set or any set of measure zero in [R]" is disjoint from [P]" for some perfect

PçR. For the meager case, he obtains the same result with R replaced by any

complete metric space X without isolated points. It follows that, if [R]" (or [X]") is

partitioned into finitely many pieces that have the Baire property, then their

intersections with [P]" are open in [P]" for some perfect P. Similarly, if the pieces

are Lebesgue measurable, they become Gs sets when restricted to [P']n for suitable

perfect 7"; since Gs sets have the Baire property, we can apply the preceding

sentence, with 7" as X, to get a perfect PCP' such that the pieces intersected with

[P]n are open in [P]". Thus, our theorem, as extended by the first remark above,

implies the following partition theorem.
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Corollary. If [R]" is partitioned into finitely many pieces that all have the Baire

property or are all measurable, then there is a perfect set Q CR such that [Q]n meets

at most (n — 1)! of the pieces.

Some hypothesis about the pieces is necessary, however, for Galvin and Shelah

[4] have shown that there is a partition of [C]2 into infinitely many pieces such that,

for any Q Q C of the cardinality of the continuum (in particular, for any perfect

Q),[Q]2 intersects all the pieces.

At the suggestion of the referee, we mention that the Corollary immediately

implies Filipczak's result [2, Theorem 1] that any continuous (or only Borel

measurable) real-valued function defined on a perfect set of reals is monotonie on

a perfect subset. Although this application uses only the (trivial) case n — 2, it

seems reasonable to expect similar applications for the higher cases of our theorem.

Another application of the case n = 2 occurs in the descriptive set theory of

selectors [1].

The proof of the theorem uses the correspondence between perfect subsets of C

and perfect trees. A tree is a set T of finite sequences of zeros and ones, called the

nodes of T, such that, for each node s of T, all initial segments and at least one

proper extension of 5 are also in T. A tree T is partially ordered by the inclusion (or

initial segment) relation E , and words like "above", "below", and "comparable"

always refer to this order. The nth level of T is the set of nodes whose length, as

sequences, is n. A path through T, i.e., a linearly ordered subset containing a point

from every level, can be identified with an element of C. The set of all paths

through T will be written (T), since the customary notation [T] conflicts with the

notation [X]n; (T) is a closed subset of C and every closed subset of C is (T) for a

unique tree T. Clearly, (Tx) E (T2) if and only if F, Ç T2.

A fork of a tree F is a node s both of whose one-term extensions s<0> and í<1>

are in T. A tree is perfect if it is nonempty and every node is below a fork; this is

equivalent to (T) being a perfect subset of C. Note that, in a perfect tree, every

node is below forks in arbitrarily high levels.

The theorem asserts that a perfect set P has a perfect subset Q with certain

properties. Since we shall work with the tree representation of perfect sets, we shall

be constructing perfect subtrees of given perfect trees. The following terminology

will be useful in such constructions. Let a tree T be given. "Remove node s from

T" means that T is to be replaced by its largest subtree not containing s. Thus,

what is actually removed is not just s but all the nodes above 5 and all nodes below

s but above the highest fork below s. "Kill the fork s of T" means to remove (in the

sense just explained) one of the two immediate successors of i. The choice of which

successor to remove is arbitrary except when a specific node t above s is to be

"retained"; then the immediate successor of s that is not below / is to be removed.

Note that, in the resulting tree, i is a node but not a fork. Note also that, if T is

perfect, it remains perfect when a fork is killed. "Fix all nodes up to level /" means

nothing as far as changing T is concerned but indicates that nodes at level / or

lower will remain intact during subsequent operations on T. Finally, if s is a node
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of T, then T(s) is the subtree of T consisting of all nodes comparable with s; it is

perfect if T is.

It will be convenient to work with trees T that are skew in the sense that no level

contains two distinct forks. Although the following lemma is very easy, we include

its proof for future reference and as an example of the terminology introduced

above.

Lemma. Every perfect tree has a perfect skew subtree.

Proof. Enumerate the nodes of the given perfect tree F in a sequence

sQ, sx, s2, . . ., and replace T by perfect subtrees T0 = T D Tx D T2 D . . . as

follows. Suppose that, after n steps, we have defined Tn and fixed all nodes up to

some level /„. If sn E T„, do nothing, i.e., set Fn + 1 = Tn and ln+x = /„. Otherwise,

find a fork t of T„, above sn, at level / > /„. Kill all forks except / in levels /„

through / inclusive, retaining /, and let Tn+X be the tree so obtained. Then fix all

nodes up to level /„ + , = / + 1. Since / is a fork in Tk for every k, it is clear that

7" = H „ Tn is a perfect tree. And, since no level < /„ has two forks in Tn, 7" is

skew.   □

In view of this lemma, our theorem is equivalent to the following.

Theorem. If T is a perfect skew tree, then, for any partition of [(F)]" into finitely

many open pieces, there is a perfect subtree T' of T such that [(T')]n meets at most

(n — 1)! of the pieces.

For distinct a, ß E (T), let A(a, ß) be the highest common node of the paths a

and ß through T. By the pattern of an «-element set (a0, .. ., an_,} Q(T), we

mean the linear ordering p of {1, . . . , n — 1} given by

ioj <h> A(a,_ „ a,) is in a lower level than A(a,._„ a,).

(Recall that the a, are listed in lexicographic order and that T is skew.) Thus, p tells

us in what order the paths a, split apart as we proceed up the tree. Since there are

(n — 1)! linear orderings of {1, . .. , w — 1} and all of them are obviously realized

as patterns within any perfect subset of (T), we see that the (n — 1)! in the

conclusion of the theorem is optimal. We also see that, to prove the theorem, it

suffices to find a perfect subtree 7" such that the partition class of an «-element

subset of (T') depends only on its pattern. In fact, it suffices to show that, for any

finite open partition of [(T)]n and any fixed pattern p, there is a perfect subtree 7"

such that all «-element subsets of (T') with the given pattern p lie in the same

partition class, for we can then repeat the construction for each p in turn.

To obtain such a 7", it is convenient to work in a more general setting as follows.

Let T = <F0, . . . , Fr_i> be a skew r-tuple of perfect trees; this means not only

that each T¡ is skew but also that no two distinct Tj's have forks at the same level.

Let n = <«0, . . ., nr_,) be an r-tuple of positive integers with sum n. By an n-set

in T we mean an r-tuple a whose itn entry a, is an «,-element subset of (T¡). The

pattern p of such an n-set a is the linear ordering of the pairs (/,/), with 0 < i < r

and 0 <j < n¡, given by the levels of the nodes A(a¡ j_x, a¡ j), where aiy is the/th

element of a, (in lexicographic order). We shall prove the following result, whose
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special case r = 1 is all we need, according to the preceding paragraph, to establish

our main theorem. Let the collection LTi<r[(7))]^ of n-sets in T have the product

topology.

Polarized Theorem. Let r, T, n, n be as before and let p be any pattern of n-sets.

Let the collection of all n-sets in T be partitioned into finitely many open pieces. Then

there exist perfect trees T[ E T¡ such that all n-sets in T' with pattern p lie in the

same piece of the partition.

The proof of this theorem occupies the remainder of this paper. We proceed by

downward induction on r, with n fixed. Since each n¡ is required to be positive, the

highest possible value of r is n, and if r = n each n¡ = 1. An n-set from T is then

just an «-tuple a of paths a, through T¡. Fix such an n-set a. Since the partition is

open, all n-sets sufficiently close to a lie in the same partition class. Thus, for

sufficiently long finite initial segments s¡ of a„ the trees T¡ = T¡(s¡) satisfy the

conclusion of the theorem. (When r = «, there is only one possible pattern, so

patterns play no role in this case.)

We turn our attention to the nontrivial case r < n and assume the polarized

theorem for r + 1 (and the same «). By reindexing the trees, we may assume that

the first element in ordering p is (0, q) for some q. This means that, if an n-set ct

(with a, = {a¡j\j < «,} as before) has pattern p, then the lowest-level branching

within any a, occurs in a0, where a0 0, . . . , a0?_, separate from a0 q, . . . , a0 „ _,

at a fork which we call the first fork of a, f(&). In each of the remaining trees T¡

(1 <, i < r), all «, of the paths ou, pass through the same node j, at the level of f(&),

as otherwise the pattern could not begin with (0, q). We call the r-tuple

</(©-), sx, . . ., sr_x} the signature of the n-set a. Our immediate goal is to find

perfect subtrees T? C T¡ in which all n-sets having pattern p and having the same

signature lie in the same partition class. (Later, we shall reduce these trees further

to eliminate the dependence on the signature.)

Each tree 7)* will be obtained as the intersection of an inductively defined

decreasing sequence of perfect subtrees of T¡. To describe the induction without

excessive notation, we use S¡ as a variable representing, at each point in the proof,

the subtree of T¡ obtained at that point. To begin the induction, set S¡ = T¡ and fix

all nodes up to level 0 (in all these trees).

Suppose that, at a later stage, we have obtained perfect subtrees S¡ and we have

fixed all nodes up to level /. Choose a level /' so high that in each S¡ (i =7*= 0) every

node at level / has at least two successors at level /'; this can be done because 5, is

perfect. Kill all forks of S0 between levels / and /' inclusive, and then fix all

remaining nodes up to level /' in all the trees. (The choice of /' and this fixing of

nodes, being repeated at every stage of our induction, clearly ensure that Tf will be

perfect for i i= 0.) Next, choose a fork/ of (the new) S0 above level /', say at level

/". Kill all forks of S0 between levels /' and /" — 1 inclusive, retaining/, and fix all

remaining nodes up to level /" + 1 in all the trees. This guarantees that /will be a

fork of Tj¡ and indeed the only fork between levels / and /" inclusive (as T0 was

sKew).
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We now seek to ensure that all n-sets with pattern p and with / as the first fork

have their partition classes determined by their signatures. Enumerate the possible

signatures </, sx, . . . , sn} that begin with/; there are of course only finitely many

of them since each s¿ must be at the same level /" as / and our trees have finite

levels. Consider each such signature in turn. An n-set a in S with pattern p and

signature </, s„ . . . , sr_x} yields, by splitting the first component, an n*-set

<** = <{«o,o» ■ • • . "o,,-i}> {"o,,' • • • > ao,no-i}> °i> • • • > °V-i>    in   S* =

<So(/<0»,S0(/<l»,   Sx(sx),-Sr_x(sr_x)),   where   n*   is   the   (r + l)-tuple

(q, n0 — q, «,, . . . , «,._,>. The pattern p* of a* is uniquely determined by p, and

a* determines a. Partition the n*-sets in S* with pattern p* by putting two

such a*'s in the same piece if and only if the corresponding o^s are in the same

piece of the original partition. Since a is a continuous function of a*, this is an

open partition of n*-sets, and we can apply the induction hypothesis to find perfect

subtrees of the S(*'s such that all their n*-sets with pattern p* lie in the same

partition   class.   Prune   the   trees   S¡   correspondingly,   so   that   the   new

So(/<0», S0(/<1», 5i(Ji)> • • • ' sr- i(Jr-i) are the subtrees of the Sf's given by the

induction hypothesis. Note that this pruning takes place entirely above level

/" + 1, because (a) the subtrees given by the induction hypothesis are perfect,

hence nonempty, so level /" is preserved (and also level /" + 1 in 50), and (b) T is

skew, so no s¡ is a fork, so level /" + 1 is preserved in S¡ (i > 0). So our previous

fixing of nodes is not violated. The pruning guarantees that all n-sets in (the new) S

with pattern p and signature </, sx, . . ., sr_x} lie in the same partition class.

Repeating the process finitely often, we obtain this homogeneity for each signature

that begins with /. This completes one step of the induction.

Repeating the preceding two paragraphs infinitely often, we obtain decreasing

sequences of perfect subtrees S¡ C T¡ whose intersections Tf have the following

properties. Tf is perfect for i =£ 0, as we remarked in the course of the construc-

tion. The forks in T£ are precisely the F s considered at the various induction steps.

Therefore, all n-sets in T* with pattern p have their partition classes uniquely

determined by their signatures. Finally, by choosing the fork / carefully at each

step, as in the proof of the lemma, we can easily arrange for TJ to be perfect. Thus,

T* has all the desired properties. We now seek to eliminate the dependence of the

partition class on the signature, by reducing the trees still further.

Since the partition class of an n-set in T* with pattern p is determined by its

signature, we have an induced partition of signatures of T*, i.e., of the /--tuples

s = <j0, . . ., sr_, > such that each s¡ E Tf, all the s¡ are at the same level, and s0 is

a fork of T¡. We shall find perfect subtrees T[ E Tf such that all signatures of T

are in the same piece of this induced partition. Consequently, all n-sets in T with

pattern p will be in the same piece of the original partition, so the proof will be

complete.

We shall assume that the partition of the signatures is into only two pieces; the

general case follows by a trivial induction on the number of pieces. The construc-

tion of T' from T* will be similar to the construction of T* from T, in that we

obtain T' as the intersection of an inductively defined decreasing sequence of
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perfect subtrees of T*. As before, we use S to stand for the subtrees of T* currently

under consideration. Two preliminary remarks are needed before we begin the

construction of T'. First, all fixing of nodes in the construction of T* is now

rescinded. Second, a signature of T* whose components are still present in T' need

not be a signature of T'; it will be one only if the component in T¿ is still a fork.

To each r-tuple s with s¡; E Tf, we associate a signature s of T* as follows. Let s0

be the highest fork G s0 in TJ. (It will not matter how we define s if s0 is below the

lowest fork of TJ.) For i ^ 0, let s¡ be the predecessor or the lexicographically first

successor of s¡ at the level of s0. Clearly, s = <i0, . . ., sr_,> is a signature of T*. At

any future stage of our construction, if the subtrees S under consideration contain

the components of s and s and if s0 is a fork in 50, then the description of how s is

obtained from s remains correct when T* is replaced by S.

Extend the partition of the signatures to a partition of all the /--tuples s with

s¡ E Tf by putting each s into the partition class of s. We apply the Halpern-

Läuchli partition theorem [5] to this partition of TJ X • • • X Tf_x = HT*. It

asserts that there is a natural number « such that one of the partition classes, say c,

contains («, &)-matrices for all natural numbers k. This means that, for each k,

there is a sequence x of nodes x¡ at level h in Tf and there is a sequence A of

subsets A¡ C Tf such that

(1) every successor ofx, at level h + k in Tf is below a node in A¡, and

(2) all r-tuples s E IIA lie in the partition class c.

Fix such an h. There are only finitely many tuples x as above, so the same x works

for arbitrarily large k, hence for all A:. Fix such an x. The process of pruning the

trees T* begins by setting S, = Tf(x¡). To simplify notation, we assume that « = 0;

the general case involves adding « to every level mentioned in the sequel.

Suppose, at some stage of the pruning, we have perfect trees S and we have fixed

all nodes up to some level /. Suppose further that the previous stages have involved

the removal only of nodes at or below level / along with their successors. Thus,

nodes of S¡ above level / have the same successors in 5, that they had in Tf. This

ensures that, when we refer to s below, it will not matter whether the "-operation is

computed in S or in T*. It also ensures that, if k > I, the conclusion of the

Halpern-Läuchli theorem holds for S with the same « and x; we need only intersect

the original A¡ with the current S¡. The next stage of the pruning is as follows.

As in the construction of T*, begin by choosing /' so large that, in each S¡

(i ¥= 0), every node at level / has at least two successors at level /'. Kill all forks of

S0 between levels / and /' and fix all nodes up to level /'. As before, this ensures

that T¡ will be perfect for i ¥= 0. Next, choose a fork/ in S0 above level /', say at

level /" > /'. By Halpern-Läuchli, find A¡ <Z S¡ such that

(1) A¡ dominates all nodes of level /" in S¡, and

(2) IIA C c.

By (1), find s0 E A0 above/. Then s0 is above or equal to/, so its level /* is > I'.

Kill all forks of S0 from level /' to level /* — 1 inclusive retaining s0 and then fix all

nodes of S0 up to level /* -+- 1. As before, this ensures that s0 is the unique fork of

S0 between levels / and /* inclusive. For any i ¥= 0 and any s¡ E A¡, let s¡ be, as
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before, the predecessor or lexicographically first successor of s¡ at level /*. Then

B¡ = {SjlSj E A¡) dominates level /' of S¡ because /* > /' and (1) holds. Further-

more, by (2) and the definition of the partition for /--tuples other than signatures,

{s0} X II ,^7?, is included in class c of the original partition of signatures. For

/' ¥= 0, remove all nodes of S, that are not comparable with any node in B¡. Since B¡

dominates level /' of S¡, nodes at level /' or lower are unaffected by this removal, so

our earlier fixing of these nodes is not violated. All nodes at level /* in the new S¡

(i =?*= 0) belong to B¡, so all signatures that start with s0 are in class c. Fix all nodes

up to level /* + 1. This completes one step of the induction.

Repeating the preceding paragraph infinitely often, we obtain decreasing se-

quences of perfect subtrees S¡ E Tf whose intersections T¡ have the following

properties. As in the construction of T*, T{ is perfect for i ¥= 0, and careful choice

of / at each stage will make T¿ perfect also. (Although the chosen / at any stage

need not be a fork of T0, the s0 above it is one.) The only forks in T0 are the s0

considered at the various steps of the induction, so all signatures of T' are in class

c. This completes the proof of the polarized theorem and therefore also the original

theorem.
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