A PARTITION THEOREM FOR THE INFINITE SUBTREES OF A TREE

BY

KEITH R. MILLIKEN

ABSTRACT. We prove a generalization for infinite trees of Silver's partition theorem. This theorem implies a version for trees of the Nash-Williams partition theorem.

1. Introduction. First we establish some notation. An ordinal will be identified with the set of smaller ordinals, and a cardinal will be an initial ordinal. For example, $4 = \{0, 1, 2, 3\}$; and $\omega = \aleph_0$ is the set of all nonnegative integers as well as the cardinality of that set. If X is a set, then |X| is the cardinality of X. If κ is a cardinal, then $[X]^{\kappa} = \{Y \subseteq X : |Y| = \kappa\}, [X]^{<\kappa} = \{Y \subseteq X : |Y| < \kappa\}$, and $[X]^{<\kappa} = [X]^{<\kappa} \cup [X]^{<\kappa}$.

In [2], Erdös and Rado made the following definition: a family of sets $\mathcal{F} \subseteq [\omega]^{\mathbf{M}_0}$ is Ramsey provided there exists $X \in [\omega]^{\mathbf{M}_0}$ with either $[X]^{\mathbf{M}_0} \subseteq \mathcal{F}$ or $[X]^{\mathbf{M}_0} \cap \mathcal{F} = \emptyset$. Erdös and Rado also proved that the axiom of choice implies that there exists $\mathcal{F} \subseteq [\omega]^{\mathbf{M}_0}$ that is not Ramsey.

However, $[\omega]^{\aleph_0}$ is naturally embedded in $2^{\omega} = \{f: f \text{ is a function from } \omega \text{ into } 2\}$, and so we can consider $[\omega]^{\aleph_0}$ with the induced topology, where 2^{ω} has the Tychonoff product topology. In this topology, the work of Nash-Williams [8] and of Galvin and Prikry [3] shows that each Borel set is Ramsey. Silver [10] extended these results to show that every analytic set is Ramsey (see Corollary 1.12 below). And recently, Ellentuck [1] and others (see [5] and [11]) have found simpler proofs of Silver's result.

The primary result of this paper (Theorem 1.9 below) is a version for trees of Silver's theorem. This result for trees implies Silver's theorem. Also, just as Silver's theorem implies the Nash-Williams partition theorem (Theorem 3.1 below) and Ramsey's theorem, so our result implies a version for trees of the Nash-Williams theorem (Theorem 3.3 below) and a version for trees of Ramsey's theorem (Corollary 3.4 below). This last mentioned Ramsey's theorem for trees was originally proved in [6].

In order to work with trees, we need several definitions. These are listed together here for convenient reference.

Suppose $P = \langle P, \leq \rangle$ is a partially ordered set. (We use a single symbol both for a structure and for its underlying set.) If $p \in P$, we write

Received by the editors August 29, 1978 and, in revised form, January 21, 1980. AMS (MOS) subject classifications (1970). Primary 04A20, 05C05, 06A10.

 $Pred(p, P) = \{q \in P: q \leq p\}, \qquad Pred^*(p, P) = Pred(p, P) - \{p\},$ $Succ(p, P) = \{q \in P: q \geq p\}, \qquad Succ^*(p, P) = Succ(p, P) - \{p\}.$

We shall be primarily concerned with rooted trees of finite height or of height ω , so the following definition of a tree will be used.

DEFINITION 1.1. A tree $t = \langle T, \leq \rangle$ is a partially ordered set satisfying:

(1) T has a unique least element, called the root of T and denoted Root(T), and

(2) for each $t \in T$, Pred(t, T) is a finite chain, i.e., Pred(t, T) is a finite, linearly ordered set in $\langle T, \leq \rangle$.

The elements of a tree T will sometimes be called *nodes*. If $t \in T$, then the *level* of t in T, denoted Lev(t, T), is the cardinality of Pred*(t, T). If $n \in \omega$, $T(n) = \{t \in T: \text{Lev}(t, T) = n\}$, i.e., T(n) is the set of nodes on the nth level of T. The height of T is Height $(T) = \sup\{|\text{Pred}(t, T)|: t \in T\}$. For example, if $n \in \omega$ implies $T(n) \neq \emptyset$, then T must have height ω . A branch of T is a maximal chain in $\langle T, \leq \rangle$. We call T an α -tree (where $\alpha \leq \omega$) provided each branch of T has cardinality α . Thus each α -tree has height α , but a tree with height α need not be an α -tree.

If s and t are nodes of T, we say s is an *immediate successor* of t when s is minimal in Succ^{*}(t, T), or equivalently, when $t = \max{\text{Pred}^*(s, T)}$. We write IS(t, T) for the collection of all immediate successors of t in T.

If κ is a cardinal (finite or infinite), and if $\alpha \leq \omega$, an (α, κ) -tree is an α -tree with each nonmaximal node having exactly κ immediate successors. An $(\alpha, < \kappa)$ -tree is an α -tree with each nonmaximal node having fewer than κ immediate successors, and an $(\alpha, \leq \kappa)$ -tree is an α -tree with each nonmaximal node having at most κ immediate successors.

If $0 \le \alpha \le \beta \le \omega$, we write $Incr(\alpha, \beta)$ for the set of all strictly increasing functions from α into β .

Below is a formal definition of when a tree S is strongly embedded in another tree T. Intuitively, for S to be strongly embedded in T, S must be a subset of T with the induced partial order. S must preserve the branching structure of T, i.e. given a (nonmaximal) node of S, if that node has k immediate successors in T, then that node must have k corresponding immediate successors in S. Also, S must preserve the level structure of T, i.e. all nodes of S on a common level (of S) must be from a common level in T.

DEFINITION 1.2. Suppose S is an α -tree and T is a β -tree with $0 \le \alpha \le \beta \le \omega$. S is strongly embedded in T provided the following hold.

(1) $S \subset T$, and the partial order on S is induced from T.

(2) If $s \in S$ is nonmaximal in S and $t \in IS(s, T)$ then $Succ(t, T) \cap IS(s, S)$ is a singleton.

(3) There exists $f \in \text{Incr}(\alpha, \beta)$ such that $S(n) \subseteq T(f(n))$ for each $n \in \alpha$.

The function f in (3) is called the *level assignment function* for S in T, and we write f = LAF(S, T).

Given $f \in \text{Incr}(\alpha, \beta)$, we write $\text{Str}_f(T)$ for the collection of all α -trees strongly embedded in the β -tree T that have f as level assignment function in T. Also, we

write

$$\operatorname{Str}^{\alpha}(T) = \bigcup_{f \in \operatorname{Incr}(\alpha,\beta)} \operatorname{Str}_{f}(T),$$
$$\operatorname{Str}^{<\alpha}(T) = \bigcup_{n \in \alpha} \operatorname{Str}^{n}(T),$$
$$\operatorname{Str}^{<\alpha}(T) = \operatorname{Str}^{\alpha}(T) \cup \operatorname{Str}^{<\alpha}(T).$$

The proof we give of our main theorem involves consideration of finite sequences of trees. So we shall extend the above notation to finite sequences of trees. Suppose d is a positive integer and $\langle T_i: i \in d \rangle$ is a sequence of β -trees for some $0 \leq \beta \leq \omega$. If $0 \leq \alpha \leq \beta$ and $f \in \text{Incr}(\alpha, \beta)$, then we write

$$\operatorname{Str}_{f}(T_{i}: i \in d) = \left\{ \langle S_{i}: i \in d \rangle : S_{i} \in \operatorname{Str}_{f}(T_{i}) \text{ for each } i \in d \right\}$$
$$= \prod_{i \in d} \operatorname{Str}_{f}(T_{i}),$$
$$\operatorname{Str}^{\alpha}(T_{i}: i \in d) = \bigcup_{f \in \operatorname{Incr}(\alpha,\beta)} \operatorname{Str}_{f}(T_{i}: i \in d),$$
$$\operatorname{Str}^{<\alpha}(T_{i}: i \in d) = \bigcup_{n \in \alpha} \operatorname{Str}^{n}(T_{i}: i \in d).$$

 $\operatorname{Str}^{\leq \alpha}(T_i: i \in d)$ is defined similarly.

It should be noted that if S, R and T are ω -trees with $S \in \text{Str}_{f}(T)$ and $R \in \text{Str}_{g}(S)$, then $R \in \text{Str}_{h}(T)$ where h(n) = f(g(n)) for each $n \in \omega$.

DEFINITION 1.3. We write Id for the identity function on ω , i.e., Id: $\omega \to \omega$ with Id(n) = n for each $n \in \omega$. Thus Id|n, the restriction of Id to n, is the identity function on n.

DEFINITION 1.4. Suppose s is an α -tree and T is a β -tree for some $0 \le \alpha \le \beta \le \omega$. Then S is a strong initial segment of T (denoted S < *T) provided S is the unique tree satisfying $S \in \text{Str}_{\text{Id}|\alpha}(T)$.

DEFINITION 1.5. Suppose T is an ω -tree and $A \in \operatorname{Str}^{<\omega}(T)$. Then we shall write $\operatorname{Str}(A, T) = \{R \in \operatorname{Str}^{\omega}(T): A < *R\}$. So, in particular, $\operatorname{Str}(\phi, T) = \operatorname{Str}^{\omega}(T)$. Also, we shall write $\operatorname{Dmt}(A, T)$ for the maximal tree of $\operatorname{Str}(A, T)$ and call $\operatorname{Dmt}(A, T)$ the *dominating* tree of A in T, i.e.,

 $Dmt(A, T) = A \cup \{Succ(t, T): t \text{ is a maximal node of } A\}$

where Dmt(A, T) has the partial order induced from T.

DEFINITION 1.6. Suppose that d is a positive integer, that $\langle T_i: i \in d \rangle$ is a sequence of ω -trees, $n \in \omega$, $f \in \text{Incr}(n, \omega)$, and that $A_i \in \text{Str}_f(T_i)$ for each $i \in d$. We shall write

$$\operatorname{Str}(A_i, T_i: i \in d) = \bigcup_{\substack{g \in \operatorname{Incr}(\omega, \omega) \\ g|n = \operatorname{Id}|n}} \left(\prod_{i \in d} \operatorname{Str}_g(\operatorname{Dmt}(A_i, T_i)) \right).$$

Intuitively, $Str(A_i, T_i: i \in d)$ consists of all sequences $\langle S_i: i \in d \rangle$ in $Str^{\omega}(T_i: i \in d)$ that (for each $i \in d$) have A_i being a strong initial segment of S_i .

DEFINITION 1.7. Suppose T is an ω -tree and $R \subseteq \operatorname{Str}^{\omega}(T)$. We say R is T-Ramsey provided there exits $T' \in \operatorname{Str}^{\omega}(T)$ with either $\operatorname{Str}^{\omega}(T') \subseteq R$ or $\operatorname{Str}^{\omega}(T') \cap R = \emptyset$.

Considering ω with its usual ordering as the trivial (ω , 1)-tree, then ω -Ramsey means just Ramsey in the traditional sense mentioned above.

DEFINITION 1.8. Suppose d is a positive integer and $\langle T_i: i \in d \rangle$ is a sequence of ω -trees. We say that a set $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is completely $\langle T_i: i \in d \rangle$ -Ramsey provided the following holds. If $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$, and if $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)$, then there exists $\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$ such that either $\operatorname{Str}(A_i, R_i: i \in d) \subseteq R$ or $\operatorname{Str}(A_i, R_i: i \in d) \cap R = \emptyset$.

If d = 1 so $\langle T_i: i \in d \rangle = \langle T_0 \rangle$, we shall say R is "completely T_0 -Ramsey" instead of saying R is "completely $\langle T_0 \rangle$ -Ramsey." So R is completely T-Ramsey means that for each $S \in Str^{\omega}(T)$ and each $A \in Str^{<\omega}(S)$, there exists $S' \in Str(A, S)$ with either $Str(A, S') \subseteq R$ or $Str(A, S') \cap R = \emptyset$. Clearly, if R is complete T-Ramsey, then R is T-Ramsey.

Given a sequence of ω -trees $\langle T_i: i \in d \rangle$ where d is a positive integer, we shall define a topology on $\operatorname{Str}^{\omega}(T_i: i \in d)$ by taking $\{\operatorname{Str}(A_i, S_i: i \in d): \langle S_i: i \in d \rangle \in$ $\operatorname{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)\}$ as a basis. This topology will be called the *tree topology* on $\operatorname{Str}^{\omega}(T_i: i \in d)$. If t is a single ω -tree, then the tree topology on $\operatorname{Str}^{\omega}(T)$ has $\{\operatorname{Str}(A, S): S \in \operatorname{Str}^{\langle \omega}(T) \text{ and } A \in \operatorname{Str}^{\langle \omega}(S)\}$ as a basis.

For completeness, we also define the analytic sets in a topology. Suppose $\tau = \langle X, \mathbf{G} \rangle$ is a topological space, i.e., X is a set and **G** is the family of open subsets X. Write **F** for the family of closed subsets of X. Suppose T is an arbitrary (ω, \aleph_0) -tree, and **B** is the set of *all* branches of T. Then $A \subseteq X$ is analytic in τ if there exists a function $f: T \to \mathbf{F}$ such that

$$A = \bigcup_{B \in \mathbf{B}} \bigg(\bigcap_{t \in B} f(t) \bigg).$$

It is well known that every Borel set is analytic.

Using these definitions, we can state our main theorem.

THEOREM 1.9. Suppose T is an $(\omega, <\aleph_0)$ -tree and $R \subseteq \operatorname{Str}^{\omega}(T)$ is an analytic set in the tree topology on $\operatorname{Str}^{\omega}(T)$. Then R is completely T-Ramsey; hence R is T-Ramsey.

First let us see how Theorem 1.9 implies Silver's partition theorem. If A and B are subset of ω , we write A < B to mean: for each $a \in A$ and $b \in B$, we have a < b.

DEFINITION 1.10. If $A \in [\omega]^{<\kappa_0}$ and $X \subseteq \omega$, then we say A is an initial segment of X and write $A \ll X$ provided there exists $Y \subseteq \omega$ with A < Y and $A \cup Y = X$.

If we consider $[\omega]^{\kappa_0}$ to be embedded in 2^{ω} has the Tychonoff product topology, then we shall call the induced topology on $[\omega]^{\kappa_0}$ the *classical* topology. If for each $A \in [\omega]^{<\kappa_0}$ we write

$$I_{A} = \left\{ Y \in \left[\omega \right]^{\aleph_{0}} : A \ll Y \right\}$$

then $\{I_A: A \in [\omega]^{<\kappa_0}\}$ is a basis for the classical topology on $[\omega]^{\kappa_0}$.

If we instead consider ω with the usual ordering to be the trivial $(\omega, 1)$ -tree, then the tree topology on $\operatorname{Str}^{\omega}(\omega) = [\omega]^{\aleph_0}$ is finer (has more open sets) than the classical topology. A typical basic open set for the tree topology on $\operatorname{Str}^{\omega}(\omega) = [\omega]^{\aleph_0}$ is of the form

$$J_{A,X} = \left\{ Y \in [X]^{\aleph_0} \colon A \ll Y \right\}$$

where $X \in [\omega]^{\kappa_0}$ and $A \in [X]^{<\kappa_0}$. We shall call the tree topology on $\operatorname{Str}^{\omega}(\omega) = [\omega]^{\kappa_0}$ the *Ellentuck topology* since it is identical to the topology on $[\omega]^{\kappa_0}$ introduced by Ellentuck in [1].

Since we have noted that ω is just a particular ($\omega, < \aleph_0$)-tree, we have the following corollary to Theorem 1.9.

COROLLARY 1.11 (ELLENTUCK [1]). If $R \subseteq [\omega]^{\mu_0}$ is analytic in the Ellentuck topology on $[\omega]^{\mu_0}$, then R is Ramsey.

Since the Ellentuck topology is finer than the classical topology, (1.11) implies Silver's partition theorem.

COROLLARY 1.12 (SILVER [10]). If $R \subseteq [\omega]^{\mu_0}$ is analytic in the classical topology on $[\omega]^{\mu_0}$, then R is Ramsey.

2. Proof of the main theorem. In this section, we shall give a proof of Theorem 1.9. In fact, we shall prove the stronger Theorem 2.1 below.

Suppose $\tau = \langle X, \mathbf{G} \rangle$ is a topological space, i.e., **G** is the family of open subsets of the set X. Remember that $N \subseteq X$ is nowhere dense provided the closure of N contains no nonempty open sets. A set $M \subseteq X$ is meager if it is a countable union of nowhere dense sets. And a set $B \subseteq X$ has the Baire property provided there exists an open set $U \in \mathbf{G}$ such that $B \triangle U = (B - U) \cup (U - B)$ is meager.

THEOREM 2.1. Suppose d is a positive integer and $\langle T_i: i \in d \rangle$ is a sequence of $(\omega, \langle \aleph_0)$ -trees. Then a set $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is completely $\langle T_i: i \in d \rangle$ -Ramsey if and only if R has the Baire property in the tree topology on $\operatorname{Str}^{\omega}(T_i: i \in d)$.

It is well known (see Kuratowski [4, p. 94]) that each analytic set in a topology has the Baire property in that topology. Using this fact and taking d = 1 in Theorem 2.1, we obtain Theorem 1.9. So we turn to the proof of Theorem 2.1. Our proof of (2.1) combines the ideas of Ellentuck [1], of Galvin and Prikry [3], of Nash-Williams [8] and of this author [6].

We shall need the following "pigeon-hole principle for trees" in the proof of Theorem 2.1. A proof and the history of Theorem 2.2 can be found in §2 of [6].

THEOREM 2.2 (HALPERN-LÄUCHLI-LAVER-PINCUS). Suppose d is a positive integer and $\langle T_i: i \in d \rangle$ is a sequence $(\omega, \langle \aleph_0)$ -trees. If F: $\operatorname{Str}^1(T_i: i \in d) \to 2$ then there must exist $k \in 2$ and $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ such that F has the constant value k on $\operatorname{Str}^1(S_i: i \in d)$.

We shall also need the following strightforward lemma.

LEMMA 2.3. If T is an $(\omega, < \aleph_0)$ -tree, if $t \in T$, and if $f \in \text{Incr}(\omega, \omega)$ with f(0) = Lev(t, T), then there must exist $S \in \text{Str}_f(T)$ with Root(S) = t.

DEFINITION 2.4. Suppose that d is a positive integer and $\langle T_i: i \in d \rangle$ is a sequence of $(\omega, \langle \aleph_0)$ -trees, and that $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$. Also, suppose that $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)$. Then $\langle S_i: i \in d \rangle$ accepts $\langle A_i: i \in d \rangle$ with respect to R provided $\operatorname{Str}(A_i, S_i: i \in d) \subseteq R$. We say $\langle S_i: i \in d \rangle$ rejects $\langle A_i: i \in d \rangle$ with respect to R provided that each $\langle R_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)$ does not accept $\langle A_i: i \in d \rangle$ with respect to R.

When it is clear which set R is being considered, we shall omit the phrase "with respect to R".

The following lemmas build up to a proof of Theorem 2.1. In Lemmas 2.5 through 2.14 we assume that $\langle T_i: i \in d \rangle$, R, $\langle A_i: i \in d \rangle$ and $\langle S_i: i \in d \rangle$ are as described in the hypothesis of Definition 2.4.

LEMMA 2.5. If
$$\langle S_i : i \in d \rangle$$
 accepts (or rejects) $\langle A_i : i \in d \rangle$, then each $\langle R_i : i \in d \rangle \in \text{Str}^{\omega}(S_i : i \in d)$

with $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega | R_i: i \in d \rangle}$ accepts (or rejects, respectively) $\langle A_i: i \in d \rangle$.

LEMMA 2.6. $\langle S_i: i \in d \rangle$ accepts (or rejects) $\langle A_i: i \in d \rangle$, if and only if, $\langle \text{Dmt}(A_i, S_i): i \in d \rangle$ accepts (or rejects, respectively) $\langle A_i: i \in d \rangle$.

LEMMA 2.7. There exists $\langle R_i : i \in d \rangle \in Str(A_i, S_i : i \in d)$ such that $\langle R_i : i \in d \rangle$ either accepts or rejects $\langle A_i : i \in d \rangle$

The above lemmas are all immediate from Definition 2.4. For the next lemma, we introduce an additional definition. If $\langle S_i: i \in d \rangle$ either accepts or rejects $\langle A_i: i \in d \rangle$, then we say that $\langle S_i: i \in d \rangle$ decides $\langle A_i: i \in d \rangle$.

LEMMA 2.8. Given $\langle T_i : i \in d \rangle$ as in Definition 2.4, there exists

$$R_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$$

such that $\langle R_i : i \in d \rangle$ decides each $\langle B_i : i \in d \rangle \in \text{Str}^1(R_i : i \in d)$.

The proof of Lemma 2.8 is not difficult. One recursively picks an array of trees $\langle T(i, n): i \in d, n \in \omega \rangle$ such that for each $i \in d$, the sequence $\langle T(i, n): n \in \omega \rangle$ decreases as a function of n, i.e., $T(i, n + 1) \subseteq T(i, n)$. Eventually it will be that

$$R_i = \bigcap_{n \in \omega} T(i, n).$$

One can assure that the R_i so defined are indeed $(\omega, < \aleph_0)$ -trees (and are strongly embedded in the T_i) by choosing the T(i, n) with T(i, j)(n) = T(i, n)(n) for all $j \ge n$, i.e., the *n*th level of T(i, n) determines the *n*th level of all T(i, j) with $j \ge n$, and hence the *n*th level of R_i .

Because of Lemma 2.5, we can assure that $\langle R_i: i \in d \rangle$ decides each $\langle B_i: i \in d \rangle \in \operatorname{Str}^1(R_i: i \in d)$ by selecting the T(i, n) so that $\langle T(i, n): i \in d \rangle$ decides each $\langle B_i: i \in d \rangle \in \operatorname{Str}^1(T(i, n): i \in d)$ with $B_i \subseteq T(i, n)(n)$ for each *i*. (Then $\langle T(i, n): i \in d \rangle$ automatically decides all $\langle B_i: i \in d \rangle$ with $B_i \subseteq T(i, n)(j)$ for some j < n.) Such a selection of the T(i, n) is easy to make using repeated applicatons of Lemma 2.7 (and of Lemma 2.3).

LEMMA 2.9. Given $\langle T_i : i \in d \rangle$ as assumed in Definition 2.4, there exists $\langle R_i : i \in d \rangle \in \operatorname{Str}^{\omega}(T_i : i \in d)$

such that either $\langle R_i: i \in d \rangle$ accepts all $\langle B_i: i \in d \rangle \in \operatorname{Str}^1(R_i: i \in d)$ or $\langle R_i: i \in d \rangle$ rejects all $\langle B_i: i \in d \rangle \in \operatorname{Str}^1(R_i: i \in d)$.

The proof of Lemma 2.9 is easy. One need only apply Theorem 2.2 (Halpern-Lauchli-Laver-Pincus) to the result of Lemma 2.8.

LEMMA 2.10. Given $\langle S_i : i \in d \rangle$ as assumed in Definition 2.4, if $\langle S_i : i \in d \rangle$ rejects $\langle \phi : i \in d \rangle$, then there exists $\langle R_i : i \in d \rangle \in \operatorname{Str}^{\omega}(S_i : i \in d)$ such that $\langle R_i : i \in d \rangle$ rejects all $\langle B_i : i \in d \rangle \in \operatorname{Str}^1(R_i : i \in d)$.

The $\langle R_i : i \in d \rangle$ from Lemma 2.9 must satisfy Lemma 2.10; otherwise Lemma 2.9 yields that $\langle R_i : i \in d \rangle$ accepts all $\langle B_i : i \in d \rangle \in \text{Str}^1(R_i : i \in d)$. Then $\text{Str}^{\omega}(R_i : i \in d) \subseteq R$, and $\langle S_i : i \in d \rangle$ would not reject $\langle \phi : i \in d \rangle$.

LEMMA 2.11. Given $\langle S_i: i \in d \rangle$ and $\langle A_i: i \in d \rangle$ as in the supposition of Definition 2.4, let $N = \text{Height}(A_i)$. If $\langle S_i: i \in d \rangle$ rejects $\langle A_i: i \in d \rangle$, then there exists

$$\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$$

such that $\langle R_i : i \in d \rangle$ rejects all $\langle B_i : i \in d \rangle \in \operatorname{Str}^{N+1}(R_i : i \in d)$ with $A_i < *B_i$ for each $i \in d$.

If $\langle S_i: i \in d \rangle$ and $\langle A_i: i \in d \rangle$ satisfy the hypothesis of Lemma 2.11, then we can assume $A_i < * S_i$ for each $i \in d$. Letting $N = \text{Height}(A_i)$, we can write each $S_i - A_i$ as a union of disjoint sets

 $S_i - A_i = \bigcup \{ \operatorname{Succ}(a, S_i) : \text{ there exists } b \in A_i(N-1) \text{ with } a \in \operatorname{IS}(b, S_i) \}.$

We shall concentrate on the array of trees

 $(\operatorname{Succ}(a, S_i): i \in d \text{ and there exists } b \in A_i(N-1) \text{ with } a \in \operatorname{IS}(b, S_i)).$ (1)

(We consider Succ(a, S_i) a tree by giving it the induced partial order.) Since (1) is cumbersome to write, we shall make the notational convention that $M_i = \bigcup_{b \in \mathcal{A}_i(N-1)} IS(b, S_i)$, so (1) becomes

$$\langle \operatorname{Succ}(a, S_i) : i \in d, a \in M_i \rangle.$$
 (2)

We define

$$R' \subseteq \operatorname{Str}^{\omega}(\operatorname{Succ}(a, S_i): i \in d, a \in M_i)$$

by $\langle Q(a, i): i \in d, a \in M_i \rangle \in R'$ if and only if $\langle Q(a, i): i \in d, a \in M_i \rangle \in$ Str^{ω}(Succ(a, S_i): $i \in d, a \in M_i$) and $\langle (\bigcup_{a \in M_i} Q(a, i)) \cup A_i: i \in d \rangle \in R$. Then to prove Lemma 2.11 one applies Lemma 2.10 to the sequence of trees (2) and the set R'.

LEMMA 2.12. Given $\langle S_i: i \in d \rangle$ and $\langle A_i: i \in d \rangle$ as assumed in Definition 2.4, suppose $\langle S_i: i \in d \rangle$ rejects $\langle C_i: i \in d \rangle$, N is a positive integer, Height $(C_i) = N$,

$$\langle C_i: i \in d \rangle \in \operatorname{Str}^N(A_i: i \in d),$$

and every maximal node of C_i is also maximal in the corresponding A_i . Then there must exist $\langle R_i: i \in d \rangle \in \text{Str}(A_i, S_i: i \in d)$ which rejects all $\langle B_i: i \in d \rangle \in \text{Str}^{N+1}(R_i: i \in d)$ with $C_i < * B_i$ for each $i \in d$.

Lemma 2.12 is a straightforward generalization of Lemma 2.11. Using a recursive definition similar to the one in the proof of Lemma 2.8 along with repeated applications of Lemma 2.12, one can prove the following lemma.

LEMMA 2.13. Given $\langle S_i: i \in d \rangle$ as in Definition 2.4, if $\langle S_i: i \in d \rangle$ rejects $\langle \phi: i \in d \rangle$, then there exists $\langle R_i: i \in d \rangle \in \operatorname{Str}^{\omega}(S_i: i \in d)$ such that $\langle R_i: i \in d \rangle$ rejects all $\langle B_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(R_i: i \in d)$.

Also, just as Lemma 2.10 was generalized to Lemma 2.11, so from Lemma 2.13 we obtain the following lemma.

LEMMA 2.14. Given $\langle S_i: i \in d \rangle$ and $\langle A_i: i \in d \rangle$ as in Definition 2.4, if $\langle S_i: i \in d \rangle$ rejects $\langle A_i: i \in d \rangle$, then there exists

$$\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$$

such that $\langle R_i : i \in d \rangle$ rejects all $\langle C_i : i \in d \rangle \in \operatorname{Str}^{<\omega}(R_i : i \in d)$ with $A_i < * C_i$ for each $i \in d$.

We shall present more detailed proofs of the following lemmas.

LEMMA 2.15. Suppose d is a positive integer, $\langle T_i: i \in d \rangle$ is a sequence of $(\omega, \langle \aleph_0)$ -trees, and that $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is an open set in the tree topology on $\operatorname{Str}^{\omega}(T_i: i \in d)$. Then R is completely $\langle T_i: i \in d \rangle$ -Ramsey.

PROOF. Suppose that R and $\langle T_i: i \in d \rangle$ satisfy the hypothesis. Also, suppose $\langle S_i: i \in d \rangle \in \text{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \text{Str}^{<\omega}(S_i: i \in d)$.

If some $\langle R_i : i \in d \rangle \in \text{Str}(A_i, S_i : i \in d)$ accepts $\langle A_i : i \in d \rangle$, then

$$\operatorname{Str}(A_i, R_i: i \in d) \subseteq R,$$

and we are done.

Otherwise $\langle S_i: i \in d \rangle$ rejects $\langle A_i: i \in d \rangle$. So apply Lemma 2.14 to obtain $\langle R_i: i \in d \rangle \in Str(A_i, S_i: i \in d)$ such that $\langle R_i: i \in d \rangle$ rejects each $\langle C_i: i \in d \rangle \in Str^{<\omega}(R_i: i \in d)$ with $A_i < * C_i$ for each $i \in d$. We claim $Str(A_i, R_i: i \in d) \cap R = \emptyset$.

Suppose not and pick $\langle Q_i : i \in d \rangle \in \text{Str}(A_i, R_i : i \in d) \cap R$. Since

$$Str(A_i, R_i: i \in d) \cap R$$

is open, we can find a basic open set $Str(B_i, P_i: i \in d)$ with

$$\langle Q_i: i \in d \rangle \in \operatorname{Str}(B_i, P_i: i \in d) \subseteq \operatorname{Str}(A_i, R_i: i \in d) \cap R.$$

In fact, we can assume $A_i < *B_i < *P_i$, for each $i \in d$, and $\langle P_i: i \in d \rangle \in$ Str $(A_i, R_i: i \in d)$. Then $\langle P_i: i \in d \rangle$ accepts $\langle B_i: i \in d \rangle$, but this contradicts the requirement that $\langle R_i: i \in d \rangle$ rejects $\langle B_i: i \in d \rangle$. The contradiction proves the lemma.

LEMMA 2.16. Suppose $\langle T_i: i \in d \rangle$ is a finite sequence of $(\omega, \langle \aleph_0)$ -trees, and $N \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is nowhere dense in the tree topology. Then for each $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ and each $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)$, there must exist $\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$ with $\operatorname{Str}(A_i, R_i: i \in d) \cap N = \emptyset$.

This is immediate from Lemma 2.15 applied to the complement of the closure of N.

LEMMA 2.17. Suppose $\langle T_i: i \in d \rangle$ is a finite sequence of $(\omega, \langle \aleph_0)$ -trees; then $M \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is meager in the tree topology if and only if M is nowhere dense in the tree topology.

PROOF. If $M \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is nowhere dense, then M is trivially meager.

So suppose $M = \bigcup_{n \in \omega} N_n$ where each $N_n \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ is nowhere dense. In order to conclude that M is nowhere dense, it suffices to show that for each nonempty, open $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$, there exists a basic open neighborhood $\operatorname{Str}(A_i, R_i: i \in d)$ with $\operatorname{Str}(A_i, R_i: i \in d) \subseteq R - M$.

So assume such R is given, and pick $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \operatorname{Str}^{<\omega}(S_i: i \in d)$ so that $\operatorname{Str}(A_i, S_i: i \in d) \subseteq R$. Let $\operatorname{Height}(A_i) = H$, for each $i \in d$.

By induction on $n, n \in \omega$, we shall define two arrays of trees, $\langle T(i, n) : i \in d$, $n \in \omega \rangle$ and $\langle P(i, n) : i \in d, n \in \omega \rangle$, such that the following conditions hold for each $n \in \omega$.

(a) $\langle T(i, n) : i \in d \rangle \in \text{Str}(A_i, S_i : i \in d).$

(b) $\langle P(i, 0) : i \in d \rangle = \langle A_i : i \in d \rangle$, and if $n \ge 1$, then for each $i \in d$, $P(i, n) = \bigcup_{k \in n+H} T(i, n-1)(k)$, and P(i, n) has the induced partial order.

(c) If $n \ge 1$, then

$$\langle T(i, n): i \in d \rangle \in \operatorname{Str}(P(i, n), T(i, n-1): i \in d).$$

(d) Suppose $H \leq k \leq n + H$ and $\langle B_i: i \in d \rangle \in \operatorname{Str}^k(P(i, n): i \in d)$ with $A_i < * B_i$ for each $i \in d$. Then for every $\langle Q_i: i \in d \rangle \in \operatorname{Str}(B_i, T(i, n): i \in d)$ with $Q_i \cap P(i, n) = B_i$ for each $i \in d$, we have $\langle Q_i: i \in d \rangle \notin N_n$.

If n = 0, then condition (b) defines $\langle P(i, 0) : i \in d \rangle = \langle A_i : i \in d \rangle$. So we can apply Lemma 2.16 to get $\langle T(i, 0) : i \in d \rangle \in \text{Str}(A_i, S_i : i \in d)$ such that $\text{Str}(A_i, T(i, 0) : i \in d) \cap N_0 = \emptyset$.

Given $n \ge 1$ and the trees T(i, k) and P(i, k) for each $i \in d$ and $k \in n$, we want to select T(i, n) and P(i, n) for each $i \in d$. Now condition (b) determines $\langle P(i, n):$ $i \in d \rangle$ and hence T(i, n)(j) for each $j \in n + H$ because of condition (c). So it remains to select T(i, n)(j) for $j \ge n + H$.

Let $P'(i, n) = \bigcup_{k \in n+H+1} T(i, n-1)(k)$ for each $i \in d$, and let

$$\mathcal{C}(n) = \left\{ \langle C(i) : i \in d \rangle \in \operatorname{Str}^{\leq n+H+1}(P'(i, n) : i \in d) : \text{ for each } i \in d, \\ A_i < * C(i) \text{ and } C(i)(\operatorname{Height}(C(i) - 1)) \subseteq P'(i, n)(n + H) \right\}.$$

Let $K = |\mathcal{C}(n)|$ and enumerate $\mathcal{C}(n)$ as $\{\mathbf{C}(p): 1 \le p \le K\}$ where $\mathbf{C}(p) = \langle C(p, i): i \in d \rangle$.

By induction on $p, p \in K + 1$, we shall define trees T(i, n, p) such that the following conditions hold for each $p \in K + 1$.

(e) T(i, n, 0) = T(i, n - 1) for each $i \in d$.

(f) If $p \ge 1$, then $\langle T(i, n, p) : i \in d \rangle \in Str \langle (P(i, n), T(i, n, p - 1) : i \in d) \rangle$.

(g) Write $B_i = C(p, i) \cap P(i, n)$, and H(p) = Height(C(p, i)), and I(i) = C(p, i)(H(p) - 1) for each $i \in d$.

If

$$V(i) = B_i \cup \left(\bigcup \left\{ \operatorname{Succ}(a, S_i) \cap T(i, n, p) : a \in I(i) \right\} \right)$$
(1)

has the induced partial order, then

$$\operatorname{Str}(B_i, V(i): i \in d) \cap N_n = \emptyset.$$

Condition (e) defines T(i, n, 0). So suppose p > 1 and the trees T(i, n, q) have been defined for $i \in d$ and $q \in p$. We shall use the notational conventions made in the first sentence of conditions (g). Let

$$U(i) = B_i \cup \left(\bigcup \left\{ \operatorname{Succ}(a, S_i) \cap T(i, n, p-1) : a \in I(i) \right\} \right).$$

Then apply Lemma 2.16 to $\langle U(i): i \in d \rangle$ and obtain $\langle V(i): i \in d \rangle \in$ Str $(B_i, U(i): i \in d)$ so that

$$\operatorname{Str}(B_i, V(i): i \in d) \cap N_n = \emptyset.$$

But then we can use Lemma 2.3 to find

$$\langle T(i, n, p) : i \in d \rangle \in \operatorname{Str}(P(i, n), T(i, n, p-1)) : i \in d)$$

such that for each $i \in d$ and each $a \in I(i)$,

$$\operatorname{Succ}(a, S_i) \cap T(i, n, p) = \operatorname{Succ}(a, S_i) \cap V(i).$$

This assures that equation (1) holds, so the conditions (f) and (g) hold.

When the induction on $p \in K + 1$ is complete, we set T(i, n) = T(i, n, K), so the conditions (a) – (c) follow immediately. And condition (d) follows from condition (g) after a moment of thought. So we have completed our induction on $n \in \omega$.

By conditions (a)-(c) we can set

$$R_i = \bigcap_{n \in \omega} (T(i, n)) = A_i \cup \left(\bigcup_{n \in \omega} T(i, n)(n + H - 1)\right) = \bigcup_{n \in \omega} P(i, n)$$

for each $i \in d$, and get $\langle R_i : i \in d \rangle \in \text{Str}(A_i, S_i : i \in d)$.

Now, it is clear that $Str(A_i, R: i \in d) \subseteq Str(A_i, S_i: i \in d) \subseteq R$, and we claim $Str(A_i, R_i: i \in d) \cap M = \emptyset$ (which, if true, proves the lemma). Indeed, suppose $\langle Q_i: i \in d \rangle \in Str(A_i, R_i: i \in d) \cap N_n$ for some $n \in \omega$. Let $B_i = Q_i \cap P(i, n)$ for each $i \in d$. Then $\langle Q_i: i \in d \rangle$ and $\langle B_i: i \in d \rangle$ satisfy the hypothesis of condition (d), and we conclude $\langle Q_i: i \in d \rangle \notin N_n$. This contradiction proves the lemma.

Lemmas 2.16–2.17 enable us to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Suppose $\langle T_i: i \in d \rangle$ is a finite sequence of $(\omega, < \aleph_0)$ -trees.

146

If $R \subseteq \operatorname{Str}^{\omega}(T_i: i \in d)$ has the Baire property (i.e., $R \bigtriangleup U = (R - U) \cup (U - R)$) is meager for some open set U), then we want to show R is completely $\langle T_i: i \in d \rangle$ -Ramsey. Now Lemma 2.17 states that $R \bigtriangleup U$ is in fact nowhere dense (in the tree topology). So suppose $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(T_i: i \in d)$. Since U is open, Lemma 2.15 implies there exists $\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$ with either $\operatorname{Str}(A_i, R_i: i \in d) \subseteq U$ or $\operatorname{Str}(A_i, R_i: i \in d) \cap U = \emptyset$. But the fact that $R \bigtriangleup U$ is nowhere dense and Lemma 2.16 yield $\langle Q_i: i \in d \rangle \in \operatorname{Str}(A_i, R_i: i \in d)$ such that

$$\operatorname{Str}(A_i, Q_i: i \in d) \cap (R \triangle U) = \emptyset.$$

Thus $Str(A_i, R_i: i \in d) \subseteq \bigcup$ implies $Str(A_i, Q_i: i \in d) \subseteq R$, while

 $\operatorname{Str}(A_i, R_i: i \in d) \cap U = \emptyset$

implies $Str(A_i, Q_i: i \in d) \cap R = \emptyset$.

Conversely, suppose R is completely $\langle T_i: i \in d \rangle$ -Ramsey. Let int(R) be the interior of R. We shall show that R - int(R) is nowhere dense. To show this, it suffices to show that for each nonempty, open set U, there exists a basic open set $Str(A_i, R_i: i \in d) \subseteq U - (R - int(R))$.

Indeed, given nonempty open U, pick $\langle S_i: i \in d \rangle \in \operatorname{Str}^{\omega}(T_i: i \in d)$ and $\langle A_i: i \in d \rangle \in \operatorname{Str}^{\langle \omega}(S_i: i \in d)$ such that $\operatorname{Str}(A_i, S_i: i \in d) \subseteq U$. Since R is completely $\langle T_i: i \in d \rangle$ -Ramsey, there must exist $\langle R_i: i \in d \rangle \in \operatorname{Str}(A_i, S_i: i \in d)$ with either $\operatorname{Str}(A_i, R_i: i \in d) \subseteq R$ or $\operatorname{Str}(A_i, R_i: i \in d) \cap R = \emptyset$. In the first case, $\operatorname{Str}(A_i, R_i: i \in d)$ is open, so $\operatorname{Str}(A_i, R_i: i \in d) \subseteq \operatorname{int}(R)$. So in either case, $\operatorname{Str}(A_i, R_i: i \in d) \subseteq U - (R - \operatorname{int}(R))$. This complete the proof of Theorem 2.1.

3. A Nash-Williams partition theorem for trees. A family of finite sets $\mathscr{C} \subseteq [\omega]^{\leq \kappa_0}$ is said to be *thin* provided it is not the case that there exist distinct sets $A, B \in \mathscr{C}$ with $A \ll B$. In [8], Nash-Williams proved the following generalization of Ramsey's theorem.

THEOREM 3.1 (NASH-WILLIAMS). Suppose that $\mathscr{C} \subseteq [\omega]^{<\kappa_0}$ is thin, that r is a positive integer, and that $\mathscr{C} = \bigcup_{i \in r} C_i$. Then there must exist $X \in [\omega]^{\kappa_0}$ and $k \in r$ such that $\mathscr{C} \cap [X]^{<\kappa_0} \subseteq C_k$.

We shall show that Theorem 1.9 implies a generalization for trees of Theorem 3.1.

DEFINITION 3.2. Suppose that T is an ω -tree. A family of subtrees $\mathfrak{B} \subseteq \operatorname{Str}^{<\omega}(T)$ is said to be *thin* provided that it is not the case that there exist distinct trees A, $B \in \mathfrak{B}$ with A < *B.

THEOREM 3.3. Suppose that T is an $(\omega, <\aleph_0)$ -tree, that $\mathfrak{B} \subseteq \operatorname{Str}^{<\omega}(T)$ is thin, that r is a positive integer, and that $\mathfrak{B} = \bigcup_{i \in r} C_i$. Then there must exist $S \in \operatorname{Str}^{\omega}(T)$ and $k \in r$ such that $\mathfrak{B} \cap \operatorname{Str}^{<\omega}(S) \subseteq C_k$.

Theorem 3.3 becomes Theorem 3.1 if we take T to be the trivial $(\omega, 1)$ -tree, i.e., $T = \omega$. Also, note that for each $n \in \omega$, it is clear that $\operatorname{Str}^n(T)$ is a thin family of subtrees whenever T is an ω -tree. Hence, we have the following generalization for trees of Ramsey's theorem.

K. R. MILLIKEN

COROLLARY 3.4. Suppose that T is an $(\omega, <\aleph_0)$ -tree, that n and r are positive integers, and that $\operatorname{Str}^n(T) \subseteq \bigcup_{i \in r} C_i$. Then there must exist $k \in r$ and $S \in \operatorname{Str}^{\omega}(T)$ with $\operatorname{Str}^n(S) \subseteq C_k$.

A finitary version of (3.4) and related results can be found in [6].

PROOF OF THEOREM 3.3. Suppose that T and \mathfrak{B} satisfy the hypothesis. By a standard argument, we may assume that r = 2. So suppose $\mathfrak{B} = C_0 \cup C_1$. Define

$$P = \{ R \in \operatorname{Str}^{\omega}(T) : \text{ there exists } A \in C_0 \text{ with } A < *R \}.$$

Since $C_0 \subseteq \operatorname{Str}^{<\omega}(T)$, it must be that P is an open set in the tree topology on $\operatorname{Str}^{\omega}(T)$. Thus Theorem 1.9 (or Lemma 2.15) implies that there exists $S \in \operatorname{Str}^{\omega}(T)$ with either $\operatorname{Str}^{\omega}(S) \subseteq P$ or $\operatorname{Str}^{\omega}(S) \cap P = \emptyset$.

If $\operatorname{Str}^{\omega}(S) \subseteq P$, then the fact that \mathfrak{B} is thin requires $\mathfrak{B} \cap \operatorname{Str}^{<\omega}(S) \subseteq C_0$. Similarly, if $\operatorname{Str}^{\omega}(S) \cap P = \emptyset$, then $C_0 \cap \operatorname{Str}^{<\omega}(S) = \emptyset$, so $\mathfrak{B} \cap \operatorname{Str}^{<\omega}(S) \subseteq C_1$. This proves Theorem 3.3.

References

1. E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165.

2. P. Erdös and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. (3) 2 (1952), 417-439.

3. F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198.

4. C. Kuratowski, Topology, Vol. 1 (English rev. ed.), Academic Press, New York, 1966.

5. A. Louveau, Demonstration topologique de théorèmes de Silver et Mathias, Bull. Sci. Math. (2) 98 (1974), 97-102.

6. K. R. Milliken, A Ramsey theorem for trees, J. Combin. Theory Ser. A 26 (1979), 215-237.

7. ____, Some results in Ramsey theory, Doctoral Dissertation, U.C.L.A., 1975.

8. C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33-39.

9. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286.

10. J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64.

11. A Taylor, Some results in partition theory, Doctoral Dissertation, Dartmouth College, 1975.

DEPARTMENT OF COMPUTER SCIENCE, IBM THOMAS J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK 10598