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Abstract. We prove a generalization for infinite trees of Silver's partition theorem.
This theorem implies a version for trees of the Nash-Williams partition theorem.

1. Introduction. First we establish some notation. An ordinal will be identified
with the set of smaller ordinals, and a cardinal will be an initial ordinal. For
example, 4 = {0, 1, 2, 3); and to = N0 is the set of all nonnegative integers as well
as the cardinality of that set. If X is a set, then |A^| is the cardinaltiy of X. If k is a
cardinal, then [Xf = [Y Q X: | Y\ = k}, [X]<k = {Y C X: \Y\ < k), and [X]<K
= [X]<K u [Xf.

In [2], Erdös and Rado made the following definition: a family of sets 9 Ç [u]*°
is Ramsey provided there exists X e [to]"0 with either [A']"0 Q 9 or [X]*° n 9 - 0.
Erdös and Rado also proved that the axiom of choice implies that there exists
9 C [tí]"0 that is not Ramsey.

However, [to]"0 is naturally embedded in 2" = {/: /is a function from to into 2},
and so we can consider [oi]*0 with the induced topology, where 2" has the
Tychonoff product topology. In this topology, the work of Nash-Williams [8] and
of Galvin and Prikry [3] shows that each Borel set is Ramsey. Silver [10] extended
these results to show that every analytic set is Ramsey (see Corollary 1.12 below).
And recently, Ellentuck [1] and others (see [5] and [11]) have found simpler proofs
of Silver's result.

The primary result of this paper (Theorem 1.9 below) is a version for trees of
Silver's theorem. This result for trees implies Silver's theorem. Also, just as Silver's
theorem implies the Nash-Williams partition theorem (Theorem 3.1 below) and
Ramsey's theorem, so our result implies a version for trees of the Nash-Williams
theorem (Theorem 3.3 below) and a version for trees of Ramsey's theorem
(Corollary 3.4 below). This last mentioned Ramsey's theorem for trees was origi-
nally proved in [6].

In order to work with trees, we need several definitions. These are listed together
here for convenient reference.

Suppose P = (P,< ) is a partially ordered set. (We use a single symbol both for
a structure and for its underlying set.) Up G P, we write

-
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138 K. R. MILLIKEN

Pred(/>, P) = {q G P: q < p),       Pred*(/>, P) = Pred(/>, P) - {p},
Succ(/>, P) = {q (E P:q >p),       Succ*(/>, P) = Succ(/>, ¿>) - {/>}.

We shall be primarily concerned with rooted trees of finite height or of height u>,
so the following definition of a tree will be used.

Definition 1.1. A tree t = (T,< > is a partially ordered set satisfying:
(1)7" has a unique least element, called the root of T and denoted Root(7"), and
(2) for each t G T, Pred(i, T) is a finite chain, i.e., Pred(r, T) is a finite, linearly

ordered set in < T, < ).
The elements of a tree T will sometimes be called nodes. If t E T, then the /eue/

of t in T, denoted Lev(i, T), is the cardinality of Pred*(r, T). H n B to, T(n) =
{t £ T: Lev(/, 77) = «}, i.e., T{ri) is the set of nodes on the nth level of T. The
height of ris Height(77) = sup{|Pred(r, T)\: t G 7"}. For example, if n G to implies
T(n) =£ 0, then T must have height u. A branch of T is a maximal chain in
<T, < ). We call T an a-tree (where a < to) provided each branch of T has
cardinality a. Thus each a-tree has height a, but a tree with height a need not be
an a-tree.

If s and / are nodes of T, we say i is an immediate successor of t when s is
minimal in Succ*(r, 7"), or equivalently, when t = max{Pred*(í, 7")}. We write
IS(r, T) for the collection of all immediate successors of t in T.

If k is a cardinal (finite or infinite), and if a < to, an (a, n)-tree is an a-tree with
each nonmaximal node having exactly k immediate successors. An (a, < ic)-tree is
an a-tree with each nonmaximal node having fewer than k immediate successors,
and an (a, < n)-tree is an a-tree with each nonmaximal node having at most k
immediate successors.

If 0 < a < ß < u, we write Incr(a, ß) for the set of all strictly increasing
functions from a into ß.

Below is a formal definition of when a tree S is strongly embedded in another
tree T. Intuitively, for S to be strongly embedded in T, S must be a subset of T
with the induced partial order. S must preserve the branching structure of T, i.e.
given a (nonmaximal) node of S, if that node has k immediate successors in T, then
that node must have k corresponding immediate successors in S. Also, S must
preserve the level structure of T, i.e. all nodes of S on a common level (of S) must
be from a common level in T.

Definition 1.2. Suppose S is an a-tree and T is a ß-tree with 0 < a < ß < u. S
is strongly embedded in T provided the following hold.

(1) 5 Ç T, and the partial order on S is induced from T.
(2) If í G S is nonmaximal in S and t G IS(j, T) then Succ(/, T) n IS(j, 5) is a

singleton.
(3) There exists/ G Incr(a, ß) such that S(n) G T(f(n)) for each n G a.
The function / in (3) is called the level assignment function for S in T, and we

write/ = LAF(5, T).
Given/ G Incr(a, ß), we write Str^T) for the collection of all a-trees strongly

embedded in the ß-tree T that have / as level assignment function in T. Also, we
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A partition theorem 139

write

Stra(r) =      U      str/r),
/eIncr(a,/3)

Str«"(r) = U   Str"(r),

Str<a(r) = Str"(r) U str<a(r).
The proof we give of our main theorem involves consideration of finite se-

quences of trees. So we shall extend the above notation to finite sequences of trees.
Suppose d is a positive integer and <7): /' G </> is a sequence of /?-trees for some
0 < ß < to. If 0 < a < /? and/ G Incr(a, ß), then we write

Str/r,: / G d) = {<5,.: i G d): S¡ G Str/7;.) for each i G d)

= II  StrÀTX

Stx*(Tt: i 6 d) -       U       Str/Ç: i e rf),
/elncr(a^)

Str<a(7;.: i ed)=  IJ   Str"(r(: / G ¿).

Str<a(7;.: / G ¿) is defined similarly.
It should be noted that if S, R and T are «-trees with S G Str/T) and

R G Str^S), then R G StrA(T) where /i(/i) = f(g(n)) for each n G to.
Definition 1.3. We write Id for the identity function on to, i.e., Id: u^>u with

Id(n) = n for each « G to. Thus Id|«, the restriction of Id to n, is the identity
function on n.

Definition 1.4. Suppose s is an a-tree and T is a yS-tree for some 0 < a < ß <
u. Then 5" is a strong initial segment of T (denoted S < * T) provided 5 is the
unique tree satisfying S E StrId|a(r).

Definition 1.5. Suppose T is an to-tree and A G Str<w(r). Then we shall write
Str04, T) = {R G Str"(r): A < *R}. So, in particular, Str(<i>, T) = Str"(r). Also,
we shall write Dmt(^, T) for the maximal tree of Str(A, T) and call Dmt(/Í, T) the
dominating tree of A in T, i.e.,

Dmt(/1, T) = A u {Succ(/, T): t is a maximal node of .4 }
where Dmt(A, T) has the partial order induced from T.

Definition 1.6. Suppose that d is a positive integer, that (T¡: i G d} is a
sequence of to-trees, n G to, / G Incr(n, to), and that ^4, G Sttj(T¡) for each / G d.
We shall write

Str(,4„ Ti:iGd)=       IJ II   Strg(Dmt(^„ T,))).
g e Incr(w,ü)) w 6 «/ '

g|n = Id|n

Intuitively, Str(yl,, T¡: / G t/) consists of all sequences <S,: i G d} in
Stru(7]: / G d) that (for each i G d) have /Í, being a strong initial segment of S¡.

Definition 1.7. Suppose T is an to-tree and R Q Str"(r). We say R is T-Ramsey
provided there exits T G Strw(T) with either Str"(r') Ç/îor Str"(r') n R = 0.
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140 K. R. MILLIKEN

Considering u with its usual ordering as the trivial (to, l)-tree, then to-Ramsey
means just Ramsey in the traditional sense mentioned above.

Definition 1.8. Suppose d is a positive integer and (T¡: i G d} is a sequence of
to-trees. We say that a set R C Str"(7J: / G d) is completely (T¡: i G d^-Ramsey
provided the following holds. If <S,! / € rf> € Str"^: i G d), and if (A¡: i G d}
G Str<w(5,: /' G d), then there exists (R¡: i G </> G Str(^„ S,: i G t/) such that
either Str(/1,., Ä,: / G d) Q R or Str(^,., R¡: i G d) n R = 0.

If t/ = 1 so <7^: / G rf> = <r0>, we shall say Ä is "completely r0-Ramsey"
instead of saying R is "completely <7,0>-Ramsey." So R is completely T-Ramsey
means that for each S G Str"(T) and each A G Str<u(5), there exists S" G
Str04, S) with either Str(A, S') ÇAoi Str(A, S') n R = 0 Clearly, if R is
complete T-Ramsey, then R is T-Ramsey.

Given a sequence of to-trees (T¡: i G d} where t/ is a positive integer, we shall
define a topology on Str"(T,: i G ¿) by taking {Str(^„ S¡: i G d): <S,: i G d) G
Strw(7;.: i G t/) and <^,: i G d) G Str<"(5,: i G d)} as a basis. This topology will
be called the tree topology on Str"(7^: /' G d). If t is a single to-tree, then the tree
topology on Str^T) has {Str(/i, 5): 5 G Str^T) and A G Str<a(S)} as a basis.

For completeness, we also define the analytic sets in a topology. Suppose
t = (X, G> is a topological space, i.e., A1 is a set and G is the family of open
subsets X. Write F for the family of closed subsets of X. Suppose T is an arbitrary
(u, N^-tree, and B is the set of all branches of T. Then A Ç X is analytic in t if
there exists a function/: T —> F such that

a = u ( n /o).
It is well known that every Borel set is analytic.

Using these definitions, we can state our main theorem.

Theorem 1.9. Suppose T is an (o>, < H^-tree and R Q StTu(7T) is an analytic set in
the tree topology on Str"(r). Then R is completely T-Ramsey; hence R is T-Ramsey.

First let us see how Theorem 1.9 implies Silver's partition theorem. If A and B
are subset of w, we write A < B to mean: for each a G A and b G B, we have
a < b.

Definition 1.10. If A G [w]<Ko and X c u, then we say A is an initial segment of
X and write A «; X provided there exists Y Ç to with A < Y and A u Y = X.

If we consider [w]*° to be embedded in 2" has the Tychonoff product topology,
then we shall call the induced topology on [w]"° the classical topology. If for each
A G [ío]<k° we write

IA = {YG[U]"°:A«Y}

then [1A: A G [oif^*0} is a basis for the classical topology on [a]*0.
If we instead consider u with the usual ordering to be the trivial (u, l)-tree, then

the tree topology on Str"(to) = [to]"0 is finer (has more open sets) than the classical
topology. A typical basic open set for the tree topology on Str"(to) = [to]"0 is of the
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A partition theorem 141

form

JAiX = {YG[X]*°:A«Y)

where X G [to]"0 and A G [X]<K°. We shall call the tree topology on Strw(to) = [u]H°
the Ellentuck topology since it is identical to the topology on [u]*° introduced by
Ellentuck in [1].

Since we have noted that u is just a particular (u,< N^-tree, we have the
following corollary to Theorem 1.9.

Corollary 1.11 (Ellentuck [1]). // R c [to]H° is analytic in the Ellentuck
topology on [to]"0, then R is Ramsey.

Since the Ellentuck topology is finer than the classical topology, (1.11) implies
Silver's partition theorem.

Corollary 1.12 (Silver [10]). If R Q [to]"0 is analytic in the classical topology on
[to]"0, then R is Ramsey.

2. Proof of the main theorem. In this section, we shall give a proof of Theorem
1.9. In fact, we shall prove the stronger Theorem 2.1 below.

Suppose t = {X, G> is a topological space, i.e., G is the family of open subsets
of the set X. Remember that N C X is nowhere dense provided the closure of N
contains no nonempty open sets. A set M Ç X is meager if it is a countable union
of nowhere dense sets. And a set B <Z X has the Baire property provided there
exists an open set U G G such that BaU = (B— U)\J (U — B) is meager.

Theorem 2.1. Suppose d is a positive integer and <T(: i G d} is a sequence of
(u,< N0)-trees. Then a set R Ç Str"(7;.: i G d) is completely <T,.: i G d")-Ramsey if
and only if R has the Baire property in the tree topology on Strw(7^-: /' G d).

It is well known (see Kuratowski [4, p. 94]) that each analytic set in a topology
has the Baire property in that topology. Using this fact and taking d = 1 in
Theorem 2.1, we obtain Theorem 1.9. So we turn to the proof of Theorem 2.1. Our
proof of (2.1) combines the ideas of Ellentuck [1], of Galvin and Prikry [3], of
Nash-Williams [8] and of this author [6].

We shall need the following "pigeon-hole principle for trees" in the proof of
Theorem 2.1. A proof and the history of Theorem 2.2 can be found in §2 of [6].

Theorem 2.2 (Halpern-Läuchli-Laver-Pincus). Suppose d is a positive integer
and (T¡: i G d} is a sequence (u,< X^-trees. If F: Str'(7): / G d) -» 2 then there
must exist k G 2 and (S¡: i G d} G Str"^: i G d) such that F has the constant
value k on Str1^,.: i G d).

We shall also need the following strightforward lemma.

Lemma 2.3. // T is an (to, < t<0)-tree, if t G T, and if f G Incr(to, a) with
/(0) = Lev(/, T), then there must exist S G Str^T) with Root(S) = t.
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142 K. R. MILLIKEN

Definition 2.4. Suppose that d is a positive integer and (T¡: i G d} is a
sequence of (u,< N0)-trees, and that 7? Ç Strw(T,: i G d). Also, suppose that <S,:
i G d} G Str"(T,-: i G d) and (A¡: i G d) G Str<<J(S,.: /' G d). Then <S,: i G d)
accepts (A¡: i G d} with respect to R provided StT(A¡, S¡: i G d) Q R. We say (S¡:
i G d'y rejects (A¡: i G d) with respect to R provided that each </?,■: / G d} G
Str^S,: /' G d) with {At: i G d~) G Str <"(/?,: i G d) does not accept <^,: i G d)
with respect to 7?.

When it is clear which set 7? is being considered, we shall omit the phrase "with
respect to R ".

The following lemmas build up to a proof of Theorem 2.1. In Lemmas 2.5
through 2.14 we assume that (T¡: i G d}, R, (A¡: i G d} and (S¡: i G d} are as
described in the hypothesis of Definition 2.4.

Lemma 2.5. If (S¡: i G d} accepts (or rejects) (A¡: i G d}, then each
(R¡: i G d} G Strw(5,.: i G d)

with (A¡: i G d} G Str<û>(7?(: / G d) accepts (or rejects, respectively) (A¡: i G d~).

Lemma 2.6. (S¡: i G d} accepts (or rejects) (A¡: i G d}, if and only if,
<Dmt(^,, St): i G dy accepts (or rejects, respectively) (A¡: i G d}.

Lemma 2.7. There exists (R¡: i G d} G StrL4,, S¡: i G d) such that (R¡: i G d)
either accepts or rejects (A¡: i G d}

The above lemmas are all immediate from Definition 2.4. For the next lemma,
we introduce an additional definition. If (S¡: i G d) either accepts or rejects (A¡:
i G d'y, then we say that <5,: / G d} decides (A¡: i G d}.

Lemma 2.8. Given (T¡: i G d} as in Definition 2.4, there exists

</?,.: i Gdy G Str"(T,.: i G d)

such that </?,: /' G d} decides each (B¡: i G d} G Str'(7î,.: i G d).

The proof of Lemma 2.8 is not difficult. One recursively picks an array of trees
<T(;', «): i 6 ¿, n e w) such that for each / G d, the sequence <T(/', n): n G o>y
decreases as a function of n, i.e., T(i, n + 1) Ç T(i, n). Eventually it will be that

One can assure that the R¡ so defined are indeed (u, < N^-trees (and are strongly
embedded in the T¡) by choosing the T(i, n) with T(i,j)(ri) = T(i, n)(n) for all

j > n, i.e., the «th level of T(i, n) determines the «th level of all T(i,j) with/ > n,
and hence the «th level of R¡.

Because of Lemma 2.5, we can assure that </?,.: i G dy decides each (B¡:
i G dy G Str'(7?,: i G d) by selecting the T(i, n) so that <T(/', n): i G dy decides
each (B¡: i G dy G Str'(T(/, n): i G d) with B¡ Ç T(i, n)(ri) for each i. (Then
<J(i, ri): i G dy automatically decides all <£,: /' G ß?> with Bi C T(i, n)(j) for
some j < n.) Such a selection of the T(i, n) is easy to make using repeated
applicatons of Lemma 2.7 (and of Lemma 2.3).
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Lemma 2.9. Given < Ti■ : i G d > as assumed in Definition 2.4, there exists

</?,.: / Gdy GStru(T,.: i G d)

such that either (R¡: i G dy accepts all <£,: i G dy G Str'(/?,: /' G d) or (R¡:
i G dy rejects all <£,: i G d} G Str'(/?,.: i G d).

The proof of Lemma 2.9 is easy. One need only apply Theorem 2.2 (Halpern-
Lauchli-Laver-Pincus) to the result of Lemma 2.8.

Lemma 2.10. Given <5,: i G t/> as assumed in Definition 2.4, (/<5,: /' G dy rejects
(<f>: i G dy, then there exists </?,.: i G d) G Str"(S,: i G d) such that (R¡: i G dy
rejects all (B¡: i G dy G S\x\R¡: i G d).

The <7?,: i G dy from Lemma 2.9 must satisfy Lemma 2.10; otherwise Lemma
2.9 yields that (R¡: i G dy accepts all <£,: / G t/> G Str'(/?.: i G d). Then
Str"(7?,.: i G d) Q R, and (S,: i G dy would not reject <<f>: i G dy.

Lemma 2.11. Given (S¡: ; G dy and (A¡: i G d y as in the supposition of Definition
2.4, let N = Height(A¡). 7/<5,: i G dy rejects (A¡: i G dy, then there exists

(R¡:i Gdy G Six(A¡, S¡: i G d)
such that (R¡: i G dy rejects all <£,.: i G d} G Str"+1(/?,: i G d) with Ai < *BJor
each i G d.

If <S,: i G dy and </í,: i G dy satisfy the hypothesis of Lemma 2.11, then we
can assume A¡ < * S¡ for each /' G d. Letting N = Height(y4,), we can write each
S¡ — A¡ as a union of disjoint sets

S, - A¡ = U {Succ(a, S¡): there exists b G A¡(N - 1) with a G lS(b, S¡)}.
We shall concentrate on the array of trees

<Succ(a, S¡): i G d and there exists b G A¡(N - 1) with a G lS(b, S,)>.    (1)
(We consider Succ(a, S¡) a tree by giving it the induced partial order.) Since (1) is
cumbersome to write, we shall make the notational convention that M¡ =
U beA¿N-i) IS(¿> si)> so Í1) becomes

<Succ(a, S¡): i G d, a G M ¡y. (2)
We define

R1 ç Str"(Succ(a, S,): i G d, a G M,)

by <Q(a, i): i G d, a G M¡y G R' if and only if (Q(a, i): i G d, a G M,> G
Str"(Succ(a, S¡): i G d, a G M,) and <(UaeA/i Q(a, /)) U A,: i G dy G R. Then to
prove Lemma 2.11 one applies Lemma 2.10 to the sequence of trees (2) and the set
R'.

Lemma 2.12. Given <5,: / G dy and (A¡: i G dy as assumed in Definition 2.4,
suppose (St: i G dy rejects <C,: / G dy, N is a positive integer, Height(C¡) = N,

<C,.: / G dy G Sir"(Ar. i G d),
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and every maximal node of C, is also maximal in the corresponding A¡. Then there
must exist <R,: i G dy G SXt(A¡, S¡: i G d) which rejects all (B¡: i G dy G
SirN+\R¡: i G d) with C, < * BJor each i G d.

Lemma 2.12 is a straightforward generalization of Lemma 2.11. Using a recur-
sive definition similar to the one in the proof of Lemma 2.8 along with repeated
applications of Lemma 2.12, one can prove the following lemma.

Lemma 2.13. Given <5,: i G dy as in Definition 2.4, if (S¡: i G dy rejects (<¡>:
i G dy, then there exists <7?,: /' G tf> G Str"(5,: i G d) such that <R,-: i£¿)
rejects all <5,.: i G dy G Str<"(#,: i G d).

Also, just as Lemma 2.10 was generalized to Lemma 2.11, so from Lemma 2.13
we obtain the following lemma.

Lemma 2.14. Given <5,: / G dy and (A¡: i G dy as in Definition 2.4, // (S¡:
i G dy rejects (A¡: i G dy, then there exists

(R,: i Gdy G Str(4, St: i G d)

such that <R,: i G dy rejects all <C,-: / G rf> G StT<u(R¡: i G d) with A¡ < * CJor
each i G d.

We shall present more detailed proofs of the following lemmas.

Lemma 2.15. Suppose d is a positive integer, (T¡: i G dy is a sequence of
(u,< N0)- trees, and that R C Str"(T,: / G d) is an open set in the tree topology on
Str"(T,: j G d). Then R is completely <T,: i G dy-Ramsey.

Proof. Suppose that R and <T(: i G dy satisfy the hypothesis. Also, suppose
<5,-: i Gdy G Str"(T,.: i G d) and (A,: i G dy G Str^S,: i G d).

If some <R,: i G dy G Str(^„ S,: i G d) accepts </l,: i G dy, then

Str(A¡, Ä,: i G d) Q R,

and we are done.
Otherwise <S,: /' G ¿> rejects (A¡: i G dy. So apply Lemma 2.14 to obtain (R¡:

i G dy G StrL4„ S¡: i G d) such that (R¡: i G dy rejects each <C,: i G dy G
StT<a(R¡: i G d) with A¡ < * C, for each i G d. We claim Str(^„ R¡: i G d) n R =
0.

Suppose not and pick (Q.: i G d} G Str(/1„ Ä,: i G d) n R. Since

Str(^,., R,: i G d) n R

is open, we can find a basic open set Str(5,, P¡: i G d) with

<£,: i Gdy G Str(fi,., P,: i G d) C Str(At, R,.: i G d) n R.
In fact, we can assume A¡ < * B¡ < * P¡, for each / G d, and <P,: i G dy G
StT(A¡, R¡: i G d). Then <P,: / G d} accepts (B¡: i G dy, but this contradicts the
requirement that <R,: i G dy rejects <5,: / G t/>. The contradiction proves the
lemma.
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Lemma 2.16. Suppose (T¡: i G dy is a finite sequence of (u,< ü¿)-trees, and
N Ç Str"(T,: /' G d) is nowhere dense in the tree topology. Then for each (S¡:
i G dy G Str"(T,.: i G d) and each (A,: i G dy G Str<w(S,: i G d), there must exist
{R¡: i G dy G Stx(A¡, S¡: i G d) with Stx(Ai, R¡: i G d) n N = 0.

This is immediate from Lemma 2.15 applied to the complement of the closure of
N.

Lemma 2.17. Suppose <T,-: i G dy is a finite sequence of (to,< Nq)-trees; then
M C Str"(T,: i G d) is meager in the tree topology if and only if M is nowhere dense
in the tree topology.

Proof. If M ç Str"(T,: / G d) is nowhere dense, then M is trivially meager.
So suppose M = U „e„ N„ where each Nn C Str"(T,: / G d) is nowhere dense.

In order to conclude that M is nowhere dense, it suffices to show that for each
nonempty, open R C Str'XT,: i G d), there exists a basic open neighborhood
Stx(A¡, 7?,: / G d) with Stx(Ai, R¡: i G d) C R - M.

So assume such R is given, and pick (S¡: i G dy G Str"(T,: i G d) and </!,:
i G dy G Str<"(5,.: i G d) so that Str(^,., S¡: i G d) C R. Let Height^,) = H, for
each / G d.

By induction on n, n G to, we shall define two arrays of trees, <T(/, n): i G d,
n G to> and (P(i, n): i G d, n G coy, such that the following conditions hold for
each n G u.

(a) <T(/, n): i Gdy G Stx(At, 5,: i G d).
(b) (P(i, 0): i G dy = (A,: i G dy, and if n > 1, then for each / G d, P(i, ri) =

U ken + H T(i, n — l)(k), and P(i, n) has the induced partial order.
(c)If n > 1, then

(Tii, n): i Gdy G Six(P(i, n), T(i, n - 1): i G d).

(d) Suppose H < k < n + H and <£,: i G d} G Stxk(P(i, n): i G d) with A¡
< * B¡ for each i G d. Then for every <£>,: i G dy G Stx(B¡, T(i, n): i G d) with
Q¡ n P(i, n) = £, for each / G d, we have <g,: / £ ¿) Í 7V„.

If n = 0, then condition (b) defines (P(i, 0): i£¿) = (A¡: i G dy. So we can
apply Lemma 2.16 to get <T(/', 0): /' G </> G Stx(A¡, S,: i G d) such that
Str^,., T(i, 0):iGd)nN0 = 0.

Given n > 1 and the trees T(i, k) and P(i, k) for each / G d and k G n, we want
to select T(i, n) and P(i, n) for each i G d. Now condition (b) determines (P(i, n):
i G dy and hence T(i, n)(j) for each / G n + H because of condition (c). So it
remains to select T(i, n)(j) for y > n + H.

Let P'(i, n) = U ke„+H + i T(>> n - l)^) for each ' e d, and let

S(n) = (<C(/): i Gdy G Stx<n+H+l(P'(i, n): i G d): for each i G d,

A¡ < * C(i) and C(i)(Height(C(i) - 1)) ç P'(i, n)(n + H)}.

Let K = \G(n)\ and enumerate Q(n) as {C(p): 1 < p < K} where C(p) =
(C(p, i): i G dy.
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By induction on p, p G K + 1, we shall define trees T(i, n,p) such that the
following conditions hold for each/? G K + 1.

(e) T(i, n, 0) = T(i, n - 1) for each i G d.
(f) If/7 > 1, then <T(», n,p): i G dy G Str<(i>(/, ri), T(i, n,p - 1): / G t/)>.
(g) Write B¡ = C(p, i) n P(i, n), and H(p) = Height(C(/>, /)), and /(/) =

C(p, i)(H(p) - 1) for each / G d.
If

V(i) = B, u ( U {Succ(a, St) n T(/, „,/,): a G /(/)}) (1)

has the induced partial order, then

Str(/i„ V(i): i G d) n N„ = 0.
Condition (e) defines T(/', n, 0). So suppose p > 1 and the trees T(i, n, q) have

been defined for /' G d and q G p. We shall use the notational conventions made in
the first sentence of conditions (g). Let

U(i) = 2», U ( U {Succ(a, Si) n T(i, n,p-\):aG /(*)}).

Then   apply   Lemma   2.16   to   <£/(/'):   i G dy   and   obtain   (V(i):   i G dy G
Stx(B¡, U(i): i G d) so that

Stx(Bi, V(i): i G d) n N„ = 0
But then we can use Lemma 2.3 to find

<T(/, n,p): i Gdy G Stx(P(i, n), T(i, n,p - 1): i G d)
such that for each / G d and each a G I(i),

Succ(a, Si) n T(i, n,p) = Succ(a, S¡) n V(i).

This assures that equation (1) holds, so the conditions (f) and (g) hold.
When the induction on p G K + 1 is complete, we set T(i, n) = T(i, n, K), so

the conditions (a) - (c) follow immediately. And condition (d) follows from
condition (g) after a moment of thought. So we have completed our induction on
/i G to.

By conditions (a)-(c) we can set

7?,. =  fi (Hi, n)) = A,;U ( U   Hi, n)(n + H - 1)) =  IJ   ^('. »)
n£u \new I „eu

for each i G d, and get <7?,.: / G rf> G Stx(A¡, S¡: i G d).
Now, it is clear that StrL4,., R: i G d) G Stx(A¡, S¡: i G d) C R, and we claim

Stx(A(, R¡: i G d) n M = 0 (which, if true, proves the lemma). Indeed, suppose
<\Q¡: i G dy G Six(A¡, R¡: i G d) n N„ for some n G to. Let B¡ = Q¡ n P(i, n) for
each i G d. Then <(2,: i G dy and <7?,: / G t/> satisfy the hypothesis of condition
(d), and we conclude <£>,: t' G dy G Nn. This contradiction proves the lemma.

Lemmas 2.16-2.17 enable us to prove Theorem 2.1.
Proof of Theorem 2.1. Suppose (T¡: i G dy is a finite sequence of (u,< Nq)-

trees.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A PARTITION THEOREM 147

If R G Str"(T,.: i G d) has the Baire property (i.e., RAU = (R - U) \J (U -
R) is meager for some open set U), then we want to show R is completely <T,-:
i G dy -Ramsey. Now Lemma 2.17 states that RAU is in fact nowhere dense (in
the tree topology). So suppose <S¡: i G dy G Str^T,-: i G d) and (A,: i G dy G
Str<u(7^: i G d). Since U is open, Lemma 2.15 implies there exists <R,: i G dy G
Six(At, S,: i G d) with either Str(/1,., R,.: i G d) G U or StrL4,., R,.: / G d) n U =
0. But the fact that ÄA U is nowhere dense and Lemma 2.16 yield <£?,: / G </> G
Str(^„ R,: / G ¿) such that

StriX, Q,:i é ¿) n (RAÍ/) = 0.
Thus Stx(A¡, R,: i G d) G U   implies Str(/1,., g,: i G d) G R, while

StrL4„ £,: i e d) n t/ = 0
implies StrL4,., Q¡: i G d) n R = 0

Conversely, suppose R is completely <T,-: /G tí)-Ramsey. Let int(R) be the
interior of R. We shall show that R — int(R) is nowhere dense. To show this, it
suffices to show that for each nonempty, open set U, there exists a basic open set
Stx(A„ R,: / G d) G U - (R - int(R)).

Indeed, given nonempty open U, pick (S,.: /£</)£ Str^T,: i G d) and (A¡:
i G dy G Str<w(S,: i G d) such that StrL4,., S,: i G d) G U. Since R is completely
(T¡: i G ¿>-Ramsey, there must exist <R,: i G dy G Stx(A¡, S¡: i G d) with either
Str(^„ R,: i G d) <Z R or Stx(A¡, R,: /' G d) n R = 0. In the first case,
Str(yi,, R,: / G d) is open, so Str(^„ R,: i G d) <Z int(R). So in either case,
Str(.4„ R,: / G d) Q U - (R - int(R)). This complete the proof of Theorem 2.1.

3. A Nash-Williams partition theorem for trees. A family of finite sets (t Ç [to]<K°
is said to be thin provided it is not the case that there exist distinct sets A, B G &
with A « B. In [8], Nash-Williams proved the following generalization of Ramsey's
theorem.

Theorem 3.1 (Nash-Williams). Suppose that t£ Q [u]<H° is thin, that r is a
positive integer, and that & = U ,er C¡. Then there must exist X G [to]"0 and k G r
such that & n [*]<K° ç Ck.

We shall show that Theorem 1.9 implies a generalization for trees of Theorem
3.1.

Definition 3.2. Suppose that T is an to-tree. A family of subtrees ® G Str<w(T)
is said to be thin provided that it is not the case that there exist distinct trees A,
B G% with ,4 < *B.

Theorem 3.3. Suppose that T is an (to,< H^-tree, that % G Str<w(T) is thin, that
r is a positive integer, and that Ç& = U ,er C¡. Then there must exist S G Str"(T)
and k G r such that <£ n Str^S) G Ck.

Theorem 3.3 becomes Theorem 3.1 if we take T to be the trivial (w, l)-tree, i.e.,
T = to. Also, note that for each n G to, it is clear that Str"( T) is a thin family of
subtrees whenever T is an to-tree. Hence, we have the following generalization for
trees of Ramsey's theorem.
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Corollary 3.4. Suppose that T is an (u,< H^-tree, that n and r are positive
integers, and that Str"(T) G U ,<=r C,. Then there must exist k G r and S G Str"(T)
with Stx"(S) G Ck.

A finitary version of (3.4) and related results can be found in [6].
Proof of Theorem 3.3. Suppose that T and $ satisfy the hypothesis. By a

standard argument, we may assume that r = 2. So suppose "3J = C0 u C,. Define

P = {R G Str"(T): there exists/i G C0with^ < *R}.

Since C0 Ç Str<u(T), it must be that P is an open set in the tree topology on
Str^T). Thus Theorem 1.9 (or Lemma 2.15) implies that there exists S G Str"(T)
with either Str"(S) G P or Stxw(S) n T = 0.

If Str^S) G P, then the fact that <3J is thin requires <S n Str<w(S) Ç C0.
Similarly, if Str"(5) n P = 0, then C0 n Stx<"(S) = 0, so % n Str<u(5) Ç C,.
This proves Theorem 3.3.
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