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Abstract— Sensor networks present the opportunity
to accurately localize phenomena of interest. To be able
to do so however, sensor nodes need to themselves be
accurately localized. We present herein an algorithm
to do this based on uncontrolled sounds observed by
each of the sensor nodes. A probabilistic generative
model is presented and it is shown that the sensor
nodes localization problem is equivalent to maximum
likelihood estimation in the model. Experimental results
are presented for both simulated sensor nodes and
Crossbow MICA2 sensor nodes.

I. INTRODUCTION

Recent developments in manufacturing tech-
nology have created a new generation of very
small computers equipped with one of more
sensors, limited computational capabilities, and
wireless radio links. As the cost of manufac-
turing these so called sensor nodes decreases,
the possibility of using large numbers of nodes
in aggregate to form a sensor network has be-
come possible. Such networks are essential for
monitoring large environments unobtrusively and
at a finer scale than was previously possible.
Sensor networks can be used in a variety of
civilian and military contexts, including factory
automation, inventory management, environmen-
tal and habitat monitoring, health-care delivery,
and battlefield awareness.

Most sensor network algorithms need to know
the physical locations of individual sensors.
While it is sometimes possible to measure these
locations by hand, a rich body of sensor network
localization algorithms has emerged to allow the
sensor network to do this task autonomously.
These techniques typically however take an ac-
tive approach to localization. Some approaches

place special beacon nodes with known location
into the environment while others rely on expen-
sive hardware or require the sensor nodes to beep
to one another.

We offer a passive solution to the sensor
node localization problem. Our algorithm allows
sensor nodes to localize themselves from sounds
naturally occurring in their environment. These
sounds can be anything, from birds chirping to
the sound of machinery. Our algorithm works
despite knowing neither where nor when the ex-
ternal events generating these sounds take place.
This passive approach expends less sensor node
energy, does not require infrastructure outlay, and
makes the sensor network less detectable than
when employing active methods. Moreover, it is
competitive with active localization methods and
both more accurate and robust than other passive
localization techniques.

Our approach structures the relationship be-
tween the sensor node locations, the locations and
times of the external events generating the sounds
heard by the sensor nodes, and the recorded
times as a Bayesian network. We show how the
localization problem reduces to maximum like-
lihood estimation in the Bayesian network and
explain how we do this via gradient descent in an
expression monotonic to the negative likelihood.

We synchronize the clocks of the sensor nodes
with respect to one another and assume a time
recorded at one sensor node is directly compara-
ble to a time recorded at another sensor node [4].
We also assume that sounds are sufficiently well
dispersed to prevent data association ambiguities
between events.
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II. PROBLEM DEFINITION

A. Overview

Let the sensor network consist of � nodes at
locations ���������
	�	�	����� . Let ���� refer to the
x-coordinate of the location of the sensor node i
and let ���� refer to the y-coordinate. We assume
2-D locations but the same technique will work
in 3-D as well. These locations are not known to
us.

Second, let there be � sound-generating
events at locations ���������
	�	�	������ . Moreover,
let ���� and ���� represent the respective coordi-
nates. These locations are not known to us.

Third, let the times of the sound-generating
events be � �!�"�#�
	�	�	$����� . These times are not
known to us.

Fourth, let there exist � %&� variables ')(*
that specify the time recorded at sensor node� ( for sound � * . We will revisit these variables
in Section IV when we structure the relations
between these variables as a Bayesian network.

Given the sensor measurements ' , we seek the
sensor node locations � .

B. Sensor Model

We assume that ' (* is distributed as follows:

' (* � �,+-� */.�0 +1� (�2 � *435 2�6 3 (1)

0 +7� (82 � *93 � : +7� �(<; � �* 3$=�. +7� �( ; � �* 3$=
where 5 is the speed of sound in free space, 6 is
the standard deviation of the error in recording
times, and �,+?> 2�6 3 is a Normal distribution with
mean > and standard deviation 6 .

III. PRIOR WORK

A very popular technique often used outdoors
is the Global Positioning System (GPS) [5]. It
offers an inexpensive solution for many appli-
cations but lacks the relative accuracy generally
required for sensor network applications.

Methods based on received signal strength
(RSS) of radio signals as well as radio connec-
tivity (e.g. [1], [2]) offer inexpensive solutions
for both indoor and outdoor environments but are
often not robust enough for many sensor network
applications.

Another class of localization schemes assume
the presence of so called beacon nodes that know
their location with respect to a global reference
frame [3], [9], [10]. While these methods are both
robust and accurate, they require substantial cost
and effort to set up beacon nodes and measure
their locations by hand.

It is also possible to use ultrasonic ranging [11]
or laser-range finders to perform ranging as an
input to a localization system. These schemes re-
quire precise instrumentation or multiple micro-
phones per sensor node because the sender and
the receiver need to be precisely oriented to one
another. The cost of this equipment substantially
raises the cost of sensor network deployment.

Ranging in the audible domain [11] offers a
solution that is both relatively inexpensive and
reliable. It requires the sensors to beep to one
another though. This expends both extra energy
and may cause unwanted disturbance by or de-
tection of the sensor nodes.

In terms of algorithms, our problem has strong
analogues to the statistical problem of multi-
dimensional scaling. There, dissimilarities be-
tween points are used to compute a planar em-
bedding. Indeed, multi-dimensional scaling offers
a direct solution to localization from ranging
data but not knowing when the sounds occurred
preempts its use in this domain.

The problem also resembles the affine struc-
ture from motion problem in computer vision
when the sounds and the sensor nodes are suf-
ficiently distant. There, corresponding points be-
tween multiple images are used to recover both
camera position as well as the 3-D structure of
a scene. In both cases, we seek to recover the
rotations and translations of sensors observing
common phenomena and with this information,
complete the locations of points in a higher
dimensional space.

IV. OUR APPROACH

In this section, we encapsulate the relations
between variables as a Bayesian network and
show how the sensor node localization problem
reduces to that of maximum likelihood estimation
in this Bayesian network. We start with the
formal definition of our Bayesian network, give
conditions for when an unique solution exists,
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Fig. 1. Bayesian Network with 2 sounds and 3 sensor nodes

compute the likelihood, and show how gradient
descent is used to perform likelihood maximiza-
tion.

A. Bayesian Network

A Bayesian network [7] is characterized by its
variables and the prior and conditional probabili-
ties relating the variables to one another. We start
with the variables and what they represent, then
move on to the prior and conditional probabili-
ties. Figure 1 shows a Bayesian network for the
case of two sounds and two sensor nodes. Each
of these variables are identical to the variables
discussed in Section II-A.

1) Variable 1 : Sensor Node Locations:
Let there be N sensor node location variables�#�
	�	�	 �� in our Bayesian network. These vari-
ables are not observed in the Bayesian network,
i.e. their values are not known to the gradient
descent algorithm. After doing gradient descent
however, it is possible to form estimates regard-
ing them.

2) Variable 2 : Sound Locations: Let there
be � sound location variables ���
	�	�	���� in
our Bayesian network. These variables are also
unobserved.

3) Variable 3 : Sound Times: Let there be �
sound time variables �#��	�	�	 �&� in our Bayesian
network. These variables are unobserved as well.

4) Variable 4 : Recorded Times: Let there be�
recorded time variables of the form

' +�� 3 � '�� � �	�
 � ���

where � +� 3 maps the index of the acoustic event
� to the sensor node that recorded this time
and ��+�� 3 maps the index of the sound � to
the sound whose time was recorded. Not all
sensor nodes will hear all sounds so the structure
of the Bayesian network will depend on which
observations actually occur. These variables are
observed, i.e. their values are known.

5) Prior Probabilities: We assume that both
sensor nodes and sounds are uniformly dis-
tributed in a rectangular region. Thus the prior
probabilities are

� +7� � 3 � �� and
� +7��� 3 � �� .

We also assume that sound times are uniformly
distributed from the activation of the sensor net-
work to when the last acoustic event is recorded.
Thus the prior probability

� + ��� 3 � �� .
6) Conditional Probability : How Recorded

Times are Generated: Recorded times are
stochastically determined by sensor node lo-
cations, sound locations, and sound times as
presented in Section II-B. Thus the conditional
probability is:

� +7' ���� � � 2 ��� 2 ��� 3 � (2)�
� � � 6 %������#+

+-��� . + 0 +7� � 2 ��� 3 3! 5 ; '
�� 3 =� % 6 =
3

where �����#+"� 3 stands for ��� .
B. Existence of an Unique Solution

Since there is no global reference frame, we
impose the following arbitrary conditions to reg-
ularize our solution. ��� is set to be (0,0). � = is set
to lie on the positive x-axis. �$# is set to lie above
the x-axis, i.e. have a positive y-coordinate. This
canonical form of the solution space is easily
adapted if one or more sensor nodes have known
location with respect to a global reference frame.

It is possible that ' does not provide enough
information to determine � . Sometimes, this lack
of information is predictable given � , � , and

�
.

Each variable � � has components � �� and � �� so
introduces two unknown variables. Each variable�%� does the same and each ��� variable introduces
one unknown variable. Each variable ' �� intro-
duces one equation. Moreover, when � & �

, the
canonicalization of the solution sets ��� to (0,0)
and constrains ' � = to (x,0), thereby eliminating
three unknown variables.
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Fig. 2. Twenty Sensor Nodes in Simulation

Thus, only if:

� & � %�� .�� % � ; � (3)

can there exist an unique solution. In situations
where the inequality is strict, we have an over-
constrained set of equations. This information
is necessarily not contradictory given the nature
of the scenario. Even when the inequality is
satisfied, there exist degenerate situations where
the information is not sufficient for unique local-
ization. For example, the Bayesian network may
not be connected and this will lead to two sets
of nodes whose relative positions may remain
unknown.

C. Maximum Likelihood Estimation

Let '�+1� 2 � 2 � 2 ' 3 be the likelihood of the data
in the Bayesian network. The likelihood of a
Bayesian network is simply the product of each
of the prior and conditional probabilities.

Doing this multiplication, we obtain:

'/+7� 2 � 2 � 2 ' 3 (4)

� ��
(�� �

� +7� ( 3 %
�
* � �

� +?� *93 % �* � �
� + � *93 %

��
� � �

� +7' +�� 3 � � � � ��� 2 � 
 � ��� 2 � 
 � �	� 3
� ��
(�� �

�
� % �* � �

�
� % �* � �

� �
� % (5)
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Fig. 3. Seven Crossbow MICA2 Sensor Nodes

��
� � �

�
� � � 6 % �����#+

+ ��� . + 0 +7� � 2 �%� 3 3  5 ; '
�� 3 =� % 6 =
3

�
�

� �	�  %
��
�  %

�
+ � � � 6 3 � % (6)

�����#+

 �� � � + ��� . 0 +7� � � ��� 2 � 
 � ��� 3 3  5 ; '�� � � �
 � � � 3 =� % 6 =

3
Since the log-likelihood is monotonic in the

likelihood, we can take the log of Equation 6 to
obtain:

� � ; +7� . � 3 % ����
�

(7)

; � % ����
�
� ; � % ���� + � � � 6 3 .�

�
6 = %

��
� � �
+ ��� . 0 +1� � � ��� 2 � 
 � ��� 35 ; ' �

� � �
 � � � 3 =

Note that the first three terms are independent
of the Bayesian network variables. We can re-
move these terms and multiply by

�
6 = to obtain

another expression monotonic in the likelihood:

��� �
��
� � �
+ ��� . 0 +7� � � ��� 2 � 
 � ��� 35 ; '�� � � �
 � � � 3 = (8)

We use gradient descent with both line search
and momentum to minimize ; � � . Due to the
monotonicity of

� �
with the likelihood, this pro-

cess effectively finds the maximum likelihood
estimate of the sensor node locations.
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V. EXPERIMENTAL RESULTS

We show in this section some examples of
the sort of localization results the algorithm pro-
duces. First, we define the metrics we will use
to evaluate the quality of our results. Second,
we present the results of two specific networks.
Third, we show how the error varies as we
modify different parameters of the localization
scenario.

A. Error Metrics

1) Metric 1: Scaled Likelihood: We use
�
; � � %5 as our first metric. Intuitively, this metric

measures the standard deviation of the expected
distances between sounds and sensor nodes sug-
gested by the data versus the distances stemming
from the hypothesized solution.

2) Metric 2: Actual Error: For our second
metric, we use the actual standard deviation of
the predicted sensor node location from the actual
sensor node locations, given optimal alignment
between the two coordinate frames.

B. Specific Networks

1) Twenty Sensor Nodes in Simulation: Fig-
ure 2 shows localization results for a scenario
with twenty sensor nodes, twenty sounds, and a
standard deviation in recording error that corre-
sponds to 10 cm. The predicted error, given by
Metric 1, is 5.1 cm and the actual error is 2.3
cm. The circles in the figure represent the true

Fig. 5. Crossbow MICA2 Sensor Node

sensor node location and the crosses represent
the predicted location.

2) Seven Crossbow MICA2 Sensor Nodes:
Figure 3 shows localization results using seven
Crossbow MICA2 sensor nodes (see Figure 5)
and seven sounds. The predicted error is 2.7 cm
and the actual error is 7.4 cm.

C. Effects of Changing Network Parameters

In this section, we examine the effect of dif-
ferent parameters on the localization algorithm.

1) Effects of Changing Sensor Noise: Figure 4
shows the effect of varying the standard deviation
of the recording time to the equivalent of 0 cm to
20 cm. Twenty sensor nodes and twenty sounds
are used throughout. We find that both errors rise
approximately linearly as the noise increases.

2) Number of Sensor Nodes: Figure 6 shows
the effect of varying the number of sensor nodes
being localized from four to twenty. Twenty
acoustic events are used and the standard devi-
ation in the recording error is set to correspond
to 10 cm. We find that the algorithm is initially
overconfident when dealing with less than seven
sensor nodes. With more than eight sensor nodes,
the error levels off to approximately 3 cm.

3) Number of Sounds: Figure 7 shows the
effect of varying the number of sounds used for
localization from four to twenty. Twenty sensor
nodes are localized and the standard deviation in
the recording error is set to correspond to 10 cm.
We find that the error initially drops sharply and
continues to decrease slowly as the number of
sounds increases.

VI. FUTURE WORK

While we feel that we have made significant
progress with the methods presented herein, the
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algorithm unfortunately does not fare as well
when only a subset of the sensor nodes hears
each sound. There are two typical failure modes.

First, the predicted error may be low but
the actual error is high. This suggests that the
problem is ill-conditioned in a way even when
the condition of Equation 3 is met. We plan to
explore the conditions under which the predicted
error is or is not a reliable estimate of the actual
error.

Second, gradient descent may get stuck in
local minima, even with random restarts. We plan
to explore more robust probabilistic reasoning
algorithms to help deal with this case.

VII. CONCLUSION

We have presented herein a localization al-
gorithm for sensor nodes that uses cheap, com-
modity hardware and relies only on uncontrolled
sounds for localization. A probabilistic generative
model is presented and it is shown how the local-
ization problem reduces to maximum likelihood
estimation on this model. Experimental results
are presented for both simulated sensor nodes and
Crossbow MICA2 sensor nodes.
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