
A Passive Measurement System for Network

Testbeds

Charles Thomas, Joel Sommers, Paul Barford, Dongchan Kim, Ananya Das,
Roberto Segebre, and Mark Crovella

University of Wisconsin, Colgate University and Boston University
E-mail: cthomas@wisc.edu, jsommers@colgate.edu, pb@cs.wisc.edu,

dkim24@wisc.edu, adas@colgate.edu, rsegebre@colgate.edu, crovella@cs.bu.edu

Abstract. The ability to capture and process packet-level data is of
intrinsic importance in network testbeds that offer broad experimen-
tal capabilities to researchers. In this paper we describe the design and
implementation of a passive measurement system for network testbeds
called GIMS. The system enables users to specify and centrally man-
age packet capture on a set of dedicated measurement nodes deployed
on links in a distributed testbed. The first component of GIMS is a
scalable experiment management system that coordinates multi-tenant
access to measurement nodes through a web-based user interface. The
second component of GIMS is a node management system that enables
(i) local processing on packets (e.g., flow aggregation and sampling),
(ii) meta-data to be added to captured packets (e.g., timestamps), (iii)
packet anonymization per local security policy, and (iv) flexible data
storage including transfer to remote archives. We demonstrate the ca-
pabilities of GIMS through a set of micro-benchmarks that specifically
highlight the performance of the node management system deployed on
a commodity workstation. Our implementations are openly available to
the community and our development efforts are on-going.

1 Introduction

Network testbeds are designed to offer environments to researchers and prac-
titioners in which experimental systems, configurations and protocols can be
carefully tested and evaluated. Network testbeds in use today can be differen-
tiated by the specific systems, level of control and “realism” that they offer
users. While the strengths and weaknesses of different testbed types have been
well documented, the utility of each depends directly on the ability to gather
measurements from the infrastructure.

Measurements in network testbeds can be broken into two categories: active
and passive. Active measurements are based on sending and receiving specifi-
cally crafted packet probes through the infrastructure (e.g., traceroute mea-
surements). These probes enable a variety of characteristics to be measured such
as end-to-end delay, loss and jitter [22]. While active probe-based measurements
are important and widely used in testbeds and operational networks, they may



2 Thomas et al.

lack detail or precision or be entirely unable to capture aspects of behavior that
are critical for experiments.

Passive measurements are based on using specialized counting or capture
mechanisms that are built into software and systems deployed in network
testbeds. Standard examples are log files from servers, flow-export logs [17, 26]
or the diverse measurement information bases (MIBs) that are available from
networked devices via the Simple Network Management Protocol (SNMP) [15].
One of the most compelling types of passive measurement is the ability to cap-
ture packet information from transmissions on links in a testbed. Information
from packet traces can be critical to experiments with new network applica-
tions, protocols and security techniques, as well as for day-to-day management
and troubleshooting of the testbed infrastructure itself.

There are a myriad of challenges to enabling packet capture capability within
a network testbed. First, packet capture almost always requires dedicated sys-
tems since measurements on high-bandwidth links can result in overheads that
are beyond the capability of standard hardware. This means that sufficiently
capable systems must be acquired, configured, deployed and (securely) managed
alongside the experimental systems. Further, if packet capture is meant to be
available to concurrently running experiments, the measurement systems must
be able to log data such that multiple tenants have exclusive access to their
own data. Finally, packet capture always has security and privacy implications
since packets can contain personally identifiable and private information. De-
pending on the size and diversity of the testbed, these challenges can become
quite significant.

In this paper we describe a packet capture management environment for
network testbeds called GIMS (GENI Instrumentation and Measurement Sys-
tems). The system was designed for deployment within the GENI infrastruc-
ture [4], however it has evolved into a system that can be independent from
that environment. GIMS provides the capability to (i) configure packet cap-
ture measurements (typically associated with an experiment on the testbed) on
a deployed set of dedicated packet capture devices, (ii) manage measurements
from simultaneous users, (iii) enforce local security and privacy policies, and (iv)
summarize and archive captured data to remote storage devices.

The architecture of GIMS is divided into three major components. The first
is the GIMS front end, which includes web-based user interfaces for GIMS ad-
ministrators and users, and allows the user access to monitoring capabilities
during the experiment and access to results after an experiment is over. The
second component of the architecture is the GIMS backend, which instantiates
and facilitates control of measurements, and coordinates activities between the
front end (i.e., admins and users) and the GIMS packet capture devices. The
backend also includes a monitoring system that gathers and stores system infor-
mation and logs from running experiments. The third component is the packet
capture control system that runs on the packet capture devices that are deployed
within the testbed. This control system includes the capability to enforce privacy
policies, summarize and aggregate packet data, and archive data in a variety of



A Passive Measurement System for Network Testbeds 3

ways for multiple simultaneous experiments. Communication throughout GIMS
is facilitated through an XML/RPC-based command language. The system is
designed for scalable and extensible deployment and to simplify tasks of deploy-
ing capture devices, and managing and using the system. The GIMS components
were implemented in run on commodity PC hardware and UNIX-based operating
systems.

We describe the implementation of GIMS and include a screenshot of the
front-end user interface, and show results from a set of micro-benchmarks on
the packet capture control system. The former highlights some the capabilities
of the system from the user perspective. The latter is critical for understanding
the behavior and capabilities of the components that will actually be captur-
ing experiment data in the testbed. Our microbenchmark results show that the
packet capture system performs well under high offered packet rates, with zero
or nearly zero packet loss under a load of 200K packets/sec. In a configuration
with realistic TCP traffic offered at an average rate of 500 Mb/s and in which
the capture system produced flow export records, we observed zero packet loss.

The GIMS software distribution is openly available to the community [9].
It has been running in a prototype deployment within the Wisconsin Advanced
Internet Lab [8] for nearly a year. We are currently in the process of identifying
locations for deployment of packet capture nodes in different parts of the GENI
infrastructure.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide details on the GIMS architecture. In Section 3, we provide details on the
implementation of GIMS. We evaluate the packet capture system through a set
of micro-benchmarks in Section 4. Studies and projects related to GIMS are de-
scribed in Section 5. We summarize, conclude and describe our future work in
Section 6.

2 System Requirements and Architecture

In this section, we describe the requirements and design of GIMS. At the highest
level, development of GIMS was motivated by the recognition that the ability
to capture packets on links (i.e., passive measurement) in a network enables
a broad range of network research experiments and network operations activi-
ties. These include experiments with new networking protocols, experiments in
network security, experiments with new network applications, experiments with
new measurement tools, etc. From a network operations perspective, passive
packet capture enables network performance tuning and network troubleshoot-
ing. However, this capability is not common in network testbeds and coordinated
management of packet capture devices is complex.

2.1 GIMS relationship to GENI

GIMS was developed as a measurement infrastructure that would be deployed
within GENI [4]. To that end, the primary requirements beyond specific exper-



4 Thomas et al.

imental functionality is that it be consistent with the GENI authorization and
credentialing mechanisms and that it interface with one of the GENI control
frameworks.

GIMS currently implements interfaces for the ProtoGENI control framework
as discussed in Section 3. However, during the development process, every effort
was made to make the implementation general and to modularize components
such that interfaces to additional control frameworks could be easily developed,
and so that the system could be used in a standalone fashion. A standalone
version of the system is nearing completion.

2.2 Passive Measurement System Requirements

The requirements for the GIMS environment are based on the GENI Instrumen-
tation and Measurement Systems Specification [18]. That document specifies a
broad vision for instrumentation and measurement, and discusses the trade-offs
and challenges for different types of instrumentation and measurement within
GENI. Our focus is specifically on the objective of developing a passive packet
capture capability i.e., the ability to gather, save and analyze packets from taps
on links in a network testbed.

The general requirements of the GIMS environment include (a number bor-
rowed from [18]):

– Full or partial packet capture at line rate with zero packet loss,
– No (or at least measurable) impact on experiments,
– Extensibility (i.e., the ability to add new measurement synthesis capability),
– High availability (e.g., at least as available as testbed systems on which ex-
periments are conducted),

– Large capacity (i.e., the ability to support a diverse set of simultaneous ac-
tivities from a large number of experiments),

– Remote management and monitoring capability,
– Access control (i.e., the ability to specify what data is available from a par-
ticular device or collection of devices, to whom, and for how long),

– Flexible storage including the ability to house data locally and to stream to a
remote archive,

– Measurement nodes that are secure from unauthorized external access,
– Ease of use for both administrators and users of the system,
– Deployment on commodity PC’s and UNIX-based operating systems.

Specific requirements for the packet capture systems include:

– Support for IPv4 (IPv6 support is future work),
– Support for IPv4 header capture only,
– Support for specifying individual fields of interest in the IPv4 header,
– Support for on-the-fly prefix preserving anonymization of specified fields,
– Support for no-loss packet capture at line rate of at least 1 Gbps,
– Support for up to 256 simultaneous active experiments per node.



A Passive Measurement System for Network Testbeds 5

Satisfying these requirements entails the development of a packet capture
management environment that bears many similarities to network testbeds
themselves and can easily be thought of as a parallel experimental infrastruc-
ture. We are aware of no other packet capture management systems that fully
satisfy these requirements.

2.3 Architectural Specification

The design space for GIMS makes several assumptions. First, dedicated measure-
ment hardware will be deployed in a network testbed as illustrated in Figure 1.

Fig. 1. The basic physical components that support a GIMS deployment.

These measurement host systems are connected to target links via taps (op-
tical splitters or active devices) or SPAN ports on switches. The systems are
commodity PC hosts running a UNIX-based OS and may include high perfor-
mance packet capture cards (e.g., such as Endace [3]), or specialized software
to improve packet capture efficiency (e.g., [14, 16]). These systems are remotely
accessible via a management network interface and include a separate network
interface for streaming captured data to remote, high capacity storage systems.
While not an explicit part of the GIMS requirements, attaching high precision
timestamps to packets is highly desirable for different types of experiments.
This is most effectively accomplished with specialized hardware and GPS sup-
port, although there are emerging software solutions [28]. Adding high precision
timestamps is a future objective for GIMS deployments but does not require any
specific capability from our software.

The GIMS design is three-tiered and divided into components as shown in
Figure 2. The first component is the front end. This component of the system
includes the interface mechanisms for both GIMS users and administrators that
enable access to the measurement infrastructure. The interfaces enable users to
configure their packet capture measurements. This includes specifying the set of
nodes that will be monitored 1, IP aggregates that will be captured, remote data
storage targets (e.g., Amazon S3) and local packet processing (e.g., sampling or

1 Users currently must have out-of-band knowledge of the links their experimental
traffic will use. Coordinating links that have packet capture nodes with testbed
experiments requires specific coordination with the testbed management infrastruc-
ture.



6 Thomas et al.

flow aggregation). The admin GUI enables access to and configuration of remote
measurement nodes. The front end also includes the component manager. This
system enables coordination and integration of GIMS with a network testbed
control system such as ProtoGENI. The component manager facilitates authen-
ticated access to GIMS and control of GIMS systems from the testbed system
should the GIMS GUI’s not be required. In short, it makes GIMS more broadly
useable across diverse testbed infrastructures. The front end can run on a single
system or on multiple systems in a distributed testbed.

Fig. 2. The key components in the GIMS architecture.

The second component in the GIMS design is the back end. This compo-
nent of the system is responsible for coordination of front end systems and the
distributed measurement nodes; it is, in a sense, the “nerve center” of GIMS.
The back end provides information about the availability and status of measure-
ment nodes via GIMS control messages to the front end. It also facilitates all
communication via GIMS control messages with measurement nodes, including
registration with the infrastructure, administrative configuration, and configu-
ration of packet capture activities for individual users. The core component of
the back end is a database system that maintains all state information about the
configurations of GIMS systems. This component can be distributed to enhance
robustness and to enables GIMS to scale to support a large infrastructure.

The third component in GIMS design is the packet capture management sys-
tem that runs on each of the measurement nodes that are deployed on links in
the testbed. Fundamentally, these nodes run some kind of packet filter (e.g.,
libpcap) that enables packets to be captured from a network interface, locally
processed, and stored. The packet capture management system runs on these
nodes and (i) facilitates multi-tenant use of measurement systems, (ii) enforces
local privacy policies, (iii) provides data summarization and aggregation capa-
bility, and (iv) provides data streaming to a designated remote storage device.
Remote storage recognizes the fact that packet capture on high speed links can
quickly fill disks, thus each user is only allocated a fixed local storage volume.
It is also critical that the packet capture management system impose a very low



A Passive Measurement System for Network Testbeds 7

processing overhead on the measurement nodes so as not to affect packet capture
and processing and thereby impact measurements.

The control and data flow in GIMS is illustrated in Figure 3. Users specify
experiments and their associated measurement configurations through the GIMS
GUI or an interface in the testbed control framework. Among other things, this
results in filters deployed on measurement systems and storage allocation. As
experiments are run in the testbed, packets are captured and stored in the user-
specified archive. At the conclusion of the experiment, the filters and storage are
deallocated. The front end and back end facilitate the flow of control data and
maintain the current state of the measurement systems.

Fig. 3. Control and data flow in GIMS.

Finally, the security and access control are critically important in GIMS since
measurement nodes may be deployed on live links. Measurement nodes are there-
fore only accessible to authorized users or administrators. Data collection on the
measurement nodes enforces local privacy policies by only capturing designated
fields of packets (e.g., header fields) and applying any required anonymization
before transmitting to either local or remote storage. The front end, back end
and measurement systems themselves are secured from unauthorized external
access by only allowing access on specified ports from specified systems and
from users with the correct credentials.

3 Implementation Details

In this section we describe implementation aspects of GIMS. We first discuss
the management and control components of GIMS (the front-end and back-end
components), followed by the packet capture subsystem implementation.

Figure 4 depicts the GIMS system components and interfaces among them.
These components are consistent with the architectural specification described
in Section 2. The user-facing components offer web-based views for users to man-
age, configure, and control testbed measurements. These front-end components
communicate with the back-end, which coordinates all of the activities in the
GIMS infrastructure. As such, the back-end performs remote procedure calls to
configure and control capture daemon components, and to manage the database



8 Thomas et al.

of users and device configurations in response to user and administrator actions
initiated from the front-end.

Fig. 4. The GIMS system components.

3.1 GIMS Front End

The most prominent of the front-end components, the GIMS control GUI, is
implemented using AJAX and runs from a web server in the testbed (in this case
gims.wail.wisc.edu). The GUI allows users to create device configurations,
assign names to specific configurations, and store them in the GIMS database
for retrieval. A screenshot of the control GUI is shown in Figure 5. A new set of
device configurations can be created automatically when an experiment in the
network testbed is created (e.g., a GENI slice), or it can be manually generated.
Each configuration can be saved in the GIMS database for future retrieval and
modification.

To obtain the status of a set of measurements, or an ongoing measurement
session, a GIMS user can view a separate results page, which can either show
the full results of a measurement session after it has ended, or display some
(near-)real-time information. The view of an ongoing measurement allows a user
to see a status log, as well as the results of querying the capture daemons for
basic statistics of packet or flow capture.

A separate administration GUI allows authorized users of GIMS to add,
delete and edit devices in the GIMS back-end database. A device must be added



A Passive Measurement System for Network Testbeds 9

Fig. 5. The GIMS control GUI.

to the database before it will be available to be selected for an experiment. The
user is prompted for information about the device such as location, device name,
device type, hostname, port and description. The capabilities of the device also
need to be entered so that the correct options can be displayed to the user during
the creation of device configurations.

3.2 GIMS Back-end

The GIMS back-end implements various functions to coordinate user actions
with the capture daemon systems deployed in a testbed. There are also a number
of functions to support generation, update, and retrieval of users’ device con-
figurations in the GIMS database, and it performs a variety of sanity-checking,
error-checking and logging functions.

The GIMS database is a core back-end component and is built on MySQL.
It contains tables to keep track of experiment state, location and type of de-
vices, which devices are being used in a given experiment, the configuration of
experiment devices, and statistics for each experiment.

Lastly, the “gimsd” monitoring daemon uses SNMP to monitor GIMS capture
devices that are currently running and collecting data on behalf of users. It takes
a snapshot of system performance every 15 seconds and stores the results in the
GIMS database. These results are available to the user via the GIMS Results
tool during and after experiment execution.

3.3 GENI Integration

GIMS currently includes a collection of scripts that forms a modular interface to
facilitate interaction with the ProtoGENI control framework. These interfaces



10 Thomas et al.

enable integration with the GENI testbed, and their modular construction en-
ables additional control frameworks to be added without affecting other GIMS
components. These scripts are used to control and query various aspects of the
ProtoGENI system from GIMS. Likewise, the GIMS component manager is a
GIMS front-end component that translates ProtoGENI control instructions into
GIMS-specific control actions. In general, these components deal with transla-
tion of GENI contructs of “slices” and “slivers” into GIMS components and
configurations. Because of the modular design of this part of the back-end, it is
fairly straightforward to integrate with different external control frameworks. As
noted above, GIMS can also operate autonomously (i.e., without an interface to
a specific control framework).

3.4 Packet Capture Subsystem

The core measurement capabilities of GIMS are implemented in a subsystem
called the capture daemon. This subsystem consists of three components: the
capture daemon controller, which handles requests from the GIMS backend to
configure and control packet capture processes, the storage controller, which
handles storage interactions, and the capture daemon itself, which performs the
packet capture, aggregation and transformation of packets, and creation of meta-
data. The capture daemon subsystem is depicted in Figure 6.

Fig. 6. GIMS capture daemon architecture.

The capture daemon controller implements a set of XML/RPC handlers to
accept requests from the GIMS back end for configuring packet capture system
parameters and storage parameters, for starting, stopping, and pausing capture



A Passive Measurement System for Network Testbeds 11

daemon processes, and for gathering some statistics on the progress of packet
capture. It is implemented in Python as a single process, and communicates with
the storage controller and capture daemon processes through standard UNIX
inter-process communication mechanisms (pipes and signals). It also performs
detailed logging, which the GIMS backend relays to users if they want to gain
detailed runtime information about the capture system.

The storage controller is also implemented in Python as a single process,
and utilizes various modules to interact with sftp and Amazon S3 servers. As
new files are produced and become available for transfer, the storage controller
initiates upload to user-specified directories, in the case of sftp, or a user-specific
bucket, in the case of S3. Since there may be multiple capture processes running
simultaneously we must take care to avoid blocking operations in the storage
daemon. Thus, the files generated from each configuration are handled by sepa-
rate threads in the storage controller.

Lastly, the capture daemon process implements the actual passive measure-
ment collection and processing. It is implemented in C, and uses the standard
libpcap API for packet capture. As a result, it can leverage any modified ver-
sions of libpcap that are available for accelerating packet capture, e.g., [3, 16].
To perform aggregation into flow records, the capture daemon uses the open
source libfixbuf and yaf libraries, and for anonymization, we use the well-
known prefix-preserving IP address anonymization algorithm of Fan et al. [19].

As data files are created (either packet traces or flow record traces), the cap-
ture daemon generates metadata in an easily processed XML format. The meta-
data include information about the experiment configuration (obtained through
the initial configuration call from the GIMS back-end) as well as user-specific
metadata (specified in the GIMS front-end GUI). Finally, experiment-specific
details related to the runtime performance of the experiment are added period-
ically as an experiment proceeds. For example, the number of received packets
and bytes are added periodically to the metadata, as well as information about
any interface packet drops that libpcap reports. These packet and byte counters
are also relayed to the GIMS back end, so that a user can gain (near-)real-time
information about his or her experiment as it runs.

4 System Microbenchmarks

Understanding the performance of the packet capture system is important to en-
sure that it does not skew measurements e.g., by inadvertently dropping packets.
In this section we describe a set of micro-benchmark experiments to evaluate the
performance of the GIMS capture daemon system. We also discuss operational
aspects of other parts of the GIMS system.

4.1 Experiments

The goal of our microbenchmark experiments was to evaluate the impact of dif-
ferent configuration parameters on the performance of the GIMS capture dae-



12 Thomas et al.

mon. Since the capture daemon can perform optional transformation and aggre-
gation of packets, we sought to understand the implications of different options.
Our testbed consisted of four identical commodity workstations, each with Intel
Xeon E5530 quad-core processors, 8 GB of RAM, and dual-port Intel Gigabit
Ethernet card dedicated to experiment traffic. A fifth workstation had similar
CPU and memory specs, but two dual-port Intel Gigabit Ethernet cards. The
four identical hosts were wired directly to the fifth host with cross-over cables,
creating a star topology. Each host ran Linux 2.6.32.

On the fifth (center of the star) host, we installed and ran the GIMS capture
daemon software. We additionally installed the PF RING [16] kernel module, as
well as the modified Intel Gigabit Ethernet (igb) driver to improve raw packet
capture performance. While experiments were running, we monitored CPU load
and collected information (from the capture daemon, and also directly from
PF RING) about packet drops. We used three of the other hosts to generate traffic,
and the fourth as a traffic sink. The packet capture daemon was configured to
monitor traffic on the interface connected to the traffic sink node.

We used iperf to generate uniform streams of UDP packets [1], from 64 bytes
through 1000 bytes, and the Harpoon traffic generator to generate more realistic
TCP traffic [27]. Due to limitations of using iperf for generating traffic, we were
only able to generate up to 210,000 packets per second (210 Kpps). This rate is
approximately the maximum rate of 512 byte packets that can be generated at
1 Gb/s. We configured Harpoon to generate an average load of about 500 Mb/s.

The capture daemon was run in four configurations. In the first, we captured
the first 64 bytes of packets and did not perform any other transformations to the
packets. In the second, we configured the capture daemon to do uniform sampling
of 10% on received packets (i.e., 90% of received packets were discarded). Again,
we captured and stored the first 64 bytes of the packets that remained after
sampling. In the third configuration, we collected simple SNMP-like packet and
byte counters on the received traffic, and in the fourth, we collected and stored
flow-level information in the IPFIX format [26]. In each configuration, data was
stored on the local system and not streamed to remote storage. We used the
iperf traffic generator for the first three configurations, and Harpoon in the
flow-oriented configuration.

4.2 Results

We first note that in all experiments, CPU load on the capture daemon host was
quite low (around 10%). This result is consistent with other measurements that
have been performed with PF RING-enabled systems [11, 14], and suggests that
the capture daemon does not impose significant processing overhead.

Table 1 shows the percent of packets captured (i.e., not dropped) for the three
experiments involving the iperf traffic generator. Results are shown for each of
the three capture daemon configurations, and five different iperfconfigurations.
As noted above, due to limitations of iperf we could only generate, at maximum,
about 210 Kpps. We see from the table that there was zero or close to zero packet
drops in all cases except for experiments in which we collected 64 byte packet



A Passive Measurement System for Network Testbeds 13

headers with 64 byte and 128 byte packet traffic. In our Harpoon experiment
with collecting flow records at the capture daemon, reported packet drops were
also nearly zero (less than 0.5%).

In both our CPU utilization measurements and packet drop measurements,
our results are consistent with prior work that has studied the performance of
PF RING-based systems. As a result, we expect the capture daemon to exhibit
scaling properties similar to other systems that use PF RING, and perform well
under high-load situations. We also note that the capture daemon can also take
advantage of hardware-accelerated packet capture platforms such as the Endace
DAG cards [3] to scale to higher speeds, since these platforms often offer modified
versions of the libpcap software.

Table 1. GIMS capture daemon system performance in different configurations using
the iperf traffic generator. Table values show percent of packets captured.

Packet size 64 128 256 512 1024
Offered packet rate 200 Kpps 201 Kpps 201 Kpps 208 Kpps 100 Kpps

Packet header capture 96.9 98.9 100 100 100
Header capture; 10% sampling 100 100 100 100 100

SNMP-like counters 100 100 100 100 100

5 Related Work

Passive network measurements are instrumental to operators and researchers
for gaining insight into network behavior and performance. As such, there have
been many protocols and systems developed over the years to facilitate passive
collection of network measurements.

The most ubiquitously deployed measurement capability today is defined by
the Simple Network Management Protocol (SNMP) [15]. The SNMP standards
define a set of counters and configuration variables arranged in a hierarchical
structure, called the Management Information Base, as well as protocols to re-
trieve counters and set device configurations. For example, many network oper-
ators utilize basic byte and packet interface counters that are available through
SNMP to gain a coarse view of traffic characteristics in their networks. Oper-
ators and scientists also use software packages such as the Multi-router Traffic
Grapher (MRTG) [24] to visualize these basic SNMP counters in appealing and
useful graphics, and to track traffic patterns over time.

Although SNMP counters are widely available, they cannot provide insight
into application traffic patterns or other traffic details. As a result, many routers
have the ability to export flow records, which contain more detailed information
on individual application flows, and there have been other efforts within the
IETF to define flexible traffic flow measurement mechanisms, e.g., RTFM [12].
For example, the de facto standard Cisco Netflow formats [2, 17] are supported
on many devices, and it is likely that the flexible flow record formats provided
by the recent IPFIX standard [26] will see broad adoption.



14 Thomas et al.

Packet traces provide one of the most detailed views of network traffic, at
the cost of higher CPU and I/O load to perform the data collection. There are
many standard tools and libraries available to facilitate capture and processing
of packet data, e.g., [7, 13, 23], and specialized hardware platforms that enable
efficient packet capture at multi-gigabit speeds [3].

A number of efforts within the research community have focused on improv-
ing packet capture efficiency on commodity hardware systems. For example,
the PF RING system can be compiled and installed in a Linux kernel to enable
packet capture at very high rates [16], and the related vPF RING system facilitates
high-speed capture in Linux-based virtual machine environments [14]. There are
PF RING-based modifications available to the standard libpcap API, enabling
applications to transparently take advantage of the performance improvements
provided by PF RING. Since the GIMS packet capture daemon is built on top of
the libpcap interface, it can also transparently take advantage of these perfor-
mance improvements. Still, tuning a commodity operating system and hardware
platform to achieve best performance can be difficult. Braun et al. evaluated
packet capture bottlenecks on FreeBSD and using PF RING and PF PACKET on
Linux in order to provide guidelines for achieving optimal performance [11].

There have been a number of systems developed to improve passive packet
measurement capabilities by making it easier for network managers and/or re-
searchers to initiate, collect, process and/or analyze the collected data. For ex-
ample, the pktd system provides authorized users with an API to initiate packet
capture on an end host while not having to give the user privileges to directly
open a network interface card in promiscuous mode [20]. Building on the capa-
bilities of pktd, Agarwal, et al. developed a system to remotely initiate packet
capture at specific vantage points within an enterprise network for the purpose
of debugging performance problems. In a similar vein, Hussain, et al. describe a
system for passive packet capture based on using Endace DAG cards that also
provides automated storage for packets [21]. These systems have similarities with
the capture daemon back-end of GIMS. However, GIMS includes a much broader
set of capabilities in terms of the kinds of data that can be collected and how
data can be transformed prior to storage.

Two systems that are specifically designed with measurement capabilities for
testbed environments include the MINER system [10] and the OMF manage-
ment framework [25]. The MINER system allows a user to initiate both active
and passive measurement tools on testbed hosts. A primary goal of MINER is
to provide a unified API for using arbitrary measurement tools. As a result, it
requires some code to be written to adapt existing measurement tools to the
MINER framework. OMF is more broadly a management and control frame-
work for network testbeds, but includes integrated capabilities to collect and
store experiment-specific measurements. GIMS has some similarities with these
systems, but is geared specifically toward providing high-performance passive
measurement capabilities. It is also control framework agnostic: it can either be
run in an independent manner, or easily interface with an existing testbed or
network management platform.



A Passive Measurement System for Network Testbeds 15

6 Summary and Future Work

The ability to capture packets traversing links in a network testbed is of cen-
tral importance to many different types of experiments. However, the costs and
complexity of deploying and managing a packet capture measurement infras-
tructure within a testbed can be very high. In this paper, we describe a packet
capture management environment for network testbeds that we call GIMS. The
key objective of GIMS is to reduce the complexities associated with managing
and using a distributed packet capture infrastructure.

The design of GIMS is divided into three components. The front end includes
a set of GUIs that facilitate management and use of distributed packet capture
devices. The back end, controls configurations of packet measurement and facili-
tates communication between the front end and the packet capture devices. The
packet capture control system enforces privacy policies, summarizes and aggre-
gates packet data, and archives data for multiple simultaneous experiments on
packet capture devices.

GIMS was developed to run within the GENI infrastructure and has inter-
faces to directly interact with the ProtoGENI control framework. However, it
has also capable of running autonomously outside of ProtoGENI. It was imple-
mented to run on commodity PC hardware with UNIX-based operating systems.
It has been running in the WAIL testbed for nearly a year and the software dis-
tribution is openly available to the community.

Our on-going efforts are focused in three areas. First, we are in the process
of deploying GIMS nodes within the GENI infrastructure. This will enable the
system to be used by researchers in that environment. We are also adding ad-
ditional capabilities for results analysis and reporting. This recognizes the fact
that the process of running experiments does not stop with packet capture and
requires standardized tools to make use of that data. Finally, to enable the sys-
tem to be more broadly used, we plan to add new interfaces for other GENI
control frameworks such as Orbit [5] and PlanetLab [6].

References

1. Iperf 2.0.5 – the TCP/UDP bandwidth measurement tool. http://iperf.

sourceforge.net/. 2012.
2. Cisco IOS Netflow. http://www.cisco.com/en/US/products/ps6601/products_

ios_protocol_group_home.html, 2012.
3. Endace, Inc. http://www.endace.com, 2012.
4. GENI — Global Environment for Network Innovations. http://www.geni.net/,

2012.
5. The Orbit Testbed. http://www.orbit-lab.org/, 2012.
6. The Planetlab Testbed. http://www.planet-lab.org/, 2012.
7. Wireshark — go deep. http://www.wireshark.org/, 2012.
8. P. Barford. The Wisconsin Advanced Internet Laboratory. http://groups.geni.

net/geni/wiki/MeasurementSystem, 2012.



16 Thomas et al.

9. P. Barford, J. Sommers, and M. Crovella. Instrumentation and Measurement for
GENI. http://www.schooner.wail.wisc.edu, 2012.

10. C. Brandauer and T. Fichtel. MINER—Ameasurement infrastructure for network
research. In Proceedings of Tridentcom ’09, 2009.

11. L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle. Comparing and im-
proving current packet capturing solutions based on commodity hardware. In
Proceedings of ACM Internet Measurement Conference, 2010.

12. N. Brownlee. Using NeTraMet for production traffic measurement. In Proceedings
of IEEE/IFIP International Symposium on Integrated Network Management, May
2001.

13. CAIDA. Coralreef software suite. http://www.caida.org/tools/measurement/

coralreef/, 2012.
14. A. Cardigliano, L. Deri, J. Gasparakis, and F. Fusco. vPFRING: Towards Wire-

Speed Network Monitoring using Virtual Machines. In Proceedings of ACM Inter-
net Measurement Conference, 2011.

15. J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC 1157: A Simple Network
Management Protocol (SNMP). http://www.ietf.org/rfc/rfc1157.txt, May
1990.

16. L. Deri. Improving passive capture: Beyond device polling. In Proceedings of
SANE, 2004.

17. B. Claise Ed. RFC 3954: Cisco Systems NetFlow Services Export Version 9. http:
//tools.ietf.org/html/rfc3954, October 2004.

18. P. Barford Editor. GENI Instrumentation and Measurement Systems (GIMS)
Specification, GDD-06-012. http://groups.geni.net/geni/wiki/GeniInstMeas,
2006.

19. J. Fan, J. Xu, M. Ammar, and S. Moon. Prefix-Preserving IP Address Anonymiza-
tion. Computer Networks, 48(2), October 2004.

20. J.M. Gonzalez and V. Paxson. pktd: A packet capture and injection daemon. In
Proceedings of Passive and Active Measurement Workshop, 2003.

21. A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos, and J. Ban-
nister. Experiences with a continuous network tracing infrastructure. In Proceed-
ings of the ACM SIGCOMM workshop on mining network data, 2005.

22. J. Sommers and P. Barford and N. Duffield and A. Ron. Multi-objective monitoring
for sla compliance. IEEE/ACM Transactions on Networking, 18(2), 2009.

23. V. Jacobson, C. Leres, S. McCanne, et al. Tcpdump. http://www.tcpdump.org/,
1989.

24. T. Oetiker. MRTG: The Multi Router Traffic Grapher. In Proceedings of USENIX
LISA ’98, 1998.

25. T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar. OMF: a control and man-
agement framework for networking testbeds. ACM SIGOPS Operating Systems
Review, 43(4), 2010.

26. G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek. RFC 5470: Architecture
for IP Flow Information Export. http://tools.ietf.org/html/rfc5470, March
2009.

27. J. Sommers and P. Barford. Self-configuring network traffic generation. In ACM
SIGCOMM Internet Measurement Conference, October 2004.

28. D. Veitch, S. Babu, and A. Pasztor. Robust Synchronization of Software Clocks
Across the Internet. In Proceedings of ACM SIGMETRICS, 2004.


