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A Passivity-Based Approach for Simulating Satellite

Dynamics With Robots: Discrete-Time Integration

and Time-Delay Compensation
Marco De Stefano , Ribin Balachandran , and Cristian Secchi

Abstract—This article proposes a passivity-based approach
for simulating satellite dynamics on a position-controlled robot
equipped with a force–torque sensor. Time delays intrinsic in the
computational loop and discrete-time integration degrade the be-
havior of the satellite dynamics reproduced by the robot. These
factors can generate an energy-inconsistent simulation and can
even render the system unstable. In this article, time delay and
discrete-time integration effects are analyzed from an energetic
perspective and compensated through a passivity-based control
strategy to ensure a faithful and stable dynamic simulation with
position-controlled robots. The benefit of the proposed strategy is
validated by simulations and experiments on the On-Orbit Servic-
ing Simulator (OOS-SIM), a robotic facility used for simulating
free-floating dynamics.

Index Terms—Hardware-in-the-loop simulation, passive
integrator, space robotics, time-delay compensation.

I. INTRODUCTION

T
HE assembly and maintenance in orbit using robotic tech-

nologies began in 1981 when the Space Shuttle Manipu-

lator was used for the first time [1]. Advances in space robotic

technologies have enabled the execution of precise and complex

maintenance tasks in orbit which reduce the risks associated with

manned extravehicular activities. Unmanned mission demon-

strators were flown in orbit to validate autonomous robot control

technologies [2]. A milestone was the success of the Robot

Technology Experiment (ROTEX) to demonstrate servicing

prototype capabilities using robots [3]. Later, robotic experi-

ments were conducted with the Japanese Engineering Test Satel-

lite VII (ETS-VII) [4], including real-time collision avoidance

capabilities [5].

Although the list is not exhaustive, the common aspect in

all of these on-orbit experiments is the use of a manipulator
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Fig. 1. OOS-SIM facility. The industrial robots are equipped with force–
torque sensors. Servicer (left) and client (right).

operating in space. Robotic manipulators can be used in mis-

sions for maintenance or deorbiting of defective satellites in

the context of active space debris removal. The dynamics and

control of a space robot can be quite complex [6] and before

the actual space missions, it is necessary to test and validate the

control tasks on ground. Thus, reliable simulators which can

reproduce microgravity conditions are required. To this end,

several solutions can be adopted such as air bearing systems,

neutral buoyancy, zero-G parabolic flights, cable off-loaders,

and robotic facilities [1]. Air bearing systems can provide gravity

compensation but they are limited to planar motion simulations

only [7]. Neutral buoyancy can provide a very large workspace,

however, the fluids introduce hydrodynamic effects which dis-

tort the dynamics to be reproduced. Zero-G parabolic flights can

achieve nearly zero gravity conditions but they are limited by

test duration (only 20–30 s) and cargo [8].

Robotic facilities are systems with hardware-in-the-loop

where the robot end-effector moves according to a mathematical

model to reproduce the desired working conditions (e.g., zero

gravity). Several robotic simulators for space applications are

available-INVERITAS, a facility for rendezvous and capture of

satellites [9], EPOS (European Proximity Operation Simulator)

to simulate rendezvous and docking [10], the SOCS (Lockheed

Martin Space Operation Simulation Center) for testing the Orion

rendezvous [11], and the OOS-SIM, an on-ground experimental

facility for on-orbit servicing simulations [12]. In particular, the

OOS-SIM is composed of two industrial robots simulating the

free-floating satellites (see Fig. 1). One of the satellites (servicer)
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is equipped with a manipulation arm. Each of the industrial

robots has a force–torque sensor mounted on its end-effector to

measure external interactions. The measured forces and torques

are then provided to the mathematical model of the desired

dynamics whose output (velocity) is commanded to the robot

that moves in Cartesian space.

The main issues with robotic facilities are the time delay

between the measured forces and the simulation driven reaction

of the robot, and discrete-time dynamics integration [1]. These

factors, if not properly addressed, cause energy inconsisten-

cies and instabilities, especially during interactions with the

environment.

A. Related Work

Several control algorithms for time-delay compensation have

been proposed for achieving stable simulation by modifying

the contact model (see, e.g., [13], [14]). However, they require

identification of contact parameters. In [15] and [16], a first-order

compensation model was designed, but the knowledge of contact

frequency and time-delay duration is needed.

The passivity-based approaches have emerged as intuitive

and effective strategies for achieving stability independent of

the time delay. In fact, ensuring the passivity of the overall

system is a sufficient condition for having a stable behavior [17].

The field of haptics and teleoperation has thoroughly exploited

approaches based on passivity to deal with the instabilities due to

time delay (see [18] for a survey). For example, wave variables

([19], [20]) have been implemented for making a bilateral com-

munication channel passive. However, this technique introduces

a characteristic impedance which might deteriorate the behavior

of the teleoperation system [21]. In [22] and [23], the concept

of energy tank has been exploited for dealing with time delay.

But, the selection and tuning of the energy tank parameters is re-

quired. In our article, we exploit time-domain passivity approach

(TDPA), [24] to address the delay problems. Within this context,

[25] proposed a geometric solution for haptic devices. In [26],

delay has been compensated using a time-varying damping

weighted by the inertia matrix for a haptic device that, unlike

industrial robots, is back-drivable. In [27], a technique for dissi-

pating the active energy in the null space of a redundant robot is

suggested. This solution is not applicable in the considered con-

text since most of the facilities for rendering satellite dynamics

do not have redundancy (e.g., [10] and [12]). In [28] and [29],

TDPA has been exploited for reliably rendering satellite dynam-

ics on a robotic simulator independent of the time delay. How-

ever the method required the knowledge of the robot dynamic

model.

In hardware-in-the-loop simulators, a discrete-time integra-

tion of a mathematical model (e.g., satellite dynamics) is also

required. Discrete-time integration can lead to a loss of the

geometric and energetic properties characterizing physical sys-

tems and, therefore, to an unnatural and unstable behavior [17].

Geometric integrators, i.e., numerical integration methods that

preserve geometric structure, such as symplectic forms, have

been developed over the years (see [30]–[32]). These methods

require a numerical and iterative solution of the updated equation

for each time step, which typically prohibits real-time deter-

minism for the industrial robot. Energy-preserving integrators

based on momentum conservation [33] are also available in the

literature. Nevertheless, geometric integration deals mainly with

isolated physical systems or systems with some damping [34],

and the interaction with the external environment is not con-

sidered. In haptics control, the operator needs to interact with a

virtual environment and the problem of integrating a nonisolated

physical dynamics is relevant. In [35], it is shown that standard

explicit integrators do not ensure passivity and, therefore, a

more complex integration strategy has to be sought. An implicit

integration method, based on the port-Hamiltonian formulation

of the dynamics to be simulated is proposed in [20]. In [36], a fast

but implicit and variable rate integration strategy for implement-

ing mass–spring–damper systems is designed. Implicit and vari-

able rate integration methods can prohibit real-time determinism

on a standard industrial robot and, therefore, a real-time explicit

method is more suitable. In [37] and [38], an explicit method for

simulating the dynamics of a rigid body was proposed and vali-

dated on a robotic system for simulating the dynamics of a satel-

lite. However, translational and rotational dynamics were treated

separately.

B. Contribution

A common approach to compensate time delay in the control

loop of a robotic simulator is to modify the contact parame-

ters without addressing the effects of discrete-time dynamics

integration [13]–[15] and [16].

In this article, a control strategy based on passivity criteria

is proposed in order to ensure a faithful and reliable dynamic

simulation. The approach does not rely on contact models and it

can compensate the increase of energy due to the time delay

and also due to the discrete-time dynamics integration. The

contribution is based on three main aspects.

First, a novel time-delay compensation strategy based on

TDPA is developed. This strategy is different from previous

works [28] and [29], where a force estimator was required for

the time-delay compensation control. The force estimator was

a function of the robot dynamics model. While using indus-

trial robots, the dynamic model is not always available and

the absence of a joint-torque interface limits its identification.

Therefore, in this article, the time-delay compensation strategy

will rely only on measured data without depending on the robot

dynamics model. Furthermore, in [28] and [29], the passivity

controller was applied in admittance causality. In this article,

the passivity controller will be designed in impedance causality

where the modified force is the input to the satellite dynamics.

Thus, the admittance port can be used to compensate the en-

ergy generated by the discrete-time integrator by modifying the

velocity commanded to the robot.

In [37] and [38], separate passive integrators for translational

and rotational dynamics were designed, respectively, without

including time-delay compensation. In this article, a unified inte-

grator is obtained for simulating the complete satellite dynamics.

Second, a unified architecture is designed, which combines

the time-delay compensation and the passive integrator, and
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Fig. 2. Admittance architecture with the desired dynamic—R is the robot, E
is the environment, Des. Dyn. is the force-acceleration model of the dynamics
to be simulated.

it acts as a passivity layer between the real hardware and the

mathematical model. Time-delay effects are resolved with a

passivity control (PC) which acts in impedance mode (force

correction) and the discrete integration effects are solved with a

second PC in admittance mode (velocity correction).

Third, the proposed unified control structure is validated

experimentally on an industrial robot, the OOS-SIM, shown

in Fig. 1.

II. PROBLEM STATEMENT

A suitable control strategy for implementing desired dynam-

ics on industrial robots is the admittance control [39]. This

strategy has been exploited in many different fields, see, e.g.,

[23] for a surgical application, [40] for a human–robot inter-

action scenario, and also [12] for robotic simulators for space

applications.

The schematic of a robotic simulator controlled with an

admittance architecture is illustrated in Fig. 2.

The robot R is equipped with a six DoF (degree of freedom)

force–torque sensor at the end-effector. When the robot interacts

with the environment E, forces and torques are generated and

measured by the sensor. Fe ∈ R
6 is the vector composed of

Cartesian forces and torques. This is the input to the desired

dynamics that, after integration, will provide the twist Vs ∈ R
6

as a set point to the robot, which will consequently reproduce

the desired behavior.

Our main goal is to simulate a satellite dynamics that can

be characterized as a free-floating rigid body. The translational

dynamics is given by

v̇s = M−1fe (1)

and the rotational dynamics is described by

ω̇s = I−1(Iωs × ωs + τ e) = I−1(S(Iωs)ωs + τ e) (2)

where the variables are defined as1:

1) M ∈ R
3×3 the simulated mass matrix;

2) fe ∈ R
3 the Cartesian measured force;

3) vs ∈ R
3 the Cartesian linear velocity;

4) v̇s ∈ R
3 the Cartesian linear acceleration;

5) I ∈ R
3×3 the inertia matrix of the body about the center

of mass;

6) ωs ∈ R
3 the angular velocity;

7) ω̇s ∈ R
3 the angular acceleration;

8) S(Iωs) ∈ R
3×3 the skew-symmetric matrix such that

S(Iωs)ωs = Iωs × ωs;

9) τ e ∈ R
3 the Cartesian measured torques.

1In this article, we use bold notation to indicate vectors and normal font for
the individual components of the vectors.

Fig. 3. Admittance architecture where TΣ is the discrete integrator with time
step T . Robot and internal controller are represented by time-delay block, TD.

The total wrench, twist, and mass matrix are defined as:

1) Fe = (fe, τe) ∈ R
6 the wrench;

2) Vs = (vs, ωs) ∈ R
6 the twist;

3) H = (M ,03×3;03×3, I) ∈ R
6×6 the total mass matrix

(mass and inertia of the body).

By integrating (1) and (2) and by applying the inverse kine-

matics it is possible to obtain the desired joint velocities for the

industrial robot to track and the end-effector will evolve as a

floating rigid body not subjected to gravity.

Fig. 3 shows the control architecture of the industrial robot

where the location of the discrete-time integration and the time

delay are delineated. The acceleration of the rigid body (com-

puted by the desired dynamics block) is integrated in discrete

time with sampling time T , which results in the commanded

velocityVs(k). We assume that the industrial robot can perfectly

track a desired velocity set point. This is a common assumption

and it can be achieved by properly tuning the gains of the

low-level controllers of the robot [41]. However, the internal

control of the robot and the inverse kinematics calculation

might require several sampling steps for the computation of

the desired set point. These factors introduce time delays in the

corresponding simulation-driven motion of the robot. Therefore,

the real velocity of the robot results to be Vs(k − µ), which is

the commanded velocity delayed by a quantity µ, where µ ∈ N

is the number of discrete time steps of sampling time T . Hence,

the robot has been represented as a time delay TD in Fig. 3.

A. Time-Delay Effects

The effect of time delay within the admittance architecture

shown in Fig. 3 can be seen in the following example. Let

us consider a rigid body with mass M = diag[50, 50, 50] kg

and inertia I = diag[18, 20, 22] kgm2 with initial linear veloc-

ity vs(0) = [0.1, 0.15, 0.2] m/s and angular velocity ωs(0) =
[0.01, 0.02, 0.03] rad/s. We run a simulation with a time delay

(TD) of 10 ms in the loop. During its motion, forces and torques

are generated by colliding against virtual walls modeled using

spring–damper systems. The measured forces and torques are the

input to the desired dynamics block. The behavior of the system

can be seen in Fig. 4 where the velocity with the time delay in

the loop (solid line) is compared with the ideal case velocity

(dashed line) without delay. As it can be seen, the velocity of

the simulated rigid body increases after each collision which is

against the energy conservation principle and it might lead to an

unstable system.

B. Discrete Integration Effects

For analyzing the integration effects, we will consider the

Euler integration method which is usually exploited in industrial
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Fig. 4. Time delay causes instabilities-comparison of velocity with time delay
in the loop (solid line) and ideal velocity without time delay (dashed line).

robots. The reason is that Euler integrator is fast and explicit and

it can be implemented in real time. To isolate the effects of the

discrete integration, let us consider that the time delay in the

loop is zero. The total energy H(vs,ωs) of the rigid body is

given by

H(vs,ωs) = Ht(vs) +Hr(ωs) (3)

where Ht =
1
2vs

TMvs is the translational kinetic energy and

Hr = 1
2ωs

T Iωs is the rotational energy. Consider now the

effect of discretization on translational motions in (1). The

following energy balance holds:

Ḣt = fe
Tvs. (4)

If there is no external interaction (i.e., fe = 0), the energy stored

in the system is constant (i.e., Ḣt = 0).

Integrating the desired dynamics using the standard Euler

method leads to the following discrete system:

vs(k) = vs(k − 1)+ TM−1fe(k − 1). (5)

In case of free motion (i.e., fe(k − 1) = 0), the velocity of the

system is constant over time. Thus, in this simple case, standard

Euler integration is energetically well posed since it allows the

discretized dynamics to behave in a physically consistent way

independent of the sample time. However, this relation does not

hold anymore in case of external interaction. Let us consider a

body with mass 30 kg subjected to a force profile shown at the

top of Fig. 5. The integration of the dynamics is considered in the

continuous case and compared with Euler discrete integrator for

sampling times T1 = 0.1 s and T2 = 0.01 s. The increase in the

energy which is introduced into the system with respect to the

continuous time integrator is shown in Fig. 6, where Htc is

the energy calculated in continuous time. Notice that the increase

in energy is proportional to the sampling time and this leads to

position drifts. The drift due to the integration with T1 reaches

0.05 m between 0 and 32 s and 0.15 m between 32 and 50 s,

(see Fig. 5 middle). Also, for the case with T2, the drift appears.

Since the sampling time is smaller, it results in a drift ten times

lower, as shown in Fig. 5 bottom.

Fig. 5. Force profile, drift in position due to the discrete integration with (w)
sampling times T1 and T2.

Fig. 6. Discrete integration causes drift in energy for the translational dynam-
ics. Energy (HtT1

) calculated with sampling time T1 and (HtT2
) calculated with

sampling time T2. The reference energy Htc is calculated in continuous time.

Similar to the translational case, using the rotational dynamics

in (2), the following energy balance holds:

Ḣr = ωs
T τ e. (6)

Thus, as evident from (6), the energy variation is due to the

power exchanged with the environment.

In order to compute the discrete angular velocity set point, (2)

is integrated according to the Euler method and it results in

I(ωs(k)− ωs(k − 1))T−1 = S(Iωs(k − 1))ωs(k − 1)

+ τe(k − 1).
(7)

Consequently, the angular velocity set point to be commanded

to the robot is

ωs(k) = ωs(k − 1)+ I−1TS(Iωs(k − 1))ωs(k − 1)

+TI−1τe(k − 1).
(8)

Similar to the translational case, the Euler integration gen-

erates extra energy which destroys the energetic properties of
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Fig. 7. Applied torques (top) and drift in roll, pitch and yaw considering
sampling time T1 (middle) and T2 (bottom).

Fig. 8. Discrete integration of rotational dynamics causes energy drift. Com-
parison of energy calculated in continuous time (Hrc ) and discrete sampling
times T1 (HrT1

) and T2 (HrT2
).

the rotational dynamics. This can be seen in the following

example. Consider the torque profile in Fig. 7 (top) acting

on a simulated body with inertia on the principal axis I =
diag(18, 20, 22) kgm2. We calculate the rotational energy Hr

for sampling times T1 = 0.1 s and T2 = 0.01 s. Fig. 8 shows

the comparison of the energy calculated with the continuous

time (Hrc ) and discrete times (HrT1
, HrT2

). It can be seen that

there is an increase in energy due to the discrete integration. The

increase of energy results in a variation of angular position with

respect to the ideal, continuous case. Fig. 7 (middle and bottom)

shows the angular error (∆) in roll, pitch, and yaw (Ψ, θ, φ)

calculated with T1 and T2 with respect to the continuous case.

Energy and pose drifts affect the physical behavior of the

satellite simulated by the robot. Such drifts may lead the robot

to interact with unforeseen objects that produce further (drifted)

behaviors leading to a deteriorated performance of the dynamic

simulation and even instabilities.

Notice that both industrial robots in Fig. 1 operate with the

same control architecture and the reactive dynamics is perceived

by the respective force–torque sensors, hence, the robots are

susceptible to the issues presented in this section. Therefore,

Fig. 9. Admittance architecture of the industrial robot for the hardware-in-
the-loop satellite simulation represented in electrical domain.

compensating the effects of time delay and discrete-time integra-

tion is important when external force is applied in order to avoid

instability issues and produce a faithful dynamic simulation with

the industrial robots.

III. NETWORK MODELING AND TDPA

In this section, we design a network model of the system

presented in Fig. 3. This representation will allow us to highlight

the energetic structure of the system and it will help identify the

energy production due to the delay and the discrete integration.

Furthermore, a background on TDPA, the control strategy that

will be used, is provided.

A. System Modeling

The control architecture of the industrial robot shown in Fig. 3,

can be represented in electrical domain. This representation aids

the definition of the power ports and the analysis of the energy be-

havior. Therefore, the conventional mechanical–electrical anal-

ogy is exploited to map forces into voltages and velocities into

currents and the resulting circuit is shown in Fig. 9.

The industrial robot is represented in the gray box with an

impedance Zr and its internal controller Zc. The interaction

of the robot with the environment (Ze) produces the voltage

Fe which represents the force–torque sensor signals.2 This is

transmitted with an ideal voltage source Fe to the left side of

the circuit and acts on the inductance H , which represents the

simulated mass of the satellite. Using the admittance dynamics

in (5) and (8), the desired velocity Vs is computed and is then

commanded to the internal controller of the robot through the

dependent current source on the right side of the circuit.

Usually, it might be difficult to have access to the internal

controller of the industrial robot. The designed network repre-

sentation allows us to consider the internal controller together

with the robot impedance (Zc and Zr). Robot and internal con-

troller act as a delay source (between the commanded velocity

and resulting measured velocity of the robot) and therefore, they

can be replaced with the time-delay block, TD (see gray box in

Fig. 9.)

Two one-port networks can be identified in the electrical

system which are represented by the two dashed boxes in Fig. 9.

2Note that for the numerical simulation, the measured forceFe is modeled as a
spring-dashpot model, later it will be replaced with the real sensor measurements
during the experiments with the industrial robot.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

The output of the left-side network is Vs, the velocity computed

by the discrete dynamics integration. The right-side network,

which contains the time delay, outputs the interaction force Fe.

Now, the energy behavior of the system can be analyzed from

the interaction port with power conjugated variables Vs and Fe.

B. Time Domain Passivity Approach

TDPA is an effective strategy for enforcing passivity in a one-

port network. The discrete-time domain will be considered, since

it is the most suitable setting for the problems addressed in this

article [24]. Consider a one-port network endowed with a power

port (u(k),y(k)) ∈ R
n × R

n by which it can interact (or be

interconnected) with external systems.

The input u(k) and the output y(k) are power conjugated

(e.g., force and velocity), i.e., their product has the unit of power.

The system is passive if there is a lower bounded energy function

E(m) such that

E(m) = E(0) +

m∑

k=0

uT (k)y(k)T ≥ 0 ∀m > 0 (9)

where E(0) represents the initial energy stored in the system.

Equation (9) states that the system cannot produce more energy

with respect to its initial storage and the input energy. Passivity is

a sufficient condition for stability and, in particular, if a system

is passive then it is also stable [42]. The main idea of TDPA

is to monitor the energy flowing through the power port by

means of a passivity observer (PO). If E(m) < 0, the system is

producing energy and such a regenerative effect can destabilize

the system [17]. In order to reestablish a passive behavior, a

passivity controller (PC) is activated and it acts as a variable

damper. More details about TDPA can be found in [24].

IV. TIME-DELAY COMPENSATION

In this section, we will exploit the network representation

developed in Section III and TDPA in order to compensate the

destabilizing effects of the time delay illustrated in Section II-A.

In our previous works ([28], [29]), the admittance PC (velocity

modification) has been used and it requires the knowledge of the

robot dynamics. However, for industrial robots, the dynamics

are not generally available. In the current work, an impedance

causality for the PC is chosen, i.e., the input variable to the

admittance dynamics is a variable force signal. This will allow

us to render passive the subnetwork containing the robot with

time delay without the knowledge of the robot dynamics.

Consider the one-port network (dashed box in Fig. 10)

which includes the time delay, with power-correlated variables

(Fe,Vs). We observe the energy at this port and if activity is

detected, the PC modifies the force, thus rendering the one-port

network passive. In the ideal case (where no delay is considered),

the energy at one-port will be

m∑

k=0

F T

e
(k)Vs(k)T =

m∑

k=0

V T

s
(k)ZeVs(k)T. (10)

Fig. 10. Modeling in electrical domain for the time delay-variable force output.

However, when delay is considered, this condition will not

hold anymore because the robot will interact with the envi-

ronment with a delayed velocity Vs(k − µ) producing a force

V T

s
(k − µ)Ze. Then, the energy at the one-port will be differ-

ent, more specifically

m∑

k=0

F T

e
(k)Vs(k)T =

m∑

k=0

V T

s
(k − µ)Ze

︸ ︷︷ ︸

F
T

e
(k)

Vs(k)T. (11)

The delay causes a discrepancy in the velocity during the contact

with the environment and the measured force is a function of it,

see (11). The energy of the port (Fe, Vs) can be monitored at

each time-step with an energy observer defined as

Eobs1(k) = Eobs1(k − 1)− F T

e
(k)Vs(k)T

+ V T

s
(k − 1)α(k − 1)Vs(k − 1)T (12)

where α(k) ∈ R
6×6 is a positive definite matrix which repre-

sents the time-varying damping of the passivity controller, later

defined. Therefore, the last term in (12) is the energy associated

to the passivity controller, defined as

Fpc(k) = α(k)Vs(k). (13)

The impedance causality of the PC modifies the force Fe(k)
by a quantity Fpc(k) on the left-side of Fig. 10. The modified

force provided to the admittance model is

Fc(k) = Fe(k)− Fpc(k). (14)

We choose the matrix α(k) to have a diagonal form, therefore,

the following energy exchange from (12) holds:

Eobs1(k) = −

k∑

m=0

6∑

i=1

Fe,i(m)Vs,i(m)T

+

k∑

m=1

6∑

i=1

αi(m− 1)V 2
s,i(m− 1)T (15)

where i is the ith component of the vector. This leads to

Eobs1(k) =

6∑

i=i

Eobs1,i(k) (16)

where the PO is

Eobs1,i(k) = Eobs1,i(k − 1)− Fe,i(k)Vs,i(k)T

+ αi(k − 1)V 2
s,i(k − 1)T. (17)
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Fig. 11. Scheme with impedance PC for compensating the time-delay effects.

Fig. 12. Stable system—linear and angular velocity with time delay in the
loop and passivity control (solid line), ideal velocity (dashed line).

The control term in (13), which dissipates at each time step

the active energy, is a function of the variable damping matrix

α = diag(α1, . . ., α6) whose components are

αi(k) =

⎧

⎨

⎩

−
Eobs1,i

(k)

V 2

s,i
(k)T

if Eobs1,i < 0

0 else
. (18)

Thus, if the one-port system behaves passively, Fpc = 0 and

the measured force Fe is sent as an input to the admittance

dynamics without modification. If some energy is produced, the

damping factor is set such that the extra energy is dissipated

and passivity is restored. The damper αi will make Eobs1,i ≥
0 ∀i. Therefore, the overall energy in (16) will be Eobs1(k) ≥ 0
achieving passivity of the system. The schematic of Fig. 3 is

adapted with the corrected force Fc(k) as input to the desired

dynamics and it is shown in Fig. 11.

In order to validate the control, we run the simulation with

the same initial conditions and mass parameter as described in

Section II-A. As it can be seen in Fig. 12, the velocity of the

satellite does not increase and the overall system is stable. By

applying the described approach, the damaging effect of time

delay shown in Fig. 4 is resolved.

The energy exchange between the time-delay port and robot

controller is not regulated explicitly, therefore, the one-port

network as seen from the environment needs to be passive. A

numerical analysis of the energy calculated at the environment

port is performed in order to check the passivity. Fig. 13 (top)

shows the energy for the translational dynamics where the time

delay is in the loop and it is monitored with the proposed energy

observer in (17) without the update of the passivity controller,

Fig. 13. Energy in ideal case (dashed line) and energy with time delay in the
loop (solid line) measured at different ports. Top: Energy measured by the energy
observer. Bottom: Energy exchange between the robot and the environment as
measured at the interaction point.

Fig. 14. Energy in ideal case (dashed line) and energy with time delay and
PC (solid line) measured at different ports. Top: Energy measured by the energy
observer. Bottom: Energy exchange between the robot and the environment as
measured at the interaction point.

i.e., Eobs1(k)α=0. Fig. 13 (bottom) shows the energy measured

at the interaction point, i.e., EE(k) =
∑

Fe(k)Vs(k − µ)T us-

ing the measured force Fe(k) and velocity at the end-effector

Vs(k − µ). In both plots, the dashed line is the energy in the

ideal case (i.e., without time delay in the loop). As can be seen,

violation of passivity is found at the port where the proposed

energy observer is located, while at the interaction port, the

system results to be passive according to definition (9).

Although the interactions are passive, it can be clearly seen

that the energy increases at the interaction port. This is attributed

to the time delay in the system. To prove this, we then evaluated

the energy at the same ports with the passivity controller acting

[i.e., α �= 0 in (17)]. As it can be seen in Fig. 14, the passivity

is restored and the energies at both ports follow the ideal energy

behavior (dashed line).

V. PASSIVE AND EXPLICIT INTEGRATOR

As shown in Section II-B, the generation of extra energy due

to the discrete integration cause energy and position drifts. In this
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section, the extra energy introduced by the discrete integrator is

identified. This information is exploited for modifying the ve-

locity output of the Euler integrator with an admittance causality.

To have a complete passive integrator, we need to merge works

performed in [37] and [38] in order to build the overall passive

architecture.

A. Energy Generated by the Discrete Integration

1) Translational Dynamics: Consider the dynamics (1) dis-

cretized with the Euler method as reported in (5). The kinetic

energy (4) in discrete time is

Ht(k) =
1

2
vs(k)

TMvs(k)

=
1

2
[vs(k − 1)+ TM−1fe(k − 1)]T

M [vs(k − 1)+ TM−1fe(k − 1)]. (19)

Considering that the mass matrix M is symmetric and positive

definite, (19) can be rewritten as

Ht(k) = Ht(k − 1) + Tvs(k − 1)Tfe(k − 1)

+
1

2
T 2fe(k − 1)TM−1fe(k − 1).

︸ ︷︷ ︸

∆Ht(k)

(20)

Equation (20) does not represent a physical and passive behavior.

Indeed, the variation of energy should be only due to the power

provided through the port, i.e., vs(k − 1)T fe(k − 1). The

extra energy term

∆Ht(k) =
1

2
T 2fe(k − 1)TM−1fe(k − 1) (21)

is due to Euler integration [37]. This extra energy causes energy

inconsistency and drift that make the reproduced dynamics

diverge from the ideal behavior as shown in Section II-B.

2) Rotational Dynamics: Consider the dynamics (2) dis-

cretized by means of the Euler method and reported in (8). The

rotational kinetic energy in discrete time Hr(k) is given by

Hr(k) =
1

2
ωs(k)

T
Iωs(k). (22)

Considering that (I−1)T = (IT )−1 ≡ I−1 and exploiting the

properties of the skew-symmetric matrix S(·) after substituting

(8) into (22), we obtain

Hr(k) = Hr(k − 1) + Tωs(k − 1)T τe(k − 1)

+
1

2
T 2ωs(k − 1)TS(k)T I−1S(k)ωs(k − 1)

︸ ︷︷ ︸

∆Hr1(k)

+
1

2
T 2τe(k − 1)T I−1τe(k − 1)

︸ ︷︷ ︸

∆Hr2(k)

(23)

where, for the sake of brevity, the dependency of Iωs(k − 1)
in S has been omitted.

As in the translational case, the discrete integration of rota-

tional dynamics leads to a nonphysical behavior as shown in

Fig. 15. Modeling in electrical domain for discretization—variable velocity
input.

(23) by the term

∆Hr(k) = ∆Hr1(k) + ∆Hr2(k). (24)

In fact, the energy variation should be only due to the energy pro-

vided through the power port, i.e., Tωs(k − 1)T τe(k − 1).

In particular, ∆Hr1 results from the integration of the rota-

tional coupled dynamics, ∆Hr2 results from the integration of

the external torque τe. These energy terms introduce undesired

dynamics into the system [38].

B. Passive Integration Scheme

In order to reestablish the physically consistent energetic

behavior of the discretized dynamics, we need to dissipate the

extra energy ∆Ht and ∆Hr. In this subsection, we will exploit

TDPA for dissipating the extra energies.

1) Passive Integration Scheme for Translational Dynamics:

The extra energy term produced by the integration and reported

in (21) is always positive and, therefore, it always corresponds

to a production of energy. It is possible to consider this term in

a passivity observer in order to detect a loss of passivity. Thus,

we can write the energy observer as

Eobs2(k) = Eobs2(k − 1)−∆Ht(k)

+ fe(k − 1)Tβ1(k − 1)fe(k − 1)T. (25)

The second term on the right side of (25) is the energy produced

by the discrete integration, which needs to be dissipated. The last

term represents the energy dissipated by the passivity controller

with a damping matrix β1 defined later. The action of the PC is

provided in an admittance causality as follows:

vpc(k) = β1(k)fe(k). (26)

This provides a correction to the output velocity of the admit-

tance dynamics, i.e., the velocity commanded to the robot, given

by

vc(k) = vs(k)− vpc(k) (27)

where vs(k) is achieved from (5). The passivity controller is

represented as a variable resistance in parallel to the inductor in

Fig. 15. The dissipation and, consequently, the correction, get

active only when passivity is violated, i.e., when Eobs2(k) < 0
and only the excess of energy is dissipated.

We choose the matrix β1(k) ∈ R
3×3 to have a diagonal

form such that β1 = diag(β1,1, β1,2, β1,3) and from (25), the
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Fig. 16. Translational energy corrected with the proposed integrator consider-
ing sampling time (T1 and T2) and comparison with the continuous case (Htc ).

following energy balance still holds:

Eobs2(k) = −∆Ht,i(k) +
k∑

m=1

3∑

i=1

β1,i(m− 1)f2
e,i(m− 1)T

(28)

where i is the ith component of the vector and ∆Ht,i(k) =
T 2f2

e,i

2Mi,i
. This leads to

Eobs2(k) =
3∑

i=i

Eobs2,i(k) (29)

where

Eobs2,i(k) = Eobs2,i(k − 1)−∆Ht,i(k)

+ β1,i(k − 1)f2
e,i(k − 1)T. (30)

Thus, the coefficients of the damping matrix β1 =
diag(β1,1, β1,2, β1,3) are defined as

β1,i(k) =

⎧

⎨

⎩

−
Eobs2,i

(k)

f2

e,i
(k)T

Eobs2,i(k) < 0

0 else
. (31)

This will provide the exact amount of damping required in (26)

to restore the energy behavior of the system. For validation,

we run the simulation with the same conditions as described in

Section II-B. Using the proposed approach the extra energy has

been dissipated as it can be seen in Fig. 16. It is worth comparing

Fig. 6 (problem statement) with Fig. 16.

2) Passive Integration Scheme for Rotational Dynamics: For

the rotational dynamics, the natural power port to be considered

is given by the pair (τe(k),ωs(k)). Similarly to (26), it would

be possible to implement a dissipative action on this port while

exploiting the external torque τe(k).

However, in case of free motion, i.e., τe(k) = 0, no energy

can be dissipated. In particular, during free motion, ∆Hr2 = 0
as evident from (23), but ∆Hr1 can be greater than zero. Thus,

it is not sufficient to consider only the natural port (τe,ωs) for

dissipating all the energy produced by the discrete integration

for the rotational case. To overcome this problem, we design

a fictitious port (χ,ωs) where the PC is applied. The torque

χ ∈ R
3 is composed of the external torque τe and a fictitious

torque τc = f(ωs, I) expressed as

χ(k) = τe(k)+
1

2
T 2ωs(k)

T
S(Iωs(k))

T I−1S(Iωs(k))
︸ ︷︷ ︸

τc

(32)

which allows us to explicitly consider the contribution of ∆Hr1

at the port level [38]. The definition ofχ allows us to measure the

real and fictitious torques which can generate the extra energy

terms ∆Hr1 and ∆Hr2 produced by the integration. In this way,

the term τe takes into account the presence of ∆Hr2 while the

term τc takes into account the presence of ∆Hr1. Thus, even

during free motion, χ �= 0 and it is possible to use the TDPA for

dissipating the energy produced by the Euler integrator.

We can now exploit the PO/PC approach by defining the

energy observer as

Eobs3(k) = Eobs3(k − 1)− (∆Hr1(k) + ∆Hr2(k))

+ Tχ(k − 1)Tβ2(k − 1)χ(k − 1). (33)

Unlike the translational case where the dynamics is indepen-

dent along its components, the rotational dynamics is coupled.

Therefore, for the dissipative action, we design a single damping

coefficient (β2) which acts in all the directions of the angular

velocity. Otherwise, compensating in different directions will

lead to a distortion of the reproduced dynamics. Therefore, if

some generated energy is detected (Eobs3 < 0), the time-varying

damper β2(k) will be modulated as follows:

β2(k) =

{

− Eobs3(k)

T ‖χ(k)‖2
if Eobs3 < 0

0 else
(34)

where ‖χ(k)‖2 = χ(k)Tχ(k).

The velocity modification provided by the passivity controller

is given by

ωpc(k) = β2(k)χ(k). (35)

This is used for correcting the output of the Euler integrator as

ωc(k) = ωs(k)− ωpc(k) (36)

where ωc(k) represents the velocity commanded to the robot.

As it can be seen in Fig. 17, here, the energy drifts discussed

in the problem statement are removed with the proposed passive

integration scheme. It is worth comparing Fig. 8 (before applying

the method) and Fig. 17 (with the proposed method).

C. Algorithm of the Passive Integrator

Using the results of Sections V-A and V-B, it is possible to

build a passive and explicit discrete integrator for a rigid body

dynamics. We will group these results in an algorithmic form

in Algorithm 1 in order to provide a pseudocode that can be

easily executed in real time on industrial robots. The algorithm

computes the extra energy produced and it builds the fictitious

variable χ. Then, it observes if there is a violation of passivity

and it computes the gains of the passivity controllers (that will be
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Fig. 17. Proposed integrator corrects the energy drift—rotational energy in
continuous time (Hrc ) and discrete time (HrT1

, HrT2
).

Fig. 18. Scheme with admittance PC for compensating the discrete-time
integration effects.

Algorithm 1: Passive Integrator for Satellite Dynamics.

Input: vs(k − 1),ωs(k − 1),fe(k), τe(k),M , I , T
Output: vc(k), ωc(k)
1: Compute ∆Ht using (21)

2: Compute ∆Hr using (24)

3: Build the χ(k) variable using (32)

4: Compute Eobs2(k) using (30)

5: Compute Eobs3(k) using (33)

6: Set the damping β1(k) using (31)

7: Set the damping β2(k) using (34)

8: Compute vc(k) = vs(k)− β1(k)fe(k)
9: Compute ωc(k) = ωs(k)− β2(k)χ(k)

10: Output: Vc(k) = (vc(k),ωc(k))

zero if passivity is not violated). Finally, the dissipative actions

of the PCs are exploited for updating the velocities commanded

to the robot. Fig. 18 shows the admittance scheme modified

accordingly, where the PC provides the corrected velocity

Vc = (vc, ωc) to the robot.

VI. OVERALL ARCHITECTURE

In the previous sections, passivity controllers were developed

to deal with the time delay and the discrete-time integration ef-

fects separately. Here, we propose a framework which combines

both controllers. As shown in Fig. 19(a), two networks have

been introduced, namely, N1 with the variable resistor where

the resulting current is Vpc and N2 with voltage drop Fpc.

Fig. 19. Overall passivity-based control for simulating satellite dynamics on a
robot in presence of time delay and discretization effects. (a) Interconnection of
passive networks. (b) Passivity control interface in electrical domain. (c) Block
diagram of the overall architecture with the passivity controllers.

The passivity controller variablesVpc = (vpc, ωpc) andFpc

will render the respective networks passive. Therefore, the over-

all system is given by the interconnection of the two passive

networks (N1, N2). Interconnection of passive networks leads

to an overall passive system that has no energy production [43].

Having proven that the overall system is now passive, a 2-port

network named passivity ctrl is isolated from Fig. 19(a) by com-

bining the two passivity control variables, namely Fpc and Vpc.

This 2-port network acts as an interface or passivity transforma-

tion from the simulated discrete dynamics (discr. dyn.) network

to the robot with sensor network and is shown in Fig. 19(b).

Fig. 19(c) shows the block diagram with input–output variables

and the respective energy observers and passivity controllers

with references to the corresponding equations.

Notice that the corrected wrenchFc is obtained by (14), where

Fpc in (13), Eobs1,i in (17), and αi in (18) are recalculated

considering the corrected velocity Vc instead of Vs. Similarly,

the corrected twist in network N2, namely, Vc = (vc,ωc) is

obtained by the corrected velocity (27) and the corrected angular

velocity (36), where vpc in (26), Eobs2,i in (30), β1,i in (31),

and ∆Ht in (21) are recalculated considering the corrected

forceFc = (fc, τc) instead ofFe = (fe, τe). SimilarlyEobs3,
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Fig. 20. Translational dynamics-force correction fpc and velocity correction
vpc, energy observers without and with PC. Last row (Eobs w PC) indicates
the passivity of the system.

∆Hr1(k), ∆Hr2(k), χ(k) are recalculated from (23) and (32)

with the corrected values τc and ωc to recompute ωpc from

(35). Therefore, the robot will receive a modified twist Vc (to

correct the effects of the discrete integration) and the simulated

dynamics receives as input a modified wrench Fc (to correct the

effects of time delay).

VII. RESULTS WITH THE OVERALL ARCHITECTURE

The overall architecture has been verified first in simulation

and later experimentally validated.

For the simulation case, we consider the satellite mass ofM =
280 kg and I = diag(18, 20, 22) kgm2 (i.e., client satellite for

the DEOS mission [44]). The considered sampling time is 4 ms

and the time delay in the loop 40 ms. Forces–torques act on the

simulated satellite as it collides against the virtual walls.

Fig. 20 shows the results for the translational dynamics.

The first column shows the passivity control for time-delay

compensation where the correction is provided in impedance

mode with the forces fpc. The second column is the passiv-

ity control for compensating the effects of discrete integration

which provides an admittance correction vpc. Both corrections

are generated to remove the activities measured by the energy

observer and shown in the second row of Fig. 20. As it can

be seen, the energies observed without the passivity controllers,

(Eobs1 w/o PC andEobs2 w/o PC) become negative, indicating

activity in the system. The third row shows the energies with

the passivity controllers (Eobs1 w PC and Eobs2 w PC). The

positive semidefiniteness of these energies indicate the passivity

of the system for translational dynamics.

Similarly, Fig. 21 shows the corresponding results for the

rotational dynamics where τpc is the torque correction related

to the passivity control for the time delay. The second column

is related to the passivity control which provides an angular

velocity correction ωpc to avoid the discrete-time integration

effects. Also, for the rotation dynamics, the energies with the

Fig. 21. Rotational dynamics-torque correction τpc, angular velocity correc-
tionωpc energy observers without and with PC. Last row (Eobs w PC) indicates
the passivity of the system.

Fig. 22. Stable behavior of the system-linear and angular velocities with the
passivity approach to correct time delay and integration effects. The dashed line
is the ideal velocity.

passivity control (Eobs1 w PC and Eobs3 w PC) shown in the

last row of Fig. 21 are positive semidefinite and therefore,

all the activity has been dissipated. As a result, the diverging

behavior are resolved and the motion of the rigid body is stable

and energetically consistent. It can be seen in Fig. 22 where

the translational and rotational velocities of the rigid body are

shown.

A. Experiments

The proposed control architecture is applied and validated on

the client robot of the OOS-SIM facility shown in Fig. 1. The

industrial robot (KR-120) is equipped with a 6-DoF force–torque

sensor at its end-effector to measure external interaction and

the satellite mock-up is connected onto the sensor. Robot and

sensor run in real time with a frequency of 250 Hz. We run the

model-based dynamics in a real-time VxWorks computer, which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON ROBOTICS

Fig. 23. Experiment-increase in the robot velocity due to the time delay and
discretization without passivity control.

Fig. 24. Experiment-forces and torques measured by the sensor.

receives also the data from the sensors and computes the desired

set point using inverse kinematics. We use the internal set-point

tracking controller of the robot (KRC-4) through the RSI (Robot

Sensor Interface) which enables communication with the real-

time computer. More details can be found in [12].

The experiment considers a rigid body with a mass of

700 kg and I = diag(116, 160, 160) kgm2 (i.e., satellite in the

DEOS mission [44]) with the intrinsic time delay of the fa-

cility. The satellite mock-up has an initial linear velocity of

[0, 0,−0.02] m/s and its motion is obstructed by two fixed

physical constraints on which the mock-up will make contacts,

see Fig. 1. The contact point 1 in the figure is a fixed surface and

the contact point 2 is the gripper of the light weight robot which

is stationary.

1) Robot Motion: Fig. 23 shows the increase in the velocity

of the satellite simulated with the robot during its interaction

with the environment without the proposed approach. As it can

be seen the velocity diverges after each contact leading to an

unstable behavior.

Now, the proposed passivity-based approach is applied.

Forces and torques are measured by the sensor during the

contacts as shown in Fig. 24 and the active energy is observed

and dissipated during the experiment. Therefore, the velocity

of the robot does not increase as can be seen in Fig. 25. The

following results show the behavior of the passivity controllers

and the energy observers to prove the passivity of the system

Fig. 25. Experiment-linear (top) and angular velocity (bottom) of the robot
with the proposed approach. The velocity does not increases.

for the translational and rotational dynamics (Figs. 26 and 27,

respectively).

2) Translational Dynamics: Fig. 26(a) shows the impedance

correction fpc to avoid the activity due to the time delay which

is observed with the Eobs1 w/o pc. The activity due to the

discretization is shown in Fig. 26(b) (middle) which shows a

negative trend of energy. This is corrected with the passivity

controller which provides a correction vpc [see Fig. 26(b) top]

to restore the passivity. Passivity proof is given by the positive

semidefiniteness of Eobs w pc in Fig. 26(a) and (b).

3) Rotational Dynamics: The action of the passivity control

dealing with the time delay for the rotational dynamics is shown

in Fig. 27(a). In particular, τ pc is the passivity correction due

to the energy generated by the time delay, which is shown

in Fig. 27(a) middle. The activity due to the discretization is

corrected by the admittance passivity control which provides a

velocity correction ωpc shown in Fig. 27(b) top. This allows

to restore the passivity properties of the system as proved in

Fig. 27(a) and (b) bottom. The positive semidefiniteness of the

energy indicates the passivity of the system.

VIII. DISCUSSION

The results obtained with the passivity-based approach are

promising in both simulation and experiment. The experiments

proved that the developed method can run on a real-time robot

and can also deal with sensor noise which is intrinsic in measured

data. In this article, a simple rigid body dynamics has been con-

sidered (as representative of the satellite) without any flexibility

or disturbance which might require a deeper analysis for the

discrete-time integrator. The method relies on the observability

of the 1-port (Fe, Vs) which can be obtained from force–torque

sensor and commanded velocity signals, both at high sampling

rate.

The extra energies introduced by the Euler integration as

reported in (21) and (24) are calculated in discrete time. These

values might be slightly different with respect to the real ener-

getic disparity between discrete and continuous-time cases. This
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Fig. 26. Experiment-passivity controller for compensating (a) time delay and
(b) discretization effects for the translational dynamics. Last rows in (a) and
(b) indicate the passivity of the system. (a) Force corrected by the PC, energy
observer without the PC and energy with PC. (b) Linear velocity corrected by
the PC, energy observer without PC and energy with PC.

error is given by the loss of information due to discretization and

cannot be avoided. However, this difference becomes smaller as

the sampling time decreases [45].

The sampling time of the considered setup is 4 ms and the

correction of the PC results to be in the order of 10−4 m/s and

10−4 rad/s, as can be seen in Fig. 20 (top-right) and Fig. 21

(top-right). However, the correction of the PC in force (to com-

pensate the time delay) also has an effect on the final velocity.

A numerical analysis has been performed to evaluate the total

velocity error (linear ṽ and angular ω̃) between the desired

velocity (ideal case without time delay) and the velocity with

time delay and passivity controllers acting. This error can be

seen in Fig. 28 where the maximum error in velocity is below

0.001 m/s and −0.3 deg/s. These values adhere, for instance,

to the requirements of 0.01 m/s and 0.5 deg/s for a rendezvous

and synchronization space scenario, as reported in [46, Sec. 8].

Furthermore, the deviation from the nominal desired velocity

Fig. 27. Experiment-passivity controller for compensating (a) time delay and
(b) discretization effects for the rotational dynamics. Last rows in (a) and (b)
indicate the passivity of the system. (a) Torque corrected with the PC, energy
observer without the PC and energy with PC. (b) Angular velocity corrected by
the PC, energy observer without PC and energy with PC.

Fig. 28. Velocity correction (linear ṽ and angular ω̃) between the desired
velocity (ideal case without time delay) and the velocity with time delay and
passivity controllers acting.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON ROBOTICS

Fig. 29. Forces (top) and error between desired and measured position
(bottom).

trajectory has also been calculated while using the overall archi-

tecture. This can be seen in Fig. 29. The plot at the top shows

the forces applied and the plot at the bottom shows the variation

of position caused by the compensation with respect to the ideal

case. The error values are in the order of 0.015 m.

High-frequency force and velocity modifications are gener-

ally reported as a limitation of the TDPA damping injection [47].

The high-frequency damping generates an effect which might

modify the natural dynamic behavior of the system. This effect

can be minimized by using passive filters in the force and

velocity signals to remove the chattering effects. However, in

our approach, extra filters are not required since the system

dynamics already act as filters implicitly. The chattering in the

force modification for time-delay compensation is filtered out by

the integration of the dynamics in (1) and (2). The chattering in

the velocity correction is already small due to the low sampling

times used in our facility. Furthermore, the velocity commands

are sent to the internal controller of the industrial robot (in most

cases, a controller with integral action) which also filters out the

chattering.

IX. CONCLUSION

Reproducing satellite dynamics using on-ground robotic fa-

cilities is a challenging task. From one side, robotic simulators

have the advantage of reproducing effective gravity compen-

sation on ground and allow motion in large workspaces which

is needed for a space mission. On the other side, the motion

replicated by the robot is affected by intrinsic time delays in the

loop and discrete data integration. This will affect the fidelity of

the simulation. As it was shown in the first part of this article,

time delay in the loop and discrete integration of the dynamics

might cause system instability and an inconsistent simulation

from the energy point of view.

In this article, passivity-based approaches were exploited to

faithfully reproduce rigid-body dynamics with robotic systems

in spite of these inevitable factors. The proposed model-free

methods can also be applied in industrial robots whose dy-

namics are not known or cannot be easily identified. In order

to compensate the damaging effects of intrinsic time delays,

a passivity controller which modulates the force at the input

of the admittance dynamics was proposed. A second passivity

controller which deals with the effects of the discrete integration

was proposed and this modulated the velocity output of the

integrator in order to preserve the energetic properties. Both

controllers were used in a unified architecture which acted as a

passivity layer between the discrete system and the real robot.

The proposed methods avoid unstable behavior in reproducing

satellite dynamics while ensuring an energy consistent simula-

tion, as validated on an industrial robot.
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