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Abstract

Many least-square problems involve affine equality and inequality constraints. Although there are
a variety of methods for solving such problems, most statisticians find constrained estimation
challenging. The current article proposes a new path-following algorithm for quadratic
programming that replaces hard constraints by what are called exact penalties. Similar penalties
arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate
prior knowledge, and penalized parameter estimates represent a trade-off between the observed
data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic
penalty method, solve a sequence of unconstrained problems that put greater and greater stress on
meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the
constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value
penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-
following method starts at the unconstrained solution and follows the solution path as the penalty
constant increases. In the process, the solution path hits, slides along, and exits from the various
constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of
the penalty constant and works its way downward. In both settings, inspection of the entire
solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the
effective degrees of freedom along the solution path. For a strictly convex quadratic program, the
exact penalty algorithm can be framed entirely in terms of the sweep operator of regression
analysis. A few well-chosen examples illustrate the mechanics and potential of path following.
This article has supplementary materials available online.
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1. INTRODUCTION

When constraints appear in maximum likelihood or least-square estimation, statisticians
typically resort to sophisticated commercial software or craft specific optimization
algorithms for specific problems. The current article presents a new technique for solving
such problems that is motivated by path following in  regularized regression. In penalized
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regression, absolute value penalties guide the trade-off in parameter estimation between the
observed data and prior knowledge. Running an estimation algorithm on a grid of tuning
constants tends to miss important events along a path. In  penalized linear regression, the
solution path is piecewise linear and can be anticipated. It turns out that similar
considerations apply to quadratic programming with affine equality and inequality
constraints. The exact penalty method of optimization replaces hard constraints by absolute
value and hinge penalties and tracks the solution vector as the penalty tuning constant
increases. For some finite value of the tuning constant, the penalized and constrained
solutions coincide. In this article, we show how to track the solution path in quadratic
programming. Besides providing the final constrained estimates, our new algorithm also
delivers the whole solution path between the unconstrained and the constrained estimates.
This is particularly helpful when the goal is to locate a solution between these two extremes
based on criteria, such as prediction error in cross-validation.

In recent years, several path algorithms have been devised for specific l1 regularized
problems. In particular, a modification of the least angle regression (LARS) procedure can
handle Lasso penalized regression (Efron et al. 2004). Rosset and Zhu (2007) gave sufficient
conditions for a solution path to be piecewise linear and expanded its applications to a wider
range of loss and penalty functions. Friedman (2008) derived a path algorithm for any
objective function defined by the sum of a convex loss and a separable penalty (not
necessarily convex). The separability restriction on the penalty term excludes many of the
problems studied here. Tibshirani and Taylor (2011) devised a path algorithm for
generalized Lasso problems. Their formulation is similar to ours with two differences. First,
they excluded inequality constraints. Our new path algorithm handles both equality and
inequality constraints gracefully. Second, they passed to the dual problem and then
translated the solution path of the dual problem back to the solution path of the primal
problem. We attack the primal problem directly via a simple algorithm entirely driven by the
classical sweep operator of regression analysis. In our opinion, primal path following is
conceptually simpler and easier to program than dual path following. Readers adept in
duality theory may disagree. On the other hand, the dual approach makes fewer restrictions
on constraint gradients and can, in principle, deal with a wider variety of equality-
constrained problems. The degrees of freedom formula derived for the Lasso (Efron et al.
2004; Zou, Hastie, and Tibshirani 2007) and generalized Lasso (Tibshirani and Taylor 2011)
apply equally well in the presence of inequality constraints.

Our object of study will be minimization of the quadratic function

(1)

subject to the affine equality constraints Vx = d and the affine inequality constraints Wx ≤
e.Throughout our discussion, we assume that the feasible region is nontrivial and that the
minimum is attained. If the symmetric matrix A has a negative eigenvalue λ and
corresponding unit eigenvector u, then limr→∞ f(ru) = –∞ because the quadratic term

 dominates the linear term rbt u. To avoid such behavior, we initially
assume that all eigenvalues of A are positive. This makes f(x) strictly convex and coercive
and guarantees a unique minimum point subject to the constraints. In linear regression, A =
Xt X for some design matrix X. In this setting, A is positive definite, provided X has full
column rank. The latter condition is only possible when the number of cases equals or
exceeds the number of predictors. If A is positive semidefinite and singular, then adding a
small amount of ridge regularization εI to it can be helpful (Tibshirani and Taylor 2011).
Later we indicate how path following extends to positive semidefinite or even indefinite
matrices A. Our assumption that the rows of V and W are linearly independent excludes
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problems such as the sparse fused Lasso and two- and three-dimensional fused Lasso
considered by Tibshirani and Taylor (2011). We discuss the difficulties in relaxing this
assumption in Section 5 and suggest a numerical remedy.

In multitask learning, the response is a d-dimensional vector , and one minimizes the
squared Frobenius deviation

(2)

with respect to the p × d regression coefficient matrix B. When the constraints take the form
VB ≤ D and WB = E, the problem reduces to quadratic programming as just posed. Indeed,
if we stack the columns of Y with the vec operator, then the problem involves minimizing

. Here, the identity  comes into
play invoking the Kronecker product and the identity matrix I. Similarly, we can rewrite the
constraints as  and .

As an illustration, consider the classical concave regression problem (Hildreth 1954). The
data consist of a scatterplot (xi, yi) of n points with associated weights wi and predictors xi
arranged in increasing order. The concave regression problem seeks the estimates θi that
minimize the weighted sum of squares

(3)

subject to the concavity constraints

(4)

The consistency of concave regression is proved by Hanson and Pledger (1976); the
asymptotic distribution of the estimates and their rate of convergence are studied in
subsequent articles (Mammen 1991; Groeneboom, Jongbloed, and Wellner 2001). Figure 1
shows a scatterplot of 100 data points. Here, the xi are uniformly sampled from the interval
[0,1], the weights are constant, and yi = 4xi(1 – xi) + εi, where the εi are iid normal with
mean 0 and standard deviation σ = 0.3. The left panel of Figure 1 gives four snapshots of the

solution path. The original data points  provide the unconstrained estimates. The solid
line shows the concavity-constrained solution. The dotted and dashed lines represent
intermediate solutions between the unconstrained and the constrained solutions. The degrees
of freedom formula derived in Section 6 is a vehicle for model selection based on criterion
such as Cp, the Akaike information criterion (AIC), and the Bayesian information criterion
(BIC). For example, the Cp statistic

is an unbiased estimator of the true prediction error (Efron 2004) under the estimator 
whenever an unbiased estimate of the degrees of freedom is used. The right panel shows the
Cp statistic along the solution path. In this example, the design matrix is a diagonal matrix.
After submitting this article, we learned that Tibshirani, Hoefling, and Tibshirani (2011)
solved a similar convex regression problem by a path algorithm. As we will see in Section 7,
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postulating a more general design matrix or other kinds of constraints broadens the scope of
applications of the path algorithm and the estimated degrees of freedom.

Here is a road map to the remainder of the current article. Section 2 reviews the exact
penalty method for optimization and clarifies the connections between constrained
optimization and regularization in statistics. Section 3 derives in detail our path algorithm.
Its implementation via the sweep operator and QR decomposition are described in Sections
4 and 5. Section 6 derives the degrees of freedom formula. Section 7 presents various
numerical examples. Finally, Section 8 discusses the limitations of the path algorithm and
hints at future generalizations.

2. THE EXACT PENALTY METHOD

Exact penalty methods minimize the function

where f(x) is the objective function, gi(x) = 0 is one of r equality constraints, and hj(x) ≤ 0 is
one of s inequality constraints. It is interesting to compare this function with the Lagrangian
function

that captures the behavior of f(x) at a constrained local minimum y. By definition, the

Lagrange multipliers satisfy the conditions  and μj ≥ 0 and μjhj(y) = 0 for all j. In
the exact penalty method, one takes

(5)

This choice creates the majorization  with  at any feasible point z.

Thus, minimizing  forces f(x) downhill. Much more than this is going on, however. As

the next proposition proves, minimizing  effectively minimizes f(x) subject to the
constraints.

Proposition 1. Suppose the objective function f(x) and the constraint functions are twice
differentiable and satisfy the Lagrange multiplier rule at the local minimum y. If inequality

(5) holds and  for every vector v ≠ 0 satisfying dgi(y)v = 0 and dhj(y)v ≤ 0 for

all active inequality constraints, then y furnishes an unconstrained local minimum of .
If f(x) is convex, the gi(x) are affine, the hj(x) are convex, and Slater's constraint

qualification holds, then y is a minimum of  if and only if y is a minimum of f(x)
subject to the constraints. In this convex programming context, no differentiability
assumptions are needed.

Proof. The conditions imposed on the quadratic form  are well-known
sufficient conditions for a local minimum. Theorems 6.9 and 7.21 of Ruszczyński (2006)
prove all of the foregoing assertions.

Zhou and Lange Page 4

J Comput Graph Stat. Author manuscript; available in PMC 2013 September 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



3. THE PATH-FOLLOWING ALGORITHM

In the quadratic programming context with objective function (1), affine equality constraints
V x = d, and affine inequality constraints Wx ≤ e, the penalized objective function takes
form

(6)

Our assumptions on A render  strictly convex and coercive and guarantee a unique
minimum point x(ρ). The generalized Lasso problem studied by Tibshirani and Taylor
(2011) drops the last term and consequently excludes inequality-constrained applications.

According to the rules of the convex calculus (Ruszczyński 2006), the unique optimal point

x(ρ) of the function  is characterized by the stationarity condition

(7)

with coefficients

(8)

Assuming that the vectors  are linearly independent, the coefficients si(ρ)
and tj(ρ) are uniquely determined. The sets defining the possible values of si(ρ) and tj(ρ) are
the subdifferentials of the functions |si(ρ)| and tj(ρ)+ = max {0, tj(ρ)}. The coefficients si and
tj appear as the dual variables in the dual path algorithm of Tibshirani and Taylor (2011).
We now prove that the solution and coefficient paths are continuous.

Proposition 2. If A is positive definite and the vectors  are linearly
independent, then the solution path x(ρ) and the coefficient paths s(ρ) and t(ρ) are unique
and continuous.

Proof. The representation

entails the norm inequality

Thus, the solution vector x(ρ) is bounded whenever ρ ≥ 0 is bounded above. To prove
continuity, suppose that it fails for a given ρ. Then, there exists an ε > 0 and a sequence ρn
tending to ρ such that ‖‖x(ρn) – x(ρ)‖‖ ≥ ε for all n. Since x(ρn) is bounded, we can pass to a
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subsequence if necessary and assume that x(ρn) converges to some point y. Taking limits in

the inequality  demonstrates that  for all x. Because x(ρ)
is unique, we reach the contradictory conclusions ‖‖y – x(ρ)‖‖ ≥ ε and y = x(ρ). Continuity
is inherited by the coefficients si(ρ) and tj(ρ). Indeed, let V and W be the matrices with rows

 and , and let U be the block matrix . The stationarity condition can be restated as

Multiplying this equation by U and solving give

(9)

and the continuity of the left-hand side follows from the continuity of x(ρ). Finally, dividing
by ρ yields the continuity of the coefficients si(ρ) and tj(ρ) for ρ > 0.

Positive definiteness of A is not required for the uniqueness of x(ρ). The penalized objective
function (6) may have a unique minimum for large ρ even when A is not positive definite. In
our subsequent derivation of the path algorithm, we will also observe that the uniqueness of
the coefficient paths s(ρ) and t(ρ) only requires linear independence of the active constraints
along the solution path. In this and the next section, we assume strict convexity of A and
linear independence of all constraint vectors vi and wj. In Section 5, we discuss extensions of
the path algorithm where the first restriction is relaxed.

We next show that the solution path is piecewise linear. Along the path, we keep track of the
following index sets determined by the constraint residuals:

We drop the argument ρ from x(ρ) whenever notationally convenient. The reader should
keep in mind that these index sets are functions of ρ as well. For the sake of simplicity,

assume that at the beginning of the current segment, si does not equal –1 or 1 when 

and tj does not equal 0 or 1 when . In other words, the coefficients of the active
constraints occur in the interior of their subdifferentials. Let us show in this circumstance
that the solution path can be extended in a linear fashion. The general idea is to impose the

equality constraints  and  and write the objective function  as

For notational convenience, define
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Minimizing  subject to the constraints generates the Lagrange multiplier problem

(10)

with the explicit path solution and Lagrange multipliers

(11)

(12)

Here,

with

As we will see in the next section, these seemingly complicated objects arise naturally if
path following is organized around the sweep operator.

It is clear that as we increase ρ, the solution path (11) and the multiplier path (12) change in
a linear fashion until either an inactive constraint becomes active or the coefficient of an
active constraint hits the boundary of its subdifferential. We investigate the first case first.

Imagining ρ to be a time parameter, an inactive constraint  becomes active when

If this event occurs, it occurs at the hitting time

(13)

Similarly, an inactive constraint  becomes active at the hitting time
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(14)

To determine the escape time for an active constraint, consider once again the stationarity
condition (7). The Lagrange multiplier corresponding to an active constraint coincides with
a product ρsi(ρ) or ρtj(ρ). Therefore, if we collect the coefficients for the active constraints

into the vector , then Equation (12) implies

(15)

Formula (15) for  can be rewritten in terms of the value  at the start ρ0 of the
current segment as

(16)

It is clear that  is increasing in ρ when  and decreasing in ρ when

the reverse is true. The coefficient of an active constraint  escapes at either of the
times

whichever is pertinent. Similarly, the coefficient of an active constraint  escapes at
either of the times

whichever is pertinent. The earliest hitting time or escape time over all constraints
determines the duration of the current linear segment.

At the end of the current segment, our assumption that all active coefficients occur in the
interior of their subdifferentials is actually violated. When the hitting time for an inactive

constraint occurs first, we move the constraint to the appropriate active set  or  and
keep the other constraints in place. Similarly, when the escape time for an active constraint
occurs first, we move the constraint to the appropriate inactive set and keep the other

constraints in place. In the second scenario, if si hits the value –1, then we move i to . If si

hits the value 1, then we move i to . Similar comments apply when a coefficient tj hits 0
or 1. Once this move is executed, we commence a new linear segment as just described. The
path-following algorithm continues segment by segment until for sufficiently large ρ, the

sets , , and  are exhausted, , and the solution vector (11) stabilizes.
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This description omits two details. First, to get the process started, we set ρ = 0 and x(0) = –
A–1b. In other words, we start at the unconstrained minimum. For inactive constraints, the
coefficients si(0) and tj(0) are fixed. However, for active constraints, it is unclear how to
assign the coefficients and whether to release the constraints from active status as ρ
increases. Second, very rarely, some of the hitting times and escape times will coincide. We
are then faced again with the problem of which of the active constraints, with coefficients on
their subdifferential boundaries, to keep active and which to encourage to go inactive in the
next segment. In practice, the first problem can easily occur. Roundoff error typically keeps
the second problem at bay.

In both anomalous cases, the status of each of active constraint can be resolved by trying all
possibilities. Consider the second case first. If there are a currently active constraints parked
at their subdifferential boundaries, then there are 2a possible configurations for their active–
inactive states in the next segment. For a given configuration, we can exploit formula (15) to
check whether the coefficient for an active constraint occurs in its subdifferential. If the
coefficient occurs on the boundary of its subdifferential, then we can use representation (16)
to check whether it is headed into the interior of the subdifferential as ρ increases. Since the
path and its coefficients are unique, one and only one configuration should determine the
next linear segment. At the start of the path algorithm, the correct configuration also
determines the initial values of the active coefficients. If we take limits in Equation (15) as ρ
tends to 0, then the coefficients will escape their subdifferentials unless  and

all components of  lie in their appropriate subdifferentials. Hence, again it is easy to
decide on the active set  going forward from ρ = 0. One could object that the number of
configurations 2a is potentially very large, but, in practice, this combinatorial bottleneck
never occurs. Visiting the various configurations can be viewed as a systematic walk
through the subsets of {1, . . . , a} and organized using a classical gray code (Savage 1997)
that deletes at most one element and adjoins at most one element as one passes from one
active subset to the next. As we will see in the next section, adjoining an element
corresponds to sweeping a diagonal entry of a tableau and deleting an element corresponds
to inverse sweeping a diagonal entry of the same tableau.

When a is large, a more economical solution is to minimize the penalized objective function
(6) at ρ + ε for ε small using any unconstrained optimizer for nonsmooth problems.
Reasonable choices include the proximal gradient method (Chen et al. 2010), Nesterov's
method (Liu, Yuan, and Ye 2010), and coordinate descent after reparameterization
(Friedman et al. 2007; Wu and Lange 2008). The solution initializes the set configuration at
time ρ + ε in anticipation of the resumption of path following.

4. THE PATH ALGORITHM AND SWEEPING

Implementation of the path algorithm can be conveniently organized around the sweep and
inverse sweep operators of regression analysis (Dempster 1969; Jennrich 1977; Goodnight
1979; Little and Rubin 2002; Lange 2010). We first recall the definition and basic properties
of the sweep operator. Suppose A is an m × m symmetric matrix. Sweeping on the kth

diagonal entry akk ≠ 0 of A yields a new symmetric matrix  with entries

These arithmetic operations can be undone by inverse sweeping on the same diagonal entry.
Inverse sweeping sends the symmetric matrix A into the symmetric matrix Ă with entries
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Both sweeping and inverse sweeping preserve symmetry. Thus, all operations can be carried
out on either the lower or the upper triangle of A alone, saving both computational time and
storage. When several sweeps or inverse sweeps are performed, their order is irrelevant.
Finally, a symmetric matrix A is positive definite if and only if A can be completely swept,
and all of its diagonal entries remain positive until swept. Complete sweeping produces –
A–1. Each sweep of a positive definite matrix reduces the magnitude of the unswept diagonal
entries. Positive definite matrices with poor condition numbers can be detected by
monitoring the relative magnitude of each diagonal entry just prior to sweeping.

At the start of path following, we initialize a path tableau with block entries

(17)

The starred blocks here are determined by symmetry. Sweeping the diagonal entries of the
upper-left block –A of the tableau yields

The new tableau contains the unconstrained solution x(0) = –A–1b and the corresponding
constraint residuals –UA–1b – c. In path following, we adopt our previous notation and
divide the original tableau into subblocks. The result

(18)

highlights the active and inactive constraints. If we continue sweeping until all diagonal
entries of the upper-left quadrant of this version of the tableau are swept, then the tableau
becomes
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All of the required elements for the path algorithm now magically appear.

Given the next ρ, the solution vector x(ρ) appearing in Equation (11) requires the sum

, which occurs in the revised tableau, and the vector . If  denotes the

coefficient vector for the inactive constraints, with entries of –1 for constraints in , 0 for

constraints in , and 1 for constraints in , then . Fortunately,

 appears in the revised tableau. The update of ρ depends on the hitting times (13) and

(14). These in turn depend on the numerators  and

, which occur as components of the vector ,

and the denominators  and , which occur as components of the matrix

 computable from the block  of the tableau. The escape times for the
active constraints also determine the update of ρ. According to Equation (16), the escape
times depend on the current coefficient vector, the current value ρ0 of ρ, and the vector

, which can be computed from the block  of the tableau. Thus, the
revised tableau supplies all of the ingredients for path following. Algorithm 1 outlines the
steps for path following ignoring the anomalous situations.

The ingredients for handling the anomalous situations can also be read from the path

tableau. The initial coefficients  are available once we
sweep the tableau (17) on the diagonal entries corresponding to the constraints in  at the
starting point x(0) = –A–1b. As noted earlier, if the coefficients of several active constraints
are simultaneously poised to exit their subdifferentials, then one must consider all possible
swept and unswept combinations of these constraints. The operative criteria for choosing the

right combination involve the available quantities  and . One of the
sweeping combinations is bound to give a correct direction for the next extension of the
path.

The computational complexity of path following depends on the number of parameters m
and the number of constraints n = r + s. Computation of the initial solution –A–1b takes
about 3m3 floating point operations (flops). There is no need to store or update%the P block
during path following. The remaining sweeps and inverse sweeps take on the order of n(m +
n) flops each. This count must be multiplied by the number of segments along the path,
which empirically is on the order of O(n) for the small examples tried in this article. The
sweep tableau requires storing (m + n)2 real numbers. We recommend all computations be
done in double precision. Both flop counts and storage can be halved by exploiting
symmetry. Finally, it is worth mentioning some computational shortcuts for the multitask
learning model. Among these are the formulas
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5. EXTENSIONS OF THE PATH ALGORITHM

As just presented, the path algorithm starts from the unconstrained solution and moves
forward along the path to the constrained solution. With minor modifications, the same
algorithm can start in the middle of the path or move in the reverse direction along it. The
latter tactic proves useful in Lasso and fused-Lasso problems, where the fully constrained
solution is trivial. In general, consider starting from x(ρ0) at a point ρ0 on the path. Let

 continue to denote the zero set for the segment containing ρ0. Path following
begins by sweeping the upper-left block of the tableau (18) and then proceeds as indicated in
Algorithm 1. Traveling in the reverse direction entails calculation of hitting and exit times
for decreasing ρ rather than increasing ρ.

Two assumptions limit the applications of Algorithm 1. The assumption that A is positive
definite automatically excludes underdetermined statistical problems with more parameters
than cases. The linear independence assumption on constraint vectors vi and wj precludes
certain regularization problems, such as the sparse fused Lasso and the two- or higher-
dimensional fused Lasso. In this section, we indicate how to carry out the exact penalty
method when positive definiteness of A fails and the sweep operator cannot be brought into
play. Relaxation of the second restriction is more subtle and we briefly discuss the
difficulties.

In the absence of constraints, f(x) lacks a minimum if and only if either A has a negative
eigenvalue or the equation Ax = b has no solution. In either circumstance, a unique global
minimum may exist if enough constraints are enforced. Suppose x(ρ0) supplies the minimum

of the exact penalty function  at ρ = ρ0 > 0. Let the matrix  summarize the active
constraint vectors. As we slide along the active constraints, the minimum point can be

represented as x(ρ) = x(ρ0) + Y y(ρ), where the columns of Y are orthogonal to the of .
One can construct Y by the Gram–Schmidt process; Y is then the orthogonal complement of

 in the QR decomposition. The active constraints hold in view of the identity

.

The analog of the stationarity condition (7) under reparameterization is

(19)

The active constraints do not appear in this equation because  and  for i or j
active. Solving for y(ρ) and x(ρ) gives

(20)

and does not require inverting A. Because the solution x(ρ) is affine in ρ, it is
straightforward to calculate the hitting times for the inactive constraints.
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Under the original parameterization, the Lagrange multipliers and corresponding active
coefficients appearing in the stationarity condition (7) can still be recovered by invoking
Equation (9). Again it is a simple matter to calculate exit times. The formulas are not quite
as elegant as those based on the sweep operator, but all essential elements for traversing the

path are available. Adding or deleting a row of the matrix  can be accomplished by
updating the QR decomposition. The fast algorithms for this purpose simultaneously update
Y (Lawson and Hanson 1987; Nocedal and Wright 2006). More generally, for equality-
constrained problems generated by the Lasso and generalized Lasso, the constraint matrix

, as one approaches the penalized solution, is often very sparse. Computation of the QR
decomposition from scratch is then numerically cheap.

When the active constraint vectors are linearly dependent,  does not have full row rank.
This causes problems if one determines path coefficients via Equation (9). Replacing the

inverse  by the Moore–Penrose pseudoinverse  yields the coefficient

vector , with minimal l2 norm (Magnus and Neudecker 1999).
However, exit times predicated on this version of the coefficient vector are inappropriate
because, at the predicted exit time, there could exist another version of the coefficient vector

 lying in the interior of the permissible range (8) with a larger l2 norm. The set defined by
the subdifferential constraints on the active coefficients is a convex polytope (a compact and

polyhedral set). Its image under matrix multiplication by  is also a convex polytope.
Thus, the exit time for the active constraints is the maximum ρ going forward for which –
Ax(ρ) – b remains in the image polytope, which unfortunately is hard to determine. The dual
approach taken by Tibshirani and Taylor (2011) seems somehow to circumvent the
difficulty posed by naive application of the pseudoinverse solution. In practice, the whole
issue can be simply resolved by computing the solution at a nearby future time ρ + ε using
any unconstrained nonsmooth optimizer. Path following should then recommence along the
direction β(ρ + ε) – β(ρ).

6. DEGREES OF FREEDOM UNDER AFFINE CONSTRAINTS

We now specialize to the least-square problem with the choices A = Xt X, b = –Xt y, and

, and consider how to define degrees of freedom in the presence of both equality
and inequality constraints. As previous authors (Efron et al. 2004; Zou, Hastie, and
Tibshirani 2007; Tibshirani and Taylor 2011) showed, the most productive approach relies
on Stein's characterization (Stein 1981; Efron 2004)

of the degrees of freedom. Here,  is the fitted value of y, and dyŷ denotes its
differential with respect to the entries of y. Equation (11) implies that

Because ρ is fixed, it follows that dyŷ = XPXt. The representation
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and the cyclic permutation property of the trace function applied to the projection matrices
P1 and P2 yield the formula

where m equals the number of parameters. In other words,  is an unbiased estimator
of the degrees of freedom. This result obviously depends on our assumptions that X has full
column rank m and the constraints vi and wj are linearly independent. The latter condition is
true for Lasso and one-dimensional fused-Lasso problems. The validity of Stein's formula
requires the fitted value ŷ to be a continuous and almost differentiable function of y for
almost every y (Stein 1981). Fortunately, this is the case for Lasso (Zou, Hastie, and
Tibshirani 2007) and generalized Lasso problems (Tibshirani and Taylor 2011), and for at
least one case of shape-restricted regression (Meyer and Woodroofe 2000). The derivation
does not depend directly on whether the constraints are equality or inequality constraints.
Hence, the degrees of freedom estimator can be applied in shape-restricted regression using
model selection criteria, such as Cp, AIC, and BIC, along the whole path. The concave
regression example in Section 1 illustrates the general idea.

7. EXAMPLES

Our examples illustrate both the mechanics and the potential of path following. The path
algorithm's ability to handle inequality constraints allows us to obtain path solutions to a
variety of shape-restricted regressions. Problems of this sort may well dominate the future
agenda of nonparametric estimation.

7.1 Two Toy Examples

Our first example (Lawson and Hanson 1987) fits a straight line y = β0 + xβ1 to the data
points (0.25,0.5), (0.5,0.6), (0.5,0.7), and (0.8,1.2) by minimizing the least-square criterion

 subject to the constraints

In our notation,

The initial tableau is
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Sweeping the first two diagonal entries produces

from which we read off the unconstrained solution β(0) = (0.0835, 1.3004)t and the

constraint residuals (–0.0835, –1.3004, 0.3840)t. The latter indicates that , ,

and . Multiplying the middle block matrix by the coefficient vector r = (0, 0, 1)t and
dividing the residual vector entrywise give the hitting times ρ = (–0.0599, 0.4051, 0.2116).
Thus, ρ1 = 0.2116 and

Now , , , and we have found the solution. Figure 2 displays the data
points and the unconstrained and constrained fitted lines.

Our second toy example concerns the toxin response problem (Schoenfeld 1986), with m
toxin levels x1 ≤ x2 ≤ · · · ≤ xm and a mortality rate yi = f(xi) at each level. It is reasonable to
assume that the mortality function f(x) is nonnegative and increasing. Suppose ȳi are the
observed death frequencies averaged across ni trials at level xi. In a finite sample, the ȳi may
fail to be nondecreasing. For example, in an Environmental Protection Agency (EPA) study
of the effects of chromium on fish (Schoenfeld 1986), the observed binomial frequencies
and chromium levels are

Isotonic regression minimizes  subject to the constraints 0 ≤ θ1 ≤ · · · ≤ θm on
the binomial parameters θk = f(xk). The solution path depicted in Figure 3 is continuous and
piecewise linear as advertised, but the coefficient paths are nonlinear. The first four binomial
parameters coalesce into the constrained estimate.

7.2 Generalized Lasso Problems

Many of the generalized Lasso problems studied by Tibshirani and Taylor (2011) reduce to
minimization of some form of the objective function (6). To avoid repetition, we omit a
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detailed discussion of this class of problems and simply refer readers interested in
applications to Lasso or fused-Lasso penalized regression, outlier detections, trend filtering,
and image restoration to the original article (Tibshirani and Taylor 2011). Here, we would
like to point out the relevance of the generalized Lasso problems to graph-guided penalized
regression (Chen et al. 2010). Suppose each node i of a graph is assigned a regression
coefficient βi and a weight wi. In graph penalized regression, the objective function takes the
form

(21)

where the set of neighboring pairs i ~ j defines the graph, di is the degree of node i, and rij is
the correlation coefficient between i and j. Under a line graph, the objective function (21)
reduces to the fused Lasso. In two-dimensional imaging applications, the graph consists of
neighboring pixels in the plane, and minimization of the function (21) is accomplished by
total variation algorithms. In MRI images, the graph is defined by neighboring pixels in
three dimensions. Penalties are introduced in image reconstruction and restoration to enforce
smoothness. In microarray analysis, the graph reflects one or more gene networks.
Smoothing the βi over the networks is motivated by the assumption that the expression
levels of related genes should rise and fall in a coordinated fashion. Ridge regularization in
graph penalized regression (Li and Li 2008) is achieved by changing the objective function
to

If one fixes either of the tuning constants in these models, our path algorithm delivers the
solution path as a function of the other tuning constant. Alternatively, one can fix the ratio of
the two tuning constants. Finally, the extension

of the objective function to multivariate response models is obvious.

In principle, the path algorithm based on the sweep operator applies to these problems,
provided the design matrix X has full column rank and the active constraints along the
solution path are linearly independent. If X has reduced rank, then it is advisable to add a

small amount of ridge regularization  to the objective function (Tibshirani and Taylor
2011). Even so, computation of the unpenalized solution may be problematic in high
dimensions. Alternatively, path following can be conducted starting from the fully
constrained problem as suggested in Section 5. If the linear independence of the active
constrains is violated, for example, when the graph has loops, then we recommend resorting
to the numerical remedy mentioned at the end of Section 5.

7.3 Shape-Restricted Regressions

Order-constrained regression is now widely accepted as an important modeling tool
(Robertson, Wright, and Dykstra 1988; Silvapulle and Sen 2005). If β is the parameter
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vector, monotone regression includes isotone constraints β1 ≤ β2 ≤ · · · ≤ βm or antitone
constraints β1 ≤ β2 ≤ · · · ≤ βm. In partially ordered regression, subsets of the parameters are
subject to isotone or antitone constraints. In other problems, it is sensible to impose convex
or concave constraints. If observations are collected at irregularly spaced time points t1 ≤ t2
≤ · · · ≤ tm, then convexity translates into the constraints

for 1 ≤ i ≤ m – 2. When the time intervals are uniform, these convex constraints become βi+2

– βi+1 ≥ βi+1 – βi. Concavity translates into the opposite set of inequalities. All of these
shape-restricted regression problems can be solved by path following.

As an example of partial isotone regression, we fit the data from table 1.3.1 of Robertson,
Wright, and Dykstra (1988) on the first-year grade point averages (GPA) of 2397 University
of Iowa freshmen. These data can be downloaded as part of the R package “ic.infer.” The
ordinal predictors, high school rank (as a percentile) and American College Testing (ACT, a
standard aptitude test) score, are discretized into nine ordered categories each. A rational
admission policy based on these two predictor sets should be isotone separately within each
set. Figure 4 shows the unconstrained and constrained solutions for the intercept and the two
predictor sets and the solution path of the regression coefficients for the high school rank
predictor.

The same authors (Robertson, Wright, and Dykstra 1988) predicted the probability of
obtaining a B or better college GPA based on high school GPA and ACT score. In their data,
covering 1490 college students, ȳij is the proportion of students who obtain a B or better
college GPA among the nij students who are within the ith ACT category and the jth high
school GPA category. Prediction is achieved by minimizing the criterion

 subject to the matrix partial-order constraints θ11 ≥ 0, θij ≤ θi+1,j, and
θij ≤ θi,j+1. Figure 5 shows the solution path and the residual sum of squares and effective
degrees of freedom along the path. The latter vividly illustrates the trade-off between
goodness of fit and degrees of freedom. Readers can consult page 33 of Robertson, Wright,
and Dykstra (1988) for the original data and the constrained parameter estimates.

7.4 Nonparametric Shape-Restricted Regression

In this section, we visit a few problems amenable to the path algorithm arising in
nonparametric statistics. Given data (xi, yi), i = 1, . . . , n, and a weight function w(x),
nonparametric least squares seeks a regression function θ(x) minimizing the criterion

(22)

over a space  of functions with shape restrictions. In concave regression, for instance,  is
the space of concave functions. This seemingly intractable infinite-dimensional problem can
be simplified by minimizing the least-square criterion (3) subject to inequality constraints.
For a univariate predictor and concave regression, the constraints (4) are pertinent. The
piecewise linear function extrapolated from the estimated θi is clearly concave. The
consistency of concavity-constrained least squares is proved by Hanson and Pledger (1976);
the asymptotic distribution of the corresponding estimator and its rate of convergence are
investigated in later articles (Mammen 1991; Groeneboom, Jongbloed, and Wellner 2001).
Other relevant shape restrictions for univariate predictors include monotonicity (Brunk
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1955; Grenander 1956), convexity (Groeneboom, Jongbloed, and Wellner 2001),
supermodularity (Beresteanu 2004), and combinations of these.

Multidimensional nonparametric estimation is much harder because there is no natural order

on  when d > 1. One fruitful approach to shape-restricted regression relies on sieve
estimators (Shen and Wong 1994; Beresteanu 2004). The general idea is to introduce a basis
of local functions (e.g., normalized B-splines) centered on the points of a grid G spanning
the support of the covariate vectors xi. Admissible estimators are then limited to linear
combinations of the basis functions subject to restrictions on the estimates at the grid points.

Estimation can be formalized as minimization of the criterion  subject to the
constraints CΦ(G)θ ≤ 0, where Φ(X) is the matrix of basis functions evaluated at the
covariate vectors xi, Φ(G) is the matrix of basis functions evaluated at the grid points, and θ
is a vector of regression coefficients. The linear inequality constraints incorporated in the
matrix C reflect the required shape restrictions. Estimation is performed on a sequence of
grids (a sieve). Controlling the rate at which the sieve sequence converges yields a
consistent estimator (Shen and Wong 1994; Beresteanu 2004). Prediction reduces to
interpolation, and the path algorithm provides a computational engine for sieve estimation.

A related but different approach for multivariate convex regression minimizes the least-

square criterion (3) subject to the constraints  for every ordered pair (i,
j). In effect, θi is viewed as the value of the regression function θ(x) at the point xi. The
unknown vector ξi serves as a subgradient of θ(x) at xi. Because convexity is preserved by
maxima, the formula

defines a convex function with value θi at x = xi. In concave regression, the opposite
constraint inequalities are imposed. Interpolation of predicted values in this model is
accomplished by simply taking minima or maxima. Estimation reduces to a positive
semidefinite quadratic program involving n(d + 1) variables and n(n – 1) inequality
constraints. Note that the feasible region is nontrivial because setting all θi = 0 and all ξi = 0
works. In implementing the extension of the path algorithm mentioned in Section 5, the
large number of constraints may prove to be a hindrance and lead to very short path
segments. To improve estimation of the subgradients, it might be worth adding a small

multiple of the ridge penalty  to the objective function (3). This would have the
beneficial effect of turning a semidefinite quadratic program into a positive definite
quadratic program.

8. CONCLUSIONS

Our new path algorithm for convex quadratic programming under affine constraints
generalizes previous path algorithms for Lasso penalized regression and its extensions. Our
path algorithm directly attacks the primal problem; the complementary method of Tibshirani
and Taylor (2011) solves the dual problem. Our various examples confirm the primal
algorithm's versatility. Its potential disadvantages involve computing the initial point –A–1b
and storing the sweeping tableau. In problems with large numbers of parameters, neither of
these steps is trivial. However, if A has enough structure, then an explicit inverse may exist.
As we have already noted, once A–1 is computed, there is no need to store the entire tableau.
The multitask regression problem with a large number of responses per case is a typical
example where computation of A–1 simplifies. In settings where the matrix A is singular,
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parameter constraints may compensate. We have briefly indicated how to conduct path
following in this circumstance. Although our more stringent assumption of linear
independence of the constraint gradients excludes some interesting examples treated by
Tibshirani and Taylor (2011), many practical problems can be finessed by the remedy
discussed in Section 5.

Our path algorithm qualifies as a general convex quadratic program solver. Custom
algorithms have been developed for many special cases of quadratic programming. For
example, the pool-adjacent-violators algorithm (PAVA) is now the standard approach to
isotone regression (de Leeuw, Hornik, and Mair 2009). The other generic methods of
quadratic programming include active set and interior point methods. For applications where
only the constrained estimate is of interest, it would be hard to beat these well-honed
algorithms. In regularized statistical estimation and inverse problems, the primary goal is to
select relevant predictors rather than to find a constrained solution. Thus, the entire solution
path commands more interest than any single point along it, and the path algorithm's ability
to deliver the whole regularized path with little additional computation cost beyond
constrained estimation is bound to be appealing to statisticians. Numerical comparisons with
competing methods would be illuminating but would also depend heavily on programming
details and problem choices. In the interests of brevity, we refrain from making numerical
comparisons here.

The path algorithm bears a stronger resemblance to the active set method (Nocedal and
Wright 2006). Indeed, both operate by deleting and adding constraints to a working active
set. However, they differ in at least two respects. First, the initial active set is constructed
arbitrarily in the active set method. Distinct initial active sets produce different iteration
sequences. In contrast, the path algorithm always starts from the unconstrained solution. The
initial active set is determined as a by-product. Second, the mechanics of adding or deleting
constraints differ in the two methods. The active set method chooses the direction of
movement that tends to decrease the quadratic objective function most, while the path
algorithm tracks the tuning constant ρ. In fact, path following steadily increases the
objective function until it reaches its constrained solution. In this sense, the active set
method is greedier than the path algorithm, which expends its effort in traversing the
solution path.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Path solutions to the concave regression problem. Left: the unconstrained solution (original
data points), two intermediate solutions (dotted and dashed lines), and the concavity-
constrained solution (solid line). Right: the Cp statistic as a function of the penalty constant
ρ along the solution path. The online version of this figure is in color.
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Figure 2.

The data points and the fitted lines for the first toy example of constrained curve fitting
(Lawson and Hanson 1987). The online version of this figure is in color.
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Figure 3.

Toxin response example. Left: solution path. Right: coefficient paths for the constraints.
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Figure 4.

Left: unconstrained and constrained estimates for the Iowa GPA data. Right: solution paths
of the regression coefficients corresponding to high school rank. The online version of this
figure is in color.
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Figure 5.

GPA prediction example. Left: solution path for the predicted probabilities. Right: residual
sum of squares and the estimated degrees of freedom along the path. The online version of
this figure is in color.
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Algorithm 1

Solution path of the primal problem (6) when A is positive definite.

Initialize k = 0, ρ0 = 0, and the path tableau (17). Sweep the diagonal entries of –A.

Enter the main loop.

repeat

    Increment k by 1.

    Compute the hitting time or exit time ρ(i) for each constraint i.

    Set ρk = min{ρ(i) : ρ(i) > ρk–1}.

    Update the coefficient vector by Equation (16).

    Sweep the diagonal entry of the inactive constraint that becomes active or inverse sweep the diagonal entry of the active constraint that
becomes inactive.

    Update the solution vector xk = x(ρk) by Equation (11).

until NE = PE = PI = ∅.
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