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Abstract—As the virtualization of networks continues to attract
attention from both industry and academia, the virtual network
embedding (VNE) problem remains a focus of researchers. This
paper proposes a one-shot, unsplittable flow VNE solution based
on column generation. We start by formulating the problem as a
path-based mathematical program called the primal, for which we
derive the corresponding dual problem. We then propose an initial
solution which is used, first, by the dual problem and then by the
primal problem to obtain a final solution. Unlike most approaches,
our focus is not only on embedding accuracy but also on the
scalability of the solution. In particular, the one-shot nature of our
formulation ensures embedding accuracy, while the use of column
generation is aimed at enhancing the computation time to make
the approach more scalable. In order to assess the performance of
the proposed solution, we compare it against four state of the art
approaches as well as the optimal link-based formulation of the
one-shot embedding problem. Experiments on a large mix of vir-
tual network (VN) requests show that our solution is near optimal
(achieving about 95% of the acceptance ratio of the optimal solu-
tion), with a clear improvement over existing approaches in terms
of VN acceptance ratio and average substrate network (SN) re-
source utilization, and a considerable improvement (92% for a SN
of 50 nodes) in time complexity compared to the optimal solution.

Index Terms—Network virtualization, resource allocation, vir-
tual network embedding, column generation, optimization.

I. INTRODUCTION

THE ever increasing requirements placed on the Internet

are fueling its evolution to architectures which make a

better and more efficient use of the available network resources,

and promote service innovations. Service Providers (SPs) have

to satisfy personalized needs for their customers and hence

they are impelled to use different protocol stacks and provide

customized services and network resources. Network virtual-

ization [1] has been proposed as a feasible solution to achieve

this goal. In network virtualization, Infrastructure Providers

(InPs) divide their resources into chunks, called VNs, which are

allocated to SPs. Thanks to virtualization, the resource chunks
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are isolated from each other so the service networks behave as

if they were independent though they share the same substrate

infrastructure.

However, the creation of VNs on top of a SN is not trivial.

VN topologies composed of virtual nodes and virtual links have

to be drawn to support traffic flows from sources to sinks.

Virtual nodes and virtual links then have to be mapped onto

the physical substrate in a way that satisfies user demands and

optimizes the use of the available resources. This is the basis

of the so called VNE problem [1], which in case of unsplittable

flows, i.e. flows that have to be treated as a unit from source

to sink, is NP hard [2]. Therefore, to simplify the problem,

several existing solutions to VNE either assume that the SN

supports the splitting of flows [3], or carry out the node and link

embedding in two separate steps [4], which can lead to blocking

or rejecting of resource requests at the link mapping stage and

hence a sub-optimal substrate resource utilization.

In this paper, we propose a near optimal solution to the

unsplittable flow VNE problem obtained by performing the

embedding in one-shot (i.e., both virtual nodes and links are

embedded in one step) using mathematical programming and

path generation1 [5]. The formulation of the embedding prob-

lem as being one-shot is motivated by the need to obtain an

efficient embedding solution (which would ultimately lead to

better resource utilization and hence better profitability for

InPs), while the employment of path generation is aimed at

ensuring that the resulting algorithm is more scalable compared

to the optimal formulation.

To this end, we formulate two mathematical programs; one

is a path-based formulation of the unsplittable flow one-shot

VNE problem, also known as the primal problem, while the

other is its corresponding dual problem. For given instances

of the problem, both the primal and dual problems have ap-

proximately the same solution value. The proposed approach

begins by obtaining an initial solution (composed of paths in an

augmented SN) to the primal problem using a VNE approach

that performs node and link mapping in two coordinated stages.

The next step is to enhance the initial solution. This is achieved

by using the initial solution as an input into the dual problem,

hence resulting into prices for the SN links and nodes. Using

Dijkstra’s algorithm [6], these prices are utilized to determine

an additional set of paths which can be added to enhance the

solution. These paths, together with those obtained in the initial

solution, are finally used to solve the primal problem to obtain

a final embedding solution.

1In this paper, we use the terms path generation and column generation

interchangeably.
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The main contributions of this paper are as follows:

• A near optimal unsplittable flow one-shot VNE approach

that improves substrate resource utilization compared to

existing heuristic and approximation solutions.

• A path generation-based approach for unsplittable flows

that significantly improves the time complexity of the

embedding compared to the optimal solution.

The rest of the paper is organized as follows: Section II presents

the description of the VNE problem. We present the related

work in Section III. Sections IV and V respectively describe the

mathematical formulation of the one-shot embedding problem

and its solution based on path generation. Section IV presents

the evaluation of our proposed solution and the discussion of

the results. Finally, Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Substrate Network Capacity

We model the SN as an undirected graph denoted by Gs =

(Ns, Ls), where Ns and Ls represent the set of substrate nodes

and links, respectively. Each substrate link luv ∈ Ls connecting

the nodes u and v has a bandwidth capacity Cuv while each

substrate node u ∈ Ns has computation capacity Cu and a

location Locu(x, y)

B. Virtual Network Requests

In the same way, we model the VN as an undirected graph

denoted by Gv = (Nv, Lv), where Nv and Lv represent the

set of virtual nodes and links respectively. Each virtual link

lij ∈ Lv connecting the nodes i and j has a bandwidth demand

Dij while each virtual node i ∈ Nv has computation demand

Di, a location Loci(x, y) as well a constraint on its location

Devi(�x,�y) which specifies the maximum allowed deviation

for each of its x and y coordinates.2 Constraints on the location

of virtual nodes are aimed at giving SPs the flexibility to choose

the geographical placement of given parts of their network

topologies. This could be as a result of a given SP introducing

specialized services for users in a given location, or a desire to

ensure improved quality of service by restricting the distance

(and hence latency) between a given pair of nodes.

C. Virtual Network Embedding

The embedding problem consists in the mapping of each

virtual node i ∈ Nv to one of the possible substrate nodes

with in the set ϒ(i). ϒ(i) is defined as a set of all substrate

nodes u ∈ Ns which have enough available capacity (defined

the difference between the total capacity of a resource and the

amount already allocated) and are located within the maximum

2The notation used in this paper is to represent virtual nodes with the letters
i or j and substrate nodes with u or v.

Fig. 1. Virtual network embedding: Two VNs mapped onto a SN.

allowed deviation Devi(�x,�y) of the virtual node. For a

successful mapping, each virtual node must be mapped and any

given substrate node can only map at most one virtual node

from the same request. Similarly, all the virtual links have to

be mapped to one or more substrate links connecting the nodes

to which the virtual nodes at its ends have been mapped. Each

of the substrate links must have enough capacity to support the

virtual link(s) that go through it. A mapping is successful if all

the virtual links are mapped.

In Fig. 1, we show an example of two VNs being mapped

onto a SN. The resource requirements for each virtual node or

link is also shown. The values in the SN are the total loading of

any given physical node or link. As can be noted from Fig. 1,

one substrate node can host more than one virtual node (e.g.,

node A). A substrate link can also host more than one virtual

link (e.g., link AB), and a given virtual link can span more than

one substrate link (e.g., link RP).

In general, the objective in VNE is to map as many VNs

as possible, hence leading to an efficient utilization of SN re-

sources. For the online VNE problem, there is no knowledge on

the requirements of future VN requests, and as such, one way of

ensuring that as many requests are accepted is by balancing the

overall loading of the SN [2] such that all substrate resources

(nodes and links) are equally likely to accept resource requests.

In the same way, it is worth noting that due to the lack of

information about future virtual network requests, optimality

as referred to in this paper is only based on the mapping of an

arriving virtual network request to a substrate network, which

could possibly already have other virtual networks already em-

bedded, or for which other virtual networks may be embedded

in the future. Therefore, this optimality does not represent an

optimal embedding solution considering all possible virtual

network requests.

III. RELATED WORK

VNE is a well-studied problem. In what follows, we only

discuss those approaches we consider more closely related

to our proposal. An interested reader is referred to [1] for a

detailed survey on VNE.
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A. Two-Step Embedding

Some approaches based on two stages, starting with node

mapping and then link mapping, are proposed in [3] and

[7]. These algorithms measure the resource of a node or link

by its CPU capacity, or bandwidth without considering the

topological structure of the VNs and the underlying substrate

network. However, the topological attributes of nodes may have

an impact on the success and efficiency of VNE. Cheng et al. [8]

propose a topology-aware node mapping approach which uses

the Markov Random Walk model to rank virtual and sub-

strate network nodes based on their resource and topological

attributes. The links are then mapped either using the shortest

path (for unsplittable flows), or formulated as a commodity

flow problem for splittable flows. Unlike our work, the above

approaches don’t consider location constraints on virtual nodes,

assuming that they can be mapped at any location in the SN. A

coordinated node and link mapping is proposed in [2]. Although

the coordination here improves the solution space, the mapping

is still performed in two separate stages, hence yielding sub-

optimal embedding.

The works in [9]–[12] propose dynamic and distributed ap-

proaches to VN resource allocation, where the actual resources

allocated to virtual nodes and links is scaled up and down based

on actual resources utilization as well as resource availability.

However, they do not consider the embedding stage, assuming

that the VN is already mapped to a SN.

B. One-Shot Embedding

A one-shot embedding solution based on a multi-agent

system is proposed in [13]. However, this proposal assumes

unbounded SN resources, and all VN requests to be known

in advance. Also, messaging overhead exchanged between the

agents can be detrimental to solution scalability. Zhu et al. [4]

also propose a one-shot mapping solution, assuming infinite

substrate resources, and no constraints on the locations of

nodes. Authors in [14], [15] propose different approaches to

one-shot VNE assuming that all VN requests are known in

advance (offline solutions), while those in [16], [17] make

simplifying assumptions with regard to the capacity of the

SN and do not consider constraints on virtual nodes locations.

While most VNE proposals use topologies to represent VN

requests, [18] proposes the use of traffic matrices. However,

the embedding is achieved by alleviating constraints on VN re-

sources, such as node location. Houidi et al. [19] split any given

VN request across multiple infrastructure providers and then

uses max-flow and min-cut algorithms and linear programming

to find one-shot solutions to the partial VN graphs. While the

embeddings of the split graphs are solved in one-shot, they do

not encompass the original VN request in its entirety.

Perhaps the the works most related our work are by

Jarray et al. [20] and Hu et al. [21] both of whom apply column

generation to VNE. Jarray et al. apply a column generation

approach to one-shot VNE by assuming that the embedding of

VN requests can be delayed by storing each arriving request

to process them in batches using an auctioning mechanism.

The proposal can therefore be considered to be an offline one.

Hu et al. formulate a one-shot path-based VNE where the

virtual links are represented as commodities. The formulated

mathematical program is then relaxed so as to apply column

generation. However, Hu et al. consider a scenario where the

demand/commodity of any given virtual link may be split over

more than one substrate path. This differs from the proposal in

this paper which solves a harder problem where the flows are

not splittable.

C. Mathematical Programming

Mathematical programming has been applied to a variety

of problems in networking. Xie et al. [22] use mathemati-

cal programming for dynamic resource allocation in networks

while Botero et al. [23] use an optimization technique for

link mapping (assuming that the virtual nodes have already

been mapped to substrate nodes). Unlike all these works, the

mathematical programming formulation proposed in this paper

does not only focus on unsplittable flows, but also combines

both node and link mapping in one stage. The node mapping

step is an important part of VNE since it determines the

efficiency of the link mapping. This is why such approaches that

coordinate these two steps have been shown to lead to better

resource utilization efficiency [2]. Combining these two steps

together even further enhances this efficiency, yet the resulting

mathematical program is even harder to solve. Finally, path

generation based formulations for multi-commodity flow based

problems are proposed in a number of approaches such as [24].

In these formulations the source and end nodes for each flow are

known a priori, which reduces the complexity of the problem,

compared to the one-shot VNE that we solve in this paper.

D. Summary

To summarize, because of the NP hardness of the VNE

problem, existing one-shot approaches either make simplifying

assumptions such as considering the offline version of the

problem, assuming infinite resources, or ignoring constraints

on the virtual nodes and links, while other proposals solve

the embedding problem in two stages, typically employing a

greedy approach for node mapping and then try to optimize the

link mapping. The approach proposed in this paper differs from

previous work in many aspects. Most applications of mathemat-

ical programming and path generation to routing are concerned

with simpler problems, in which either both the source and

sink nodes are known, in which case the problem reduces to a

load balancing problem, or only consider node mapping. While

the link mapping sub-problem is still NP-hard for unsplittable

flows, it is even harder in the case of VNE since the source

and sink nodes should also be determined. To the best of our

knowledge, this is the first path-based mathematical program-

ming solution to the one-shot, unsplittable flow VNE problem.

IV. ONE-SHOT VIRTUAL NETWORK EMBEDDING

The one-shot VNE problem involves performing both node

and link mapping at the same time. In this paper, we use
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Fig. 2. VNE showing virtual node mapping constraints.

mathematical programming to achieve this. Specifically, we

consider that VNs arrive one at a time following a Poisson dis-

tribution and have exponentially distributed service times, and

the formulated optimization problem involves the embedding of

a single VN at any given time. This way, at every mapping step,

the actual resource availability of all substrate links and nodes is

taken into account when performing a mapping. For reference,

the link-based formulation of the problem that obtains an

optimal solution using mathematical programming is shown in

the appendix. Here, we adopt a path-based formulation using

column generation in order to solve the problem with much less

time and storage requirements.

A. Substrate Network Augmentation

We start by creating an augmented network first introduced in

[2], with each virtual node i connected to each of the substrate

nodes in its possible node set ϒ(i) by a meta link [2] liu ∈ Lx,

where Lx is the set of all meta links. Then the aim is to establish

a single path p
ij
uv from each virtual node i to all other virtual

nodes j to which it is connected. The path p
ij
uv is made of two

meta links, liu and ljv , and a sub-path in the SN connecting

the substrate nodes u and v. This sub-path may be made up

of one or more SN links. In Fig. 2, we show a representation

of an instance of the problem. In the figure, XYZ are nodes of

a VN, while ABCDEFG are nodes of a SN. As an example,

for virtual link XZ, one possible path could be XABEZ, and is

represented as pxz
ae. The path pxz

ae is a sequence of links in the

augmented network that start from one end of the virtual link to

the other. Therefore, in order to embed the virtual link XZ, we

need to determine the three components of the path, which—for

this example—are the two meta links XA and EZ, and the SN

path ABE composed of two links, AB and BE. The components

XA and EZ can be determined from a virtual to substrate node

mapping, while ABE from a link mapping approach such as

shortest path. In particular, this path example would mean that

the virtual node X is mapped onto substrate node A, the virtual

node Z is mapped onto substrate node E and that the virtual link

XZ is mapped onto the SN path ABE. One difficulty illustrated

in this example comes from the fact that if, for example, we

choose the path XABEZ for virtual link XZ, then the virtual

link XY can only be mapped on a path that includes meta link

XA and not XC. This would in turn require that Y be mapped

onto C, otherwise we would have a sub-optimal solution in

which the virtual link XY uses resources from two substrate

links (AC & CG) instead of a single link (CG). Hence, the

determination of these paths should not be carried sequentially

and independently. As previously mentioned, our aim is to find

the best possible path for each of the virtual links subject to the

mapping requirements described in our problem formulation

(see Section II).

B. LP-P: Path Based Formulation—Primal

We formulate the VNE problem as a commodity flow prob-

lem [25], where virtual links are flows that should be carried by

the SN. However, unlike most commodity flow formulations,

in our case, the source node i and terminal node j for each flow

also need to be determined.

Variable and parameter definitions: In this formulation,

we define a non-negative binary variable f
ij
uv = [0, Dij] which

represents the unsplittable flow of a virtual link lij ∈ Lv on a

simple substrate path p
ij
uv ∈ P. The indices u, v, i and j define a

path (i − u − v − j) in the augmented SN. As described in IV

(A), these paths are made up of three components: two meta-

links iu and jv, and a SN path from u to v. The variable f
ij
uv

is binary in that it can only take on values 0 and Dij, where

Dij is the demand of virtual link lij ∈ Lv . We define P as a set

of all the possible substrate paths, Puv as the set of all paths

that use the substrate link luv ∈ Ls and Pij as the set of all

paths that can support the flow for virtual link lij ∈ Lv . We also

define χ i
u = [0, 1] as a binary variable equal to 1 if the virtual

node i is mapped onto the substrate node u and 0 otherwise. As

mentioned in IV (A), it is important to note that variables χ i
u and

χ
j
v directly determine the existence or otherwise of meta links iu

and jv for the path p
ij
uv since the meta links are dependent on the

respective node mappings. For example, if χ i
u == 0 then the

virtual node i is not mapped onto substrate node u, implying

that the meta link from i to u is non existent, and so is the

path p
ij
uv . Let Auv be the available bandwidth capacity on the

substrate link luv , and Au be the available computation capacity

on node u.

Objective: The objective of the mathematical formulation

(1)–(7) is to balance the resource usage of the SN, by favoring

the selection of those resources with comparatively higher

available capacity. Balancing the loading of the SN has two

advantages; first, it distributes the mapping of a given VN

request over multiple SN resources which avoids a single VN

being majorly affected by single or regional failures in SN,

hence ensuring better VN survivability. In addition, since the

problem we consider in this paper is online, we do not know in

advance the required node locations for VN requests. Balancing

the loading of the SN ensures that at any given point, each

substrate node/link has the same capacity on average. This

avoids situations where a VN request would be rejected due to

one or more of its nodes not being able to be mapped because

substrate nodes in their respective possible node sets ϒ(i) have

less resources than other parts of the SN. As was shown by [2],
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load balancing leads to a better acceptance ratio of VNs, which

would directly translate in higher incomes for InPs.

minimize
∑

lij∈Lv

∑

p
ij
uv∈P

1

Auv

f ij
uv +

∑

i∈Nv

∑

u∈ϒ(i)

1

Au

χ i
u (1)

subject to

∑

u∈ϒ(i)

χ i
u = 1 ∀ i ∈ Nv (2)

∑

i∈Nv

χ i
u ≤ 1 ∀ u ∈ Ns (3)

∑

p
ij
uv∈Pij

f ij
uv = Dij ∀ lij ∈ Lv (4)

∑

p
ij
uv∈Puv

f ij
uv ≤ Auv ∀ luv ∈ Ls (5)

f ij
uv − Dijχ

i
u ≤ 0 ∀ pij

uv ∈ P (6)

f ij
uv − Dijχ

j
v ≤ 0 ∀ pij

uv ∈ P

f ij
uv = [0, Dij] ∀ pij

uv ∈ P

χ i
u = [0, 1] ∀ i ∈ Nv,∀ u ∈ Ns. (7)

The first term in the objective (1) is for link mapping, while

the second term is for node mapping. Each of these terms are

divided by the respective capacities to ensure that the substrate

resources with more free resources are preferred. Constraint

(2) ensures that each virtual node is mapped to a substrate

node, while (3) ensures that any substrate node may be used

at most once for a given mapping request. Constraints (4) and

(5) represent the virtual link demand requirements and substrate

link capacity constraints respectively. Specifically, (4) states

that the flow f
ij
uv on path p

ij
uv should carry the total demand

of the virtual link ij, while (5) states that the flow f
ij
uv on path

p
ij
uv should be at most equal to the capacity of each substrate

link on that path. From constraint (6), if χ i
u == 0 then f

ij
uv =

0. If χ i
u == 1 then f

ij
uv = [0, Dij]. This is also true for (7).

These constraints ensure that virtual links and virtual nodes are

mapped at the same time, i.e., a flow f
ij
uv—using the path p

ij
uv

starting with meta link iu and ending with meta link jv—is only

non-zero if the virtual node i is mapped onto substrate node u

and j is mapped onto v. Together, (6) and (7) ensure that a flow

f
ij
uv is only non zero if both the two end links iu AND jv exist.

The formulation in (1)–(7) is intractable for two reasons;

first, the restrictions that variables χ i
u and f

ij
uv only take on

binary values, and then the fact that the number of possible

paths p
ij
uv (and hence the number of variables f

ij
uv) is very large

(exponential) even for moderately sized networks. Therefore,

solving the problem in its current form is impractical. There are

three possibilities to solving the problem:

1) a relaxation to the constraints on variables χ i
u and f

ij
uv to

take on continuous values,

2) restricting the number of input variables f
ij
uv (by restrict-

ing the number of paths p
ij
uv).

3) a combination of both the first two approaches.

For the VNE problem as formulated in (1)–(7), a relaxation

would require careful consideration to avoid violating the re-

quirements that both nodes and links are mapped in one-shot

(since the variables χ i
u would no longer be able to restrict

the mapping of virtual nodes to particular substrate nodes),

as well splitting the flows of the virtual links across multiple

links. Therefore, we take the second approach, and employ

path generation, which allows for the use of only a sufficiently

meaningful number of paths, and adding more paths as needed

until a final solution is obtained.

V. PATH GENERATION

Path generation is a method that solves mathematical pro-

grams with a large number of variables efficiently. The main

idea is to solve a restricted version of the program (the restricted

primal problem [26])—which contains only a subset of the

variables, and then (through the use of the dual problem [26])

add more variables as needed. Usually, path generation involves

creating an initial solution (restricted set of variables) which

are used in the solution for the restricted primal problem. Then,

solving pricing problems (which are determined from the dual

problem), allows for adding more variables to improve the

initial solution, until either a final optimal solution is found,

or a stopping condition is reached.

The path generation approach taken in this paper is as fol-

lows: we start by creating an initial set of paths using a two

stage node and link mapping. We then use these paths to solve

a dual problem, and use the pricing problems to determine a set

of paths to add to the initial solution. These paths are then used

to solve a restricted primal problem to obtain a final solution.

Therefore, our proposal avoids the usual iteration required in a

path generation approach where the primal and dual problems

are solved sequentially, many times, instead preferring only to

perform a single iteration. In the next subsections, we propose a

method for determining the initial set of paths, derive the pric-

ing problems, and then describe the overall algorithm proposed

in this paper.

A. Initial Solution

An initial solution (Init-Sol) is determined as a set of paths P′

in the augmented SN, with each path p
ij
uv ∈ P′ able to support

the flow f
ij
uv of virtual link lij. Each of these paths must be able

to meet the VN mapping conditions as formulated in the primal

problem. Considering the example in Fig. 2, since we have two

virtual links, an initial solution would have two paths, one for

each virtual link. Examples of these paths could be XABEZ and

XACY for virtual links XZ and XY respectively. In order to

determine such a path, say for virtual link XZ, the approach in

this paper is as follows: we start by performing a node mapping,

which for this example, would map virtual nodes X and Z onto

substrate nodes A and E respectively. This step gives us the

meta links XA and EZ. In this subsection, we propose a novel

node mapping solution LP-N for determining XA and EZ. The

next step involves determining the path ABE in the SN. This is

done by using Dijkstra’s algorithm, with the constraint that each

link on the path should have enough capacity to support the vir-

tual link under consideration. The complete path is determined

by joining meta links XA and EZ to the respective ends of ABE.
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Fig. 3. Node-link weighted averages.

LP-N: node mapping: LP-N is based on mathematical

programming. It is formulated in such a way that mapping

of any given virtual node is relatively biased towards each

substrate node by a weight. The determination and use of the

weights is discussed in what follows.

Objective: It is noteworthy that, essentially, LP-N is

aimed at achieving an initial node and link mapping. As such,

many other state-of-art two-step approaches [1] could be used

for this purpose. However, the authors could not find a previous

two-stage mapping approach that simultaneously achieves both

objectives considered in our formulation: The first objective is

to keep the computation time of the initial solution as low as

possible by including only the possible virtual node to substrate

node combinations. Secondly, as explained later in this section,

we minimize the possibility of failure at the link mapping stage,

by making the node mapping aware of the link mapping stage

through the use of weights Wi and Wu.

Variable definition: As before, χ i
u is a binary variable

equal to 1 when the virtual node i is mapped onto substrate

node u and 0 otherwise.

minimize
∑

i∈Nv

∑

u∈ϒ(i)

Wi

Wu
χ i

u (8)

subject to:

∑

u∈ϒ(i)

χ i
u = 1 ∀ i ∈ Nv (9)

∑

i∈Nv

χ i
u ≤ 1 ∀ u ∈ Ns

χ i
u = [0, 1] ∀ i ∈ Nv,∀ u ∈ Ns. (10)

Constraints (9) and (10) are the same as (2) and (3). The

weights Wi and Wu are dynamically determined for each virtual

and substrate node respectively. The motivation to use such

weights is from the need bias or coordinate the mapping of

the nodes to the following link mapping step. This has been

shown by related works to improve the mapping efficiency

[2] by avoiding the use of a high amount of resources for

the link mapping phase. In our proposal, this is particularly

important to avoid the possibility that we fail to obtain an initial

solution due to unavailable SN resources. Therefore, Wu is

defined as the weighted average of the available capacities of

all the substrate links connected to u. Similarly, Wi is defined

as the weighted average of the demand of all the virtual links

connected to i. To illustrate the idea behind these weighted

averages, consider Fig. 3, which is a subset of the topology

represented in Fig. 2. The values beside each link represent the

available link bandwidths and link demands respectively. As an

example, considering the virtual node X,

WX = 20 ×

(

20

20 + 10

)

+ 10 ×

(

10

20 + 10

)

= 16.67.

In the same way for substrate node C,

WC = 50 ×

(

50

50 + 60 + 70

)

+ 60 ×

(

60

50 + 60 + 70

)

+ 70 ×

(

70

50 + 60 + 70

)

= 61.11.

The reason for using this ratio as a weight is to ensure that

those substrate nodes that are connected to many substrate links

with higher available resources are usually preferred, and that

in case two or more virtual nodes have a given substrate node

in their possible node set (such as X and Y in Fig. 2), then the

substrate node would always be allocated to that virtual node

with the highest weighted average link demand. This achieves

some level of coordination between the node mapping and link

mapping phases and thereby reduces the probability of rejecting

link mapping requests.

We note that there could be instances where the weighted

averages lead to selecting substrate nodes with less good links,

especially when the links have widely differing residual capac-

ities. For example, a node connected to two links with residual

capacities 80 and 10respectively will have a W1 = 72, while a

node connected to two links with residual capacities 60 and 70

respectively will have a W2 = 65. In this case, the first node

will be selected yet the second node could be a better choice.

One simple solution to handle such scenario is to use the sum

of two averages: the weighted average and a simple average.

However, it is worth mentioning that in our approach network

embedding is done in such a way that the average loads of

SN nodes and links are balanced, this way, avoiding scenarios

where some node and/or links have widely differing residual

capacity. The procedure, Init-Sol, for determining the initial

solution is shown in Algorithm 1.

B. Pricing Problem

To determine which paths should be added to the initial set

so as to improve the solution, we need to solve the pricing

problems for LP-P. In order to identify the pricing problems we

first formulate the dual problem LP-D for the primal problem

LP-P. The formulation of a dual problem from a primal can be

obtained in five steps [27].

1) Creating a dual variable for every primal constraint,

2) Creating a dual constraint for every primal variable,

3) The right-hand sides of primal constraints become coeffi-

cients for the dual objective,

4) The coefficients of the primal become right-hand sides of

the dual constraints,

5) If the primal problem is a maximisation problem, the dual

is a minimisation problem.
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Algorithm 1 Init-Sol (Gv(Nv, Lv), Gs(Ns, Ls))

1: for i ∈ Nv do

2: Determine Candidate Node Set, ϒ(i)

3: if ϒ(i) = ∅ then

4: Reject Request

5: end

6: end if

7: Calculate Wi

8: end for

9: for u ∈ Ns do

10: Calculate Wu

11: end for

12: Solve: LP-N

13: for lij ∈ Lv do

14: for u ∈ ϒ(i) do

15: if χ i
u = 1 then

16: Meta Link 1: l1 = iu

17: Start Node, s = u

18: end if

19: end for

20: for v ∈ ϒ(j) do

21: if χ
j
v = 1 then

22: Meta Link 2: l2 = jv

23: End Node, t = v

24: end if

25: end for

26: LinkMapping: ps = Dijkstra(s, t, Gs(Ns, Ls))

27: Create Path: p
ij
uv = l1 + ps + l2

28: Add p
ij
uv to P′

29: end for

In Table I, we summarize these steps, giving the bounds for the

resulting dual constraints and variables for all possible cases

of primal variables and constraints respectively. These conven-

tions reflect the interpretation of the dual variables as shadow

prices of the primal problem. A less-than-or-equal-to constraint,

normally representing a scarce resource, has a positive shadow

price, since the expansion of that resource generates additional

profits. On the other hand, a greater-than-or-equal-to constraint

usually represents an external requirement (e.g., demand for

a given resource). If that requirement increases, the problem

becomes more constrained; this produces a decrease in the

objective function and thus the corresponding constraint has a

negative shadow price. Finally, changes in the right hand side of

an equality constraint might produce either negative or positive

changes in the value of the objective function. This explains the

unrestricted nature of the corresponding dual variable.

Dual variables definitions: To determine the dual pro-

gram, we start by relaxing the bounds of the variables χ i
u and

f
ij
uv such that χ i

u ≥ 0 and f
ij
uv ≥ 0. Then, following the five steps

stated above, we define six dual variables as follows: λi for the

virtual node constraints (2), μij for the virtual links demand

constraints in (4), ηu >= 0 substrate node constraints in (3),

γuv >= 0 substrate links available capacity constraints in (5),

σiu >= 0 for simultaneous node and link mapping constraint

constraint (6) and τjv >= 0 for constraint (7). Since most

TABLE I
RELATIONSHIP BETWEEN DUAL AND PRIMAL PROBLEMS

results of duality for linear programs do extend to integer

programming [28], the dual formulation in this paper is based

on [27].

The objective of the dual formulation (11)–(13) is to obtain

a mathematical program that produces a maximized value as

close as possible to that of its original primal program for

any instance of the variables. Therefore, the dual of the primal

formulation in (1)–(7) is:

maximize
∑

i∈Nv

λi +
∑

lij∈Lv

Dijμij −
∑

u∈Ns

ηu −
∑

luv∈Ls

Auvγuv (11)

subject to

λi +
∑

p
ij
uv∈P

(σiu + τjv) − ηu ≤
1

Au

∀ liu ∈ Lx (12)

μ −ij −σiu −
∑

luv∈p
ij
uv

γuv − τjv ≤
∑

luv,liu∈p
ij
uv

1

Auv

∀ pij
uv ∈ P.

(13)

The pricing problems are shown in (12) and (13). From (12),

the pricing condition for substrate nodes can be determined as:

λi +
∑

p
ij
uv∈P

(σiu + τjv) >
1

Au

+ ηu

However, since the variables χ i
u are much fewer compared to

f
ij
uv , we include all the possible substrate nodes for each virtual

node in the restricted primal problem. This eliminates the need

for node pricing and we are left to deal with only the link pricing

problem (13):

μij >
∑

luv,liu∈p
ij
uv

1

Auv

+

⎛

⎜

⎝
σiu +

∑

luv∈p
ij
uv

γuv + τjv

⎞

⎟

⎠
.

This pricing problem can be solved using the shortest path

algorithm. Any path p
ij
uv = Siu + (luv ∈ Puv) + Tjv in the aug-

mented SN whose length with respect to the dual variables (this

means that the costs of the substrate links luv ∈ Puv are γuv ,

those of meta links Siu are σiu and those of Tjv are τjv) is smaller

than μij satisfies the inequality above, and has the potential
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Fig. 4. Possible substrate node combinations for virtual link XZ.

to improve the solution. However, a change in path for any

given virtual link could necessitate a change in the mapping

of one of its end nodes, which would change the prices and

feasibility of mappings for other virtual links connected to it.

For example in Fig. 2, if the virtual node X is mapped onto

substrate node C, all the paths for both links XZ and XY go

through C. If the path for say XZ is changed to go through A, it

would either mean that the path for XY should also be changed

to go through A, otherwise this path cannot be used to give

a feasible and improved solution. Therefore, addition of paths

individually for each virtual link does not guarantee that each

of the added paths would still lead to a feasible solution, and for

as long as the added path cannot yield a feasible solution, this

path cannot lead to improvement in the solution of the restricted

primal problem. In this case, there would be no guarantee that

the pricing problems can be solved in polynomial time, as it

could require quite a number of iterations before enough paths

are added to actually improve the solution.

In this paper, instead of adding individual paths for each

virtual link in each iteration of the path generation algorithm,

we include all the possible shortest path combinations after

solving the formulation (11)–(13). We use Fig. 4, which is

extracted from Fig. 2, to illustrate this for the case of virtual

link XZ. Since the node X has two possible substrate nodes

and virtual node Z has three possible substrate nodes, then the

possible combinations for these nodes are 6. In our pricing

solution, we determine the shortest path—based on the weights

in (14) for each of these 6 possible end node combinations.

∑

luv,liu∈p
ij
uv

1

Auv

+

⎛

⎜

⎝
σiu +

∑

luv∈p
ij
uv

γuv + τjv

⎞

⎟

⎠
. (14)

This is done for all the virtual links, and all the corresponding

paths are added to the restricted primal problem. However, the

number of paths added for each pricing iteration would be

too big to handle if many iterations are carried out. Even the

Dijkstra algorithm takes quite some time to find the shortest

paths. For this reason, we perform only one round for the

substrate paths and use the resulting shortest paths based on

the dual problem to solve LP-P to obtain the final solution.

As we show in the simulation results, the solution obtained is

near optimal.

The proposed approach, Final-Sol, for determining the final

solution is shown in Algorithm 2.

Algorithm 2 Final-Sol(Gv(Nv, Lv), Gs(Ns, Ls))

1: Create Augmented Substrate Network

2: Initial Paths Set: P′ ← Solve Init-Sol

3: Solve LP-D(P′)

4: for lij ∈ Lv do

5: for u ∈ ϒ(i) do

6: for v ∈ ϒ(j) do

7: P′ ← (P′ + GetShortestPath(i, u, v, j))

8: end for

9: end for

10: end for

11: Solve LP-P(P′)

Example: To illustrate the details of Final–Sol in Algorithm 2,

we use a simple running example based on Fig. 2 as well as

the flow diagram in Fig. 5(a). The aim of the example is to

illustrate the sequence of the proposed algorithm rather than its

effectiveness, which is evaluated in the next section. As such,

we keep it simple by avoiding the details of how the actual

mathematical programs are solved. In Fig. 5(b), we show a

possible initial solution (black dotted lines) where virtual nodes

X, Y, and Z have been mapped to substrate nodes A, G and E

respectively. The virtual links XY and XZ have been mapped

onto substrate paths ACG and ABE respectively. Therefore,

based on the discussion in Section IV-A, the initial solution is

made up of two paths XACGY and XABEZ in the augmented

substrate network. In Fig. 5(a), these two paths make up P1.

With these paths, the dual problem (LP-D(P1)) is solved. The

values of σiu, γuv, and τjv along each link in Fig. 5(b) represent

hypothetical values that could result from solving LP-D. As

explained above, and illustrated in Fig. 4, the next step is then,

for each virtual link, to find the shortest path in the substrate

network for all the possible virtual-to-substrate node mappings.

Using the values in Fig. 5(b), the these shortest paths are

determined using Dijkstra’s algorithm as shown in Table II3 for

the 6 combinations (see Fig. 4) of the virtual link XZ. Using a

similar process, the paths corresponding to the virtual link XY

are determine. These paths (excluding those which were already

in the initial solution such as XABEZ) constitute P2 in Fig. 5(a).

The combined paths (P1 + P2) are then used as inputs to solve

a restricted primal problem to obtain a final solution.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the performance of our proposed approach, we

implemented a discrete event simulator in Java, which uses the

tool Brite [29] to generate substrate and VN topologies. We

3The reader should note that for representation simplicity, the terms 1/Auv

in (14) are not included in the shortest path summations in Table II. These
terms represent the reciprocal of the available bandwidth on each link along the
shortest path in the augmented substrate network.
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Fig. 5. Running example. (a) Summary of path generation-based VNE approach. (b) Initial solution and dual pricing of links.

TABLE II
SHORTEST PATHS FOR VIRTUAL LINK XZ

TABLE III
BRITE NETWORK TOPOLOGY GENERATION PARAMETERS

used the tool ILOG CPLEX 12.4 [30] to solve the mathematical

programs. Simulations were run on Windows 8 Pro running on

a 4.00 GB RAM, 3.00 GHz Processor Machine. Both substrate

and VNs were generated on a 500 × 500 grid. The CPU and

bandwidth capacities of substrate nodes and links are uniformly

distributed between 50 and 100 units respectively. The CPU

demand for VN nodes is uniformly distributed between 2 and

10 units while the bandwidth demand of the links is uniformly

distributed between 10 and 20 units. The parameters used in

Brite to generate network topologies are shown in Table III. The

parameters α and β are Waxman-specific exponents, such that,

0 < α ≤ 1, 0 < β ≤ 1, (α, β) ∈ R. α represents the maximal

link probability while β is used to control the length of the

edges. High values of alpha lead to graphs with higher edge

densities while high values of beta lead to a higher ratio of

long edges to short ones. The values used in this paper are the

default values in the Brite router Waxman model used in [29].

Each virtual node is allowed to be located within a uniformly

distributed distance between 100 and 150 units of its requested

location. For embedding quality evaluations, two possible sets

of network sizes have been used. One involves a SN with

100 nodes and VNs with number of nodes varied uniformly

between 15 and 25, while the other has a SN with 20 nodes and

VNs with number of nodes varied uniformly between 3 and 10.

The need for different network sizes will be explained in a later

subsection. For these simulations, we assumed Poisson arrivals

at an average rate of 1 per 3 time units. The average service time

of the requests is 60 time units and assumed to follow a negative

exponential distribution. The experiments are performed for

1500 arrivals. For the time complexity evaluation, the number

of nodes for the SN is gradually increased from 20 to 100, and

each simulation setup is repeated 20 times and average values

determined.

B. Performance Metrics

1) Solution Quality: Three performance indicators—

Acceptance ratio, Node utilization and Link utilization—are

used for quality evaluation. The acceptance ratio gives a

measure of the number of VN requests accepted compared to

the total requests. We define the average node utilization as

the average proportion of the total substrate node capacity that

is under use at any given time. In the same way, we define

average link utilization as the average proportion of the total

substrate link capacity that is under use at any given time.

2) Solution Complexity: We define the time complexity of a

given solution as the average time to complete the computation.

3) Embedding Cost and Revenue: We define the costs and

revenue from embedding a given VN the same way as a related

work [2]. In particular, we define revenue, R(Gv(Nv, Lv)) as the

benefit to the SN for accepting the VN request Gv(Nv, Lv). As

formulated in (15), it is the weighted sum of the link and node

demands for the VN.

R (Gv(Nv, Lv)) =
∑

i∈Nv

Di +
∑

luv∈Lv

Dij. (15)
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TABLE IV
PERFORMANCE QUALITY EVALUATION ALGORITHMS

Fig. 6. Average acceptance ratio—20 SN nodes.

Similarly, in (16), we define an embedding cost C(Gv(Nv, Lv))

as the sum of total substrate resources that are allocated to the

VN Gv(Nv, Lv). κu and ξuv are parameters that represent the

relative unit costs of substrate nodes and links respectively,

where the virtual nodes and links are mapped.

C (Gv(Nv, Lv)) =
∑

i∈Nv

κuDi +
∑

lij∈Lv

∑

luv∈Ls

ξuvf ij
uv. (16)

C. Comparisons

We compare the performance of our solution with closely re-

lated solutions. In particular, four representative solutions from

the literature are chosen. We name and describe the compared

solutions in Table IV. These solutions were slightly modified to

fit into our formulation of the problem. Specifically, unsplittable

flows, constraints on SN capacities and constraints on virtual

node locations were applied. We also implemented a baseline

formulation of the optimal one-shot mapping (see Appendix).

Since ViNEOPT requires a very long time (in excess of

1 hour for a single embedding involving a SN of 60 nodes

and a VN of 10 nodes) to perform an embedding, simulations

evaluating this algorithm have been restricted to SNs with

20 nodes and VNs with nodes from 3–10. However, an extra

simulation for acceptance ratio using larger sized networks has

been performed so as to reflect more practical network sizes.

This simulation excludes ViNEOPT.

D. Results

1) Solution Quality: From the graphs in Fig. 6 it is evident

that PaGeViNE achieves an average acceptance ratio close to

Fig. 7. Average acceptance ratio—100 SN nodes.

Fig. 8. Effect of VN arrival rate on acceptance ratio.

that obtained by the optimal solution ViNEOPT. In addition

Figs. 6 and 7 show that PaGeViNE outperforms state-of-the-art

solutions in terms of average acceptance ratio. These two fig-

ures also confirm that the embedding efficiency of PaGeViNE

is not affected by increasing the size of substrate and VNs. In

addition, it can be observed from Fig. 8 that even as the arrival

rate of VNs increases, PaGeViNE continues to perform compa-

rable to ViNEOPT and better than the four other approaches.

The fact that CNMMCF is under-performing PaGeViNE with

respect to the average acceptance ratio and resource utilization

can be attributed to the fact that CNMMCF is using more

resources at the link mapping stage since it performs node and

link mappings separately. For VNA-1, while the node and link

mapping is done in one shot, they are carried out sequentially,

considering specific clusters of the SN each time. It is therefore

expected that the results would not be as good as those achieved

by a global solution based on mathematical programming. It

can also be observed that TANMSP, which uses the topology

information to determine node mapping performs better than

VNA-1 and GNMSP. However, since it still falls short of

CNMMCF which determines the node mapping from a mathe-

matical program.

It is also evident from the graphs in Figs. 9 and 10 that

PaGeViNE achieves a better utilization ratio for substrate node

and link resources compared to other solutions. However, we

note that CNMMCF has a link utilization ratio that is compar-

atively close to that of PaGeViNE. Finally, it is evident from

Fig. 11 that the utilization of the resources is almost un affected

by the arrival rate. This confirms the fact that the rejection of

VN requests is not caused by depletion of resources but rather
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Fig. 9. Average node utilization.

Fig. 10. Average link utilization.

Fig. 11. Effect of VN arrival rate on link utilization.

by inefficient embedding which either fails due to bottleneck

nodes. This is why mathematical programming-based algo-

rithms which have global knowledge of the embedding perform

better.

2) Solution Complexity: With respect to time complexity,

the graphs in Fig. 12 show that the running times of GNMSP,

VNA-1 and TANMSP are comparatively lower than those of

PaGeViNE. Once again, this can be explained by the fact that

these two solutions do not solve a mathematical program as

PaGeViNE does. We also note that the computation time of

PaGeViNE is slightly higher than that of CNMMCF. This can

be attributed to the fact that PaGeViNE solves three mathemat-

ical programs, while CNMMCF solves only two. Moreover, it

is expected that solving the problem in one-shot requires more

computation than solving it in two stages, since some of the

mathematical programs solved in PaGeViNE are binary. With

Fig. 12. Average computation time.

Fig. 13. 95% confidence interval error bars.

Fig. 14. Cumulative embedding cost.

regard to ViNEOPT we see that the computation time quickly

grows exponentially. In fact, ViNEOPT could not find a solution

even after 1 hour for 60 substrate nodes.4 We therefore note a

significant improvement in time complexity of PaGeViNE com-

pared to ViNEOPT. These simulations were each repeated 20

times, and the average time determined in each case. In Fig. 13,

we show the 95% confidence intervals of the computation time

for a SN with 50 nodes. The small error values in each of these

graphs further confirms the profile in Fig. 12.

3) Embedding Cost, Revenue, and Profit: Figs. 14–16 show

the cumulative embedding costs, revenue and profit. The profit

is the difference between the revenue and cost of embedding a

4Once again, this is why the simulations for acceptance ratio were split into
one with 20 SN nodes and another with 100 substrate nodes.
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Fig. 15. Cumulative embedding revenue.

Fig. 16. Cumulative embedding profit.

Fig. 17. Effect arrival rate on profit.

given VN. We note that PaGeViNE achieves a profitability close

that of ViNEOPT, which is considerably higher than that of

the compared state-of-art approaches. We also note CNMMCF

achieves a higher profitability than VNA-1, TANMSP, and

GNMSP. It is worth noting that these profiles are similar to

those obtained from the acceptance ratios of the three ap-

proaches. This means that the superiority of our approach is not

based on accepting VNs with less resources requirements which

would be less profitable for the physical resource providers. The

fact that VNA-1, TANMSP, GNMSP, and CNMCMF obtained

much lower embedding costs is due to rejecting most of the VN

requests, which is further confirmed by the revenue obtained,

and hence profitability. In Fig. 17, we evaluated the effect of

the arrival rate on profitability, noting that as the arrival rate

is increased, the profitability reduces. This is not surprising

Fig. 18. Evaluation of the initial solution.

since an increase in the arrival rate ensures that most of the

arriving VN requests in the simulation time are not accepted

due to lack of resources. This profile is consistent with that of

the acceptance ratio is Fig. 8.

Effect of initial solution: In Fig. 18, we evaluate the

proposed initial solution. In particular, the effect of the initial

solution on the computation time for a substrate network of 20

nodes, and the acceptance ratio after the arrival of 1,500 VN

requests are shown. It can be observed that the proposed initial

solution achieves the balance between time complexity and em-

bedding quality. While it performs worse than GNMSP, VNA-

1 and TANMSP in terms of computation time, it outperforms

them on solution quality. Even more, it outperforms CNMMCF

both on computation time as well as solution quality. The

reason for this slightly better performance can be attributed

to the fact that in CNMMCF node mapping is finalized by

mapping each virtual node individually, which could some-

times lead to failures in embedding especially if more than

one virtual node compete for a given substrate node. We also

evaluated the performance of PaGeViNE in case the initial

solution is changed. For example, PaGeViNE(GNMSP) means

that GNMSP is used to determine the initial solution before

applying path generation. These results show that PaGeViNE

is dependent on an initial solution for both solution quality as

well as computation time. With regard to the computation time,

this dependence can be explained by the fact that the initial

solution as well as the main PaGeViNE mathematical programs

are solved sequentially. This means that if the computation of

the initial solution takes longer, the overall solution will take

longer. Similarly, since we do not allow the algorithm to run

to completion, the quality of the initial solution will determine

that of the final solution in two ways (1) in some cases, the

initial solution just fails to even find a start solution, or (2) if the

obtained initial solution is not good enough, the improvement

in one iteration is not as good as it could be. These aspects are

all confirmed by Fig. 18.
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Fig. 19. Effect of number of iterations.

Effect of number of iterations: Finally, Fig. 19 is aimed at

justifying our decision to perform a single iteration rather than

having an iterative approach. From the Fig. we can observe that

as the number of iterations is increased, the computation time

increases more rapidly than does the solution quality.

E. Limitations

The mathematical formulation (1)–(7) involves solving a

binary program. This problem is NP-hard in the general case,

and only exponential algorithms are known to solve it in

practice [31]. Our approach is to reduce the number of input

variables to the program using path generation. While a signif-

icant improvement in computation time is achieved compared

to the optimal solution, more work can be done for instance

seeking a relaxation to the program which permits to solve it

in polynomial time. We however note that in practice there

are high performance tools [30] for solving binary programs.

In particular, we have noted that the initial solution also con-

tributes significantly to the overall computation complexity, and

hence a more efficient heuristic for the same purpose could

possible further enhance the results obtained in this paper.

In addition, it would be interesting to make a mathemati-

cal analysis on the bounds of the computation time savings

achieved in this paper.

VII. CONCLUSION

In this paper we have proposed a VNE solution which differs

from previous solutions by performing node and link mappings

in one shot using optimization theory and path generation. Our

path generation based approach first obtains an initial solution

by coordinating the node and link mapping stages, and then

enhances this solution by carrying out only one round of pricing

for the dual variables to obtain the final solution. Through

extensive simulations, we have shown that our approach has

a comparative advantage over previous approaches in terms of

solution quality, achieving a comparatively superior acceptance

ratio as well as VNE revenue, which directly leads to higher

profitability for SN providers. The acceptance ratio is atleast

95% of that obtained by the optimal solution. In addition,

our approach significantly reduces solution computation time

compared to the optimal one (achieving a 92% saving in

computation time for SNs of 50 nodes), and that this time

complexity is comparable to that of related works.

Looking at the future, there are several possible research

avenues. With regard to time complexity, it would also be

interesting to propose relaxations to the mathematical programs

in order to ensure polynomial time convergence. For this pur-

pose, we are currently investigating the feasibility of using a

combination of Tabu Search and path relinking to further im-

prove the solution time. In addition, to optimize resource allo-

cations over time, we are exploring possibilities of modeling the

substrate network state as a markovian decision process [32],

and by assigning state probabilities and transition rewards be

able to bias the mapping of virtual resources to more appro-

priate resources. Finally, we intend to extend our proposed

solution to a multi-domain VNE scenario [33] and to consider

failures in the SN [34], [35].

APPENDIX

VINEOPT

This is the link based formulation of the one-shot optimal

VNE problem. We define f
ij
uv as the flow of a virtual link lij ∈ Lv

on the link luv ∈ (Ls ∪ Lx). Lx is the set of all meta links in the

augmented SN.

minimize
∑

lij∈Lv

∑

luv∈(Ls∪Lx)

1

Auv

f ij
uv +

∑

nv∈Nv

∑

ns∈Ns

1

Ans

χnv
ns

subject to

Node Mapping Constraints

∑

ns∈Ns

χnv
ns

= 1 ∀ nv ∈ Nv

∑

nv∈Nv

χnv
ns

≤ 1 ∀ ns ∈ Ns

f ij
uv − Dijχ

i
u ≤ 0 ∀ uv ∈ Lx,∀ lij ∈ Lv

f ij
uv − Dijχ

j
v ≤ 0 ∀ uv ∈ Lx,∀ lij ∈ Lv

Capacity Constraints

∑

ij∈Lv

f ij
uv ≤ Auv ∀ luv ∈ (Ls ∪ Lx)

∑

uv∈Lv

f ij
uv = Dij ∀ lij ∈ Lv
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Flow Conservation Constraints

Source Nodes

∑

k∈Ns

f
ij

ik −
∑

k∈Ns

f
ij

ki = Dij ∀ lij ∈ Lv

Sink Nodes

∑

k∈Ns

f
ij

jk −
∑

k∈Ns

f
ij

kj = −Dij ∀ lij ∈ Lv

Intermediate Nodes

∑

u∈Ns

f ij
uv −

∑

u∈Ns

f ij
uv = 0 ∀ lij ∈ Lv,∀ v ∈ Ns

Domain Constraints

f ij
uv = [0, Dij] ∀ lij ∈ Lv,∀ luv ∈ (Ls ∪ Lx)

χ i
u = [0, 1] ∀ i ∈ Nv,∀ u ∈ Ns
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