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Abstract

Background: Detailed information about animal location and movement is often crucial in studies of natural
behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed
information, but without additional positional data this method results in uncertainty that grows with time.
Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing
georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time
under water.
We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale
locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations
using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error
measurements made during calibrations.

Results: High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process
model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning
errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction
model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to
using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of
dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using
cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to
more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to
vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied
most by distance to the whale.

Conclusions: By systematically accounting for the observation errors in the position fixes, our model provides a
quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal
movement. This generic method has potential application for a wide range of marine animal species and data
recording systems.

Keywords: Megaptera novaeangliae, Marine mammal, Positioning, Fine-scale movement, State-space model, Bio-logging,
Track reconstruction, Archival tag, Focal follow

* Correspondence: pw234@st-andrews.ac.uk
1Sea Mammal Research Unit, Scottish Oceans Institute, University of St
Andrews, St Andrews, Fife KY16 8LB, UK
Full list of author information is available at the end of the article

© 2015 Wensveen et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wensveen et al. Movement Ecology  (2015) 3:31 

DOI 10.1186/s40462-015-0061-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s40462-015-0061-6&domain=pdf
http://orcid.org/0000-0002-9894-2543
mailto:pw234@st-andrews.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Predicting a ship’s position by projecting travel direction

and speed from the previous position, a technique

known as ‘dead-reckoning’, has been used for centuries

[1] and is the basis for modern inertial navigation sys-

tems in vehicles [2]. Since its introduction in animal

bio-logging over 25 years ago [3, 4], dead-reckoning has

become an established method for reconstructing fine-

scale movement tracks, in particular for air-breathing

marine animals that spend most of their time under

water, out of sight of global positioning system (GPS)

signals [5, 6].

Dead-reckoning has led to novel insights into the nat-

ural foraging and orientation behaviour of marine ani-

mals including pinnipeds (e.g. [7–10]), turtles [11],

diving birds [12, 13], and cetaceans (e.g. [14–22]), and

has provided important information about the behav-

ioural responses of cetaceans to noise [23–28]. Although

animals can also be localised under water using active

and passive sonar (e.g. [29–33]), such techniques require

transmission and/or reception of sound which is difficult

to accomplish at a high resolution, and may impact the

environment of acoustically-sensitive marine mammals.

Dead-reckoning for marine animals was enabled by

the development of miniature animal-attached data log-

gers that record movement parameters such as compass

heading, speed, and body orientation [34–38]. Because

each dead-reckoned position depends upon the previous

one, the spatial error in the track generally grows with

time due to an accumulation of sensor errors, move-

ments of water currents, and violations of the assump-

tions that the animal only moves through the water in

the caudo-rostral direction and that buoyancy and lift

forces are negligible [6]. A common source of uncer-

tainty in dead-reckoning tracks (sometimes called

‘pseudo tracks’) is the speed of the animal. Speed may be

estimated if direct measurements are missing [24], but

can also be measured with a speed sensor [13] or ap-

proximated based on pitch and change in depth [39],

acoustic flow noise [40], or overall dynamic body accel-

eration [41].

Fixes of known positions on the earth’s surface can be

used to adaptively calibrate dead-reckoning sensors or to

directly correct dead-reckoned positions [2]. Position

fixes of marine animals are obtained, for example, by vis-

ual observation (which can be aided by the use of laser

range finders and animal-attached very high frequency

(VHF) transmitters) [42, 43], acoustic localisation [44, 45],

light intensity-based geolocation [46], or GPS satellite tel-

emetry. Since conventional GPS is generally not feasible

for marine animals because of a long (~10-30 s) time-to-

fix and high current consumption [47], new snapshot GPS

technologies such as Fastloc-GPS [48–50] have quickly

become popular because of their ability to acquire data

sufficient to estimate location during short surface in-

tervals [51]. Such approaches store GPS pseudorange

data, which can be converted into positions after the

logger is retrieved or after transmission through Argos

[52] or mobile phone networks [53]. The average spatial

accuracy for positions observed with Fastloc-GPS

(<100 m) is much greater than for positions from Argos

(0.5-10 km) or light-based geolocation (1-4°) [54–56];

therefore, the integration of Fastloc-GPS and dead-

reckoning data has the potential to result in highly pre-

cise georeferenced movement tracks [57].

Most studies to date have assumed a constant bias in

velocity between position fixes, essentially stretching the

track to match the fixes [5] or have iteratively approxi-

mated a constant bias [24]. We describe here a new

method for referencing dead-reckoning tracks to pos-

ition fixes based upon state-space models (SSMs). SSMs

are an appropriate statistical tool for this application be-

cause they explicitly separate the observation processes

from the underlying movement process [58] and are a

standard technique in integrated navigation systems for

avian, automotive and naval applications [2]. In animal

ecology, SSMs for track reconstruction and smoothing

have been implemented as Kalman filters (e.g. [59–63]),

particle filters [64], and using Markov chain Monte

Marlo (MCMC) (e.g. [65–68]). Movement data of rela-

tively low temporal resolution (e.g. collected via Argos,

GPS and light-based geolocation) have been the focus of

most research on marine animals, although Kalman filters

have also been applied to high-resolution dead-reckoning

data in combination with depth [17, 34] and depth and

acoustic localisation data [69].

The rapid technological developments in bio-logging

will likely result in an increasing demand for analysis

methods for high-resolution data that are easy to imple-

ment and fast to compute. We achieve this in the

current study by using the fine-scale dead-reckoning

track to provide the expected 2-dimensional displace-

ment in a discrete-time correlated random walk SSM

that operates at the irregular but discrete temporal scale

of the low-resolution positional fixes. This gives us the

advantage of using the high-resolution information with-

out the computational cost associated with running a

SSM at very fine temporal scale. The disadvantage is that

the uncertainty associated with the dead-reckoning track

is ignored, so that our estimates of uncertainty in loca-

tion at times between position fixes are underestimates.

The size of the underestimation depends largely on the

time between position fixes, so the method will work

better for animals that make frequent surfacings.

Our study was motivated by the need for detailed

whale tracks in a series of controlled exposure experi-

ments (CEEs; [70]) on humpback whales (Megaptera

novaeangliae) in 2011 and 2012 in waters off Bear Island
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and Svalbard [71–73]. These experiments were aimed at

quantifying the behavioural effects of 1.3-2 kHz naval ac-

tive sonar and to test the effectiveness of a mitigation

measure called ‘ramp up’ [74]. The whales were tagged

with multi-sensor data loggers and Fastloc-GPS loggers,

and were subsequently tracked by visual observers from

a small boat. The distance between the whale and the

sound source during experiments was a crucial param-

eter; therefore, the main objective of this study was to

develop SSMs to reconstruct whale tracks from dead-

reckoning, Fastloc-GPS, and visual observations. A sec-

ondary objective was to quantify the spatial accuracy of

the Fastloc-GPS and visual (range and bearing) observa-

tions in dedicated tests, so that the observation errors

included in our models would be realistic. The track re-

construction method presented here is easy to imple-

ment and has potential application for a wide range of

marine animal species and data recording systems.

Example software and model code that users can adapt

for their own research questions are provided as supple-

mentary materials (Additional file 1).

Methods
Study subjects, equipment and data collection

Thirteen humpback whales were tagged with multi-

sensor digital recording tags (DTAGs, v2; [6]) with a

Fastloc-GPS logger (F2G 134A, Sirtrack, New Zealand)

mounted on top, at northern latitudes between 74.00°

and 79.03° and eastern longitudes between 9.79° and

20.68° in 2011 and 2012 (Table 1). The tags were

attached to each whale with suction cups using a pneu-

matic tag launching system (ARTS; [72]) or using a 15-

m carbon fibre pole, cantilevered in a bow-mounted oar-

lock [75]. The DTAGs had 1 or 2 hydrophones and re-

corded sound with 16-bit resolution, at 96 kHz sampling

rate. The DTAGs also recorded 50 Hz pressure,

temperature, tri-axial acceleration and tri-axial magnetic

field-strength data. Prior to tag deployment, the internal

clock of the DTAG was set to local time (synced to 1 s)

using a GPS receiver. Fastloc-GPS loggers were config-

ured to record a GPS snapshot almost instantaneously

after the device emerged from the water during a sur-

facing of the whale. The minimum time interval between

GPS snapshots was set to 30 s.

Focal follows of tagged humpback whales were con-

ducted from an 8-m long water jet propulsion boat with

an elevated observer platform. Each tag contained a very

high frequency (VHF) radio beacon which aided tracking

of tagged whales. The observers on the platform mea-

sured the angle to the whale relative to the boat’s head-

ing using a protractor at the time of the animal’s first

surfacing observed at least 2 min after the previous

sighting was recorded. Simultaneously, the (radial) line-

of-sight distance to the whale was measured using a

laser range finder (LRF), or estimated by eye. Because

the eye height was only ~3 m, we assumed that the dif-

ference between the line-of-sight distance and the dis-

tance over the earth’s surface [76] was negligible. To aid

locating the whale at the surface, angles-of-arrival of the

VHF signals from the tag were made visible to observers

Table 1 Summary of the data sets

Whale DTAG ID FGPS ID Initial position Track
duration

Position fixes Model
runtimeLatitude Longitude Visual FGPS

°N °E h # # h

1 mn11_157a 29 420 75.141 14.603 14.7 105 451 22.5

2 mn11_158a 29 409 74.832 16.715 7.6 70 20 0.8

3 mn11_160a 29 409 74.651 15.236 13.0 116 0 1.0

4 mn11_165e 29 409 78.074 11.824 11.3 123 205 7.6

5 mn11_176b - 77.563 12.537 2.9 44 - 0.2

6 mn12_161a 29 420, 29 510 77.556 11.277 10.9 186 0 2.6

7 mn12_164a 29 409 77.798 10.073 7.7 122 391 17.1

8 mn12_164b 29 409 77.824 9.793 3.8 68 100 2.3

9 mn12_170b 29 409 77.512 11.633 8.3 87 249 21.6

10 mn12_171b 29 409, 29 510 79.032 10.612 7.8 127 646 78.4

11 mn12_178a 29 420 74.867 17.767 7.6 50 159 4.2

12 mn12_179a 29 420 74.051 20.675 8.5 75 202 6.0

13 mn12_180b 29 409, 29 420 73.993 20.398 7.6 115 730 54.7

For each humpback whale are given the IDs of the DTAG and Fastloc-GPS loggers, geographical coordinates of the initial observed position, track duration,

number of position fixes obtained by visual observation and Fastloc-GPS, and computational runtime of the model. The DTAG ID contains information about the

species, year, Julian day and tag-of-day; for example, ‘mn11_157a’ refers to the first tag (‘a’) deployed on a humpback whale (Megaptera novaeangliae) on day 157

of 2011
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by a digital radio direction finder system (DFHorten,

ASJ Electronic Design, Horten, Norway) connected to

four 4-element Yagi antennas. All visual tracking infor-

mation (e.g. range, bearing, coordinated universal time

(UTC), range estimation method, and GPS positions of

the observation boat at 1-s intervals) were stored in a

MS Access database via the software Logger (Inter-

national Fund for Animal Welfare, Yarmouth Port, MA);

the data collection protocol is described in more detail

elsewhere ([71]).

Dedicated accuracy tests

Fastloc-GPS

We conducted ‘dry’ tests with Fastloc-GPS loggers in

2011 and 2012 at four sites (56.33°N, 2.78°W; 69.68°N,

18.99°E; 78.24°N, 15.54°E; 64.92°N, 23.25°W) to quantify

the spatial accuracy of each data logger. Measurements

were collected with the same three loggers (device IDs:

29 409, 29 420, and 29 510) that were deployed on

humpback whales. During the calibration tests, the three

devices were in a stationary position, spaced >25 cm

apart, and recorded GPS snapshots every 30 s in an out-

door space with an open view of the sky. We used

manufacturer-provided software (Archival USB, v1.11,

PathTrack, UK) to offload the pseudoranges and convert

them into position estimates based upon the relevant

daily broadcast satellite ephemeris data. Information

stored for each spatial location included the UTC time

stamp, number of GPS satellites used in the position cal-

culation, and the residual value of the position solution.

For error calculations, we assumed that the true pos-

ition of a logger was equal to the median of all of the ob-

servations for each logger. The geographical coordinates

of the observations were converted into Universal

Transverse Mercator (UTM) coordinates so that pos-

itional errors (the difference with the median coordinate)

could be expressed in meters. An observation was ex-

cluded from analysis if the residual value of its position

solution was >30 (no unit); this threshold was recom-

mended by Sirtrack ([77]) and adopted by other studies

using Fastloc-GPS (e.g. [78–80]). The error measure-

ments were divided into bins based upon the number of

satellites (‘#satellite bins’) from which data were re-

corded (4, 5, 6, 7, 8, and 9–12). Scaled t distributions

were fitted using maximum likelihood estimation via the

‘MASS’ package (v7.3-19, [81]) in the software R (v3.0.2,

[82]) to estimate the parameters of the observation error

distributions for each #satellite bin and each orthogonal

dimension. The goodness-of-fit of the distributions were

checked with one-sample Kolmogorov-Smirnov tests.

Visual tracking

Five tests were conducted in June 2012 in waters near

Tromsø, Norway (69.79°N, 19.19°E) and waters near

Longyearbyen, Svalbard (78.56°N, 14.95°E) to quantify

the accuracy of visual observations. The observers esti-

mated range (radial distance) and bearing to an orange

heavy duty inflatable buoy that had a diameter of 1.2 m.

A handheld GPS receiver (Etrex Legend HCx, Garmin,

Schaffhausen, Switzerland) with EGNOS capability was

attached on top of the buoy for recording its GPS posi-

tions for groundtruthing. A total of seven observers

participated in the tests (the same individuals who con-

ducted the focal follows on tagged humpback whales);

two or three observers participated at the same time.

The observation boat from where visual estimates were

made sailed an undetermined course, making occasional

turns, matching operations during whale tracking. To

imitate the data coverage during real focal follows, the

boat was within <200 m from the buoy for roughly 50 %

of the estimates but occasionally moved to distances of

around 1 km. One person (the ‘data recorder’) stored

the estimates in the software Logger and gave vocal

commands. Once every 2 min, the data recorder called

out “Ready”, which indicated to the observers to start

looking for the target and to the driver to adopt a steady

course. About 10 s later, the data recorder called out

“Mark”, which indicated to the observers to make their

estimates and write them down on paper. We limited

the time that the observers could look at the target be-

cause this influences the accuracy of the range estimates

[83]. The estimates for range were made visually by the

observers, and protractors were used to measure the

bearing relative to the heading of the boat. The same ob-

servation boat and data collection protocol were used

during the focal follows of the humpback whales (details

in [71]).

The absolute bearing (relative to true north) to the

whale from the boat at the time of a sighting was calcu-

lated by adding the boat’s course-over-ground derived

from GPS to the relative bearing to the whale. Linear er-

rors in range and bearing were calculated as the differ-

ence between the visual estimates and the ‘true values’

derived from the GPS positions of the buoy and the ob-

servation boat. The linear range errors were clearly a

function of range itself (and thus ‘heteroskedastic’), so

percent error in range was used instead of absolute error

(i.e. a multiplicative error model was used). To test for

potential remaining range-dependency, we fitted a linear

regression model to the percent error in range as func-

tion of true range in MATLAB (v8.1; The Mathworks,

Natick, MA). A wrapped Cauchy distribution was fitted

to the angular errors in bearing in R using the package

‘circular’ (v0.4-7, [84]).

Process model

Position fixes (with respect to the Earth frame of refer-

ence) of the humpback whale at the sea surface naturally
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occurred at irregular time intervals. The process model

in our model framework operated on the relatively

coarse time scale of these fixes. This greatly reduced

computational time, but had the disadvantage that the

dead-reckoning errors were not fully incorporated and

thus underestimated the positional uncertainty between

fixes. The SSM described here is therefore an approxi-

mation to a full SSM that would run on the finer time

scale of the tag data. The humpback whale data set con-

tained relatively high rates of position fixes (average of

0.1-1.9 observations/min; n = 13; Table 1), and at those

rates the contribution of dead-reckoning on the uncer-

tainty was relatively minor compared to the uncertainty

from the positional observations. We therefore com-

bined a fairly simple process model with relatively realis-

tic positional observation models.

For the process model, we defined J as the number of

position fixes, j = 1,…,J as the index over these fixes, and

Δj as the time interval between tj and tj + 1. We wrote

scalars in italic and vectors in bold italic. Only the hori-

zontal (xy) plane was considered because the depth of

the whale (i.e. the z-coordinate of its position) was mea-

sured with a highly accurate sensor and therefore as-

sumed to be observed without error. The process model

essentially combined the whale’s position given by the

high-resolution dead-reckoning track (see next section)

with a velocity correction term. Specifically, given an ini-

tial unobserved whale position x1, the unobserved whale

positions xj at tj were derived using the algorithm

xjþ1 ¼ xj þ d
dr
j þ v

cor
j Δj; ð1Þ

where dj
dr is the whale’s expected displacement over Δj

given by the uncorrected dead-reckoning track, and vj
cor

is the velocity correction for the track segment. This

correction term can be interpreted as the mean ‘bias’ or

‘drift’ in velocity over Δj [1, 5], although in many studies

using movement models these qualifications refer to the

mean velocity of the animal itself [85]. To reflect our be-

lief that vcor could only change slowly over time, we as-

sumed that its process was a non-directional first-order

Gaussian random walk,

v
cor
jþ1 eMVN v

cor
j ;ΣΔj

� �
ð2Þ

where the process noise variance-covariance matrix

Σ ¼
σ2x 0
0 σ2y

� �
and σx

2 and σy
2 represent the variances

for the x- and y-dimension. The covariance term was set

to 0 as the process noise was assumed to be independent

between the two spatial dimensions. A linear relationship

of Σ with Δj was incorporated to account for the dead-

reckoning errors that grow with time.

Determining the dead-reckoning track

We describe here how the uncorrected dead-reckoning

track was derived from the high-resolution observations.

As mentioned earlier, no observation models were incorpo-

rated for these tag-derived data. We defined I as the num-

ber of high-resolution observations, i = 1,…,I as the index

over these observations, and Δi as the time interval between

ti and ti+ 1. The whale’s uncorrected velocity vi for Δi was

vi ¼ si cos pið Þ
cos hið Þ
sin hið Þ

� �
; ð3Þ

where si is the whale’s speed-through-water, and pitch pi
and heading hi describe the orientation of the whale’s body

with reference to the Earth frame [35]. Vector vi may be

used to calculate the uncorrected dead-reckoning track

using the algorithm xi + 1 = xi + viΔi; however, because

the process model operated on the coarser, irregular

time scale tj determined by the position fixes, we inte-

grated vi with respect to time in the domain ti = [tj, tj + 1)

to find the whale’s uncorrected displacement dj
dr that was

used in Eq. 1:

d
dr
j ¼

Xtjþ1

ti¼tj
viΔið Þ: ð4Þ

Positional observation models

A set of equations stochastically related each whale’s un-

observed position xj at time tj to the observations of

range (radial distance), bearing, and/or Fastloc-GPS. The

observation error structures were based upon the results

of the dedicated accuracy tests (see ‘Results’). Specific-

ally, the observation model relating the observed Fastloc-

GPS position, Xx,j
F , to the unobserved whale position for

the x-dimension was

XF
x;j e t xx;j; σ

F
x;q; υ

F
x;q

� �
; ð5Þ

with a similar formulation for the y-dimension. Param-

eter σq
F represents the scale and υq

F the shape (or, degrees

of freedom) of the scaled t distribution. Because Fastloc-

GPS accuracy is related to satellites [50, 55], we used the

parameter estimates obtained from the dry test data as

fixed values for σq
F and υq

F (where quality q = 1,…,6 in-

dexes the 4, 5, 6, 7, 8, and >8 satellite bins, respectively)

in an approach similar to the use of Argos quality classes

in other studies (e.g. [65]).

The observation model implemented for range between

observer and whale at the surface was

Rj eN rj; rjσ
r
m=100

� �
; ð6Þ

where Rj is the observed range and rj is the unobserved

range. Thus, we assumed that the observation error was

normally-distributed around 0 %, which was close to the
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truth according to the visual observer tests (see ‘Results’).

Scale parameter σm
r represents the percent error SD for

m = 1, 2, where range estimation method m = 1 if esti-

mates were made visually (by eye), and m = 2 if a laser

range finder was used to make the measurement. Its value

for m = 1 was based upon the visual accuracy tests and

for m = 2 was assumed to be 10 %. The observation

model implemented for absolute bearing between the

observer and the whale was

Φj ewC φj; ρ
� �

; ð7Þ

where Φj is the observed bearing, φj the unobserved

bearing, and ρ is the scale (or, concentration) of the

wrapped Cauchy distribution that was derived from the

visual accuracy tests.

Finally, we related the unobserved difference in position

between the observation boat and the whale (dj
bw = xj − xj

b)

to the unobserved range and bearing via a Cartesian-to-

polar coordinate transformation:

rj ¼ d
bw
j

���
���; and ð8Þ

φj ¼ tan−1 dbw
x;j =d

bw
y;j

� �
; ð9Þ

where tan− 1 is the four-quadrant arctangent to realise

φj =(−180°, 180°]. The position of the observation boat

xj
b was measured with a GPS receiver with an average

error of <3 m (unpublished data). This GPS receiver

was located within 1 m from the visual observers;

therefore, xj
b was set to be equal to the Cartesian coordi-

nates of the measured GPS positions (the model can be

easily adapted to include error on the observer boat’s

position).

Data processing and model fitting

Pre-processing

Procedures for offload, calculation and filtering of data

collected by the deployed Fastloc-GPS loggers were the

same as for test data (see for details: ‘Methods – Dedi-

cated accuracy tests’). Using a conversion from geo-

graphical to UTM coordinates, all positions of the whale

and the observation boat were placed in a Cartesian co-

ordinate system with at the origin (x = 0, y = 0) the first

observed position of the whale (Table 1). We temporally

aligned the position fixes of the same surfacing to fur-

ther reduce computational costs. This was accomplished

by 1) identifying pairs of Fastloc-GPS observations that

were observed within 5 s of one another and replacing

the timestamp of the last fix with that of the first (only

for whales that had two GPS loggers attached), and 2)

replacing the timestamps of the visual observations that

were made ±5 s from a Fastloc-GPS observation by the

timestamp of the Fastloc-GPS observation. The 5-s

interval was judged to be the longest time interval that

could not result in observations from separate whale

surfacings being falsely aligned, and was based upon an

exploratory analysis in which the times of position fixes

were plotted on the corresponding dive profile.

For each tag record, data on depth, acceleration and

magnetic field strength from the DTAG were down-

sampled to 1 Hz resolution (Δi = 1 s) using a DC accur-

ate decimating filter. The whale’s pitch (pi) and heading

(hi) were derived from the acceleration and magnetic

field measurements following the techniques detailed

elsewhere [35]. Estimates of the whale’s speed-through-

water (si) based upon depth rate per second divided by

the sine of pitch during steep (i.e. |pi| > 50°) descents

and ascents [39] were regressed against the uncalibrated

(1-s root-mean square) noise level (Li) in the 66–94 Hz

frequency band [21] using the model:

log sið Þ eN β0 þ β1Li; σ
L

� �
; ð10Þ

where β0, β1 and σL are model parameters. This function

should be an appropriate model according to the physics

of flow noise [86], although empirical verification is rec-

ommended on a case-by-case basis. Both body pitch and

noise level were low-pass filtered using a zero-group-

delay fast impulse response filter with a 0.15 Hz cut-off

frequency to remove fine-scale temporal variations such

as from fluke strokes to generate thrust [87]. The fitted

function was used to predict si from Li throughout the

entire tag record, including the regions of shallower

pitch [40, 88]. Flow noise is likely to be influenced by

noise generated by the sea surface when the whale is at

shallow depth; therefore, speed-through-water estimates

for each period where the whale was at <5 m depth

were replaced using a linear interpolation of the start and

end values of the period.

Fitting the track reconstruction model

Model fitting was performed using Markov chain Monte

Carlo (MCMC) algorithms in the software JAGS (v3.4.0,

[89]) through an interface with MATLAB. We assigned

uniform priors to most parameters: σx ~Unif(0, 0.1), σy~

Unif(0, 0.1), vx,1
cor~Unif(−1, 1) and vy,1

cor ~Unif(−1, 1); only

the initial position of the whale had informative priors that

reflected the accuracy of its observation (Table 2). Thir-

teen models were fitted to the data set; one for each whale

record. To assess whether parameters converged to sta-

tionary distributions, we ran two MCMC chains with

different initial values. Each chain had a burn-in period

of 200,000 samples and a total run length of 280,000

samples, and was downsampled (thinned) by a factor of

5 to reduce memory load. Mixing and stationarity were

assessed by visual examination of trace plots and using the

Brooks-Gelman-Rubin statistic R̂ [90]. MCMC chains
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were run in parallel on multiple cores of a desktop com-

puter (Intel i7-4930 K processor with six physical cores;

32 GB of RAM; 64-bit MS Windows 7 operating system);

up to three models were fitted at the same time.

Post-processing

The JAGS output included the posterior estimates of the

low-resolution track (xj; the whale positions at the times

of the position fixes); posterior estimates of the high-

resolution track (xi) were calculated in a post-processing

analysis. To obtain the final (corrected) position esti-

mates with uncertainty, 3,200 high-resolution track rea-

lisations (or ‘posterior sample tracks’) were calculated

from 1,600 computed iterations (10 % of the total) using

the whale’s uncorrected velocity vi derived with Eq. 3,

the posterior samples of the whale’s initial position x1,

and the posterior samples of the velocity correction vj
cor.

The JAGS code of the model, an example data set,

and code for data processing in MATLAB is given in

Additional file 1.

Cross-validation to assess model performance

A form of 10-fold cross-validation [91] was conducted

to compare the performance of our method to other

track reconstruction methods. Specifically, the cross-

validation analyses tested how well out-of-set Fastloc-

GPS positions were predicted by the state-space model

and the other methods. Only Fastloc-GPS position fixes

were part of this analysis as they were generally more ac-

curate than the visual position fixes (see ‘Results’) and

less likely to include temporal autocorrelation. First, we

left out every 10th Fastloc-GPS observation (the ‘valid-

ation data’) and fitted the state-space model to the

remaining observations (the ‘training data’). For each ob-

servation in the validation set, we then measured the

positional (cross-validation) error relative to the follow-

ing horizontal track types: 1) the mean posterior track

based on the state-space model fitted to the training

data, 2) a track with linear interpolation between the

training data, 3) a track with linear interpolation be-

tween visual position fixes (excluding fixes that occurred

during the same surfacings as the validation data), and

‘forced-point’ dead-reckoning tracks that were stretched

to match the training data [5] and initially calculated

with 4) constant speed or 5) speed derived from flow

noise. The procedure was iterated 10 times per whale,

each time changing the validation set indices to leave

out a different 10 % of the Fastloc-GPS observations.

Cross-validation analyses were conducted for three dif-

ferent whales (IDs 1, 7, and 11) and positional errors

were averaged within their #satellite bin to assess overall

model performance.

Because the rate of Fastloc-GPS fixes was relatively

high for these three whales (~1 fix every 2 min; Table 1),

a second type of cross-validation was conducted in

which the validation set was created by taking a series of

five consecutive positions instead of a single position,

leaving the next five consecutive positions in the training

data set. Therefore, instead of omitting 10 % of the ob-

servations at each iteration, 50 % of the observations

were omitted (periods that averaged 10 min) at each it-

eration, and the same Fastloc-GPS positions were part of

the validation set five times. Calculation of the positional

cross-validation errors was the same as described above,

except that visual position fixes were excluded during

the whole time interval spanning the five consecutive

Fastloc-GPS observations.

Results
Fastloc-GPS accuracy tests

A total of 35,347 location observations were collected

during ‘dry’ tests with Fastloc-GPS loggers (n = 3) in

fixed positions, which amounted to a total of 4.9 days’

worth of data. The number of observations assigned to

the 4, 5, 6, 7, 8, >8 satellite bins was 3,864 (11 %), 4,690

(13 %), 5,648 (16 %), 6,402 (18 %), 6,102 (17 %) and

8,641 (24 %), respectively. Only 0.2 % of these observa-

tions had residual values >30 and were omitted from the

final data set (all sites and devices combined). The

spatial errors of the three loggers were similar within

each #satellite bin, although one logger (ID 29 420) ac-

quired data from a greater number of satellites on aver-

age (7.7) than the other two loggers (6.5 and 6.7)

(Additional file 2: Figure S1) and thus recorded more

positions of higher accuracy. There were some indica-

tions that the errors differed somewhat across test sites,

possibly because of differential weather conditions, but

this comparison was limited by low numbers of observa-

tions in some of the subsets (Additional file 2: Figure

Table 2 Prior probability distributions for all parameters
estimated

Parameter Description Prior

σx Process error standard deviation,
x-dimension

Unif(0, 0.1)

σy Process error standard deviation,
y-dimension

Unif(0, 0.1)

vx,1
cor Initial velocity correction, x-dimension Unif(−1, 1)

vy,1
cor Initial velocity correction, y-dimension Unif(−1, 1)

xx,1 Initial whale position, x-dimension (1) t(0, σx,q
F , υx,q

F )

Initial whale position, x-dimension (2) N(0, R1σm
r /100)

xy,1 Initial whale position, y-dimension (1) t(0, σy,q
F , υy,q

F )

Initial whale position, y-dimension (2) N(0, R1σm
r /100)

Uniform priors were assumed for σ and v1
cor. Prior distributions for the initial

unobserved whale position x1 reflected our prior knowledge about the

accuracy of the initial observed position (at coordinates x = 0, y = 0). These

priors therefore depended upon whether the position was observed (1) using

Fastloc-GPS or (2) visually. Values for the priors on σ and v1
cor are in metres

per second
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S1). For both spatial dimensions (x and y), the accuracy

of the Fastloc-GPS observations was positively related to

the #satellites used in the position calculation (Fig. 1).

The positional errors in the final data set were well de-

scribed by the scaled t distribution (Fig. 1; Kolmogorov-

Smirnov tests, p > 0.05 for each distribution). The max-

imum likelihood estimates and standard errors (SEs) for

μF, σF, and υF are provided in Table 3. The obtained error

distributions were symmetric (μF close to 0 m) and ~1.3

times narrower in the x-direction than in the y-direction

(σy
F/ σx

F; see also Fig. 1 and Additional file 2: Figure S1).

Estimates for υF increased with the #satellites from about

one (Cauchy errors) for 4 satellites to about eight

(approximating Gaussian errors) for >8 satellites.

Visual accuracy tests

The accuracy tests with human observers (n = 7) pro-

duced a total of 220 visual observations of range and

bearing used to estimate location. Each test took

~40 min; the combined duration of the data collection

periods was 3.2 h. Despite modest sample sizes, the per-

cent errors in range and angular errors in bearing were

reasonably well described by the Normal and wrapped

Cauchy distributions, respectively (Fig. 2; Kolmogorov-

Smirnov test with range data, p > 0.05). The slope of the

percent error in range regressed against the true range

was significantly different from 0 at p = 0.02, indicating

that the percent error overestimated at close range and

underestimated at large range, but this effect was very

small (0.027 % per metre; Fig. 2). There was very little

consistent negative bias in the estimates of range (μ:

−2.95 %) and bearing (μ: −1.24°). Visual estimates of

range were relatively inaccurate (σ1
r : 30.2 %) compared

to the bearing estimates (ρ: 0.897; circular SD: 11.6°).

The positional uncertainty of a whale location obtained

through visual observation will therefore be highly asym-

metrical in Cartesian coordinates, further justifying the

use of a range-and-bearing observation model to incorp-

orate the anisotropic errors.

High-resolution tracks of humpback whales

Visual examination of the trace plots of the estimated

parameters confirmed that convergence was always

reached within the burn-in phase, MCMC chains were

stationary, and sufficient posterior samples were

Fig. 1 Error distributions from Fastloc-GPS accuracy tests. Scaled histograms (grey bins) of the Fastloc-GPS positional errors and the corresponding
pdfs (black lines) of the scaled t distributions are shown as functions of spatial dimensions x and y and the number of satellites used in the
position calculation. All graphs are truncated at ±130 m for clarity, although positional errors of several kilometres were occasionally observed
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obtained. This was corroborated by R̂ values of ≤1.05 for

each parameter (Additional file 3: Table S1). The model

runtime varied greatly across whales (range: 0.2 to

78.4 h; Table 1) and depended strongly upon the number

of position fixes (especially from Fastloc-GPS).

We first provide an example of a reconstructed fine-

scale track using the results for whale 11. This whale

remained in an area of about 5 × 4 km (x × y) for the full

7.8 h duration of the track (Fig. 3). The whale’s horizon-

tal movements ranged from very directional with slow

clockwise turns and little short-term heading variation

to very non-directional with large short-term heading

variation. In general (and as expected), the most prob-

able (posterior mean) whale positions were very close to

the Fastloc-GPS fixes, further from position fixes made

with laser range finder, and the furthest from position

fixes for which range was estimated by eye (Fig. 3). Rep-

etitions of bursts of speed (up to 3–4 ms−1) concordant

with rapid changes in depth suggested that this whale

performed multiple feeding ‘lunges’ (i.e. feeding events

in which the animal speeds up to engulf large volumes

of water and filter prey; [87, 88]) in the bottom phase of

most dives. The whale’s uncorrected velocity v over the

whole track ranged between −3.6 and 3.2 ms−1 in the x-dir-

ection (min/max vx
cor: −0.2/1.0 ms−1) and between −4.3 and

4.0 ms−1 in the y-direction (min/max vy
cor: −0.9/0.3 ms−1).

Some sudden changes in v
cor appeared to correspond with

changes in the movement parameter values for this animal

(e.g. the shallow diving period starting at 04:00 UTC). The

velocity correction process for this whale was relatively

Table 3 Fastloc-GPS test results

Parameter Number
of
satellites

X-dimension Y-dimension

Estimate SE Estimate SE

μ
F(m) 4 0.57 0.56 −1.06 0.76

5 0.21 0.38 −0.41 0.49

6 0.02 0.22 0.17 0.28

7 0.01 0.16 0.10 0.20

8 −0.01 0.14 0.39 0.17

>8 0.08 0.09 −0.01 0.11

σ
F(m) 4 24.51 0.68 34.07 0.03

5 19.11 0.42 25.37 0.04

6 13.10 0.23 17.12 0.10

7 10.69 0.16 14.23 0.19

8 9.28 0.14 11.56 0.42

>8 7.77 0.10 9.35 0.65

υ
F(−) 4 0.93 0.90 1.08 0.03

5 1.44 0.55 1.64 0.05

6 2.53 0.29 2.73 0.11

7 3.91 0.21 5.32 0.34

8 5.83 0.18 6.86 0.58

>8 8.17 0.12 7.72 0.61

Scaled t distributions were fitted to the positional errors measured during the

Fastloc-GPS accuracy tests. Maximum likelihood estimates and standard error

(SEs) are provided for location μ
F, scale σ

F, and shape υ
F for each spatial

dimension and number of satellites used for the position calculation

(#satellite bin)

Fig. 2 Error distributions from visual accuracy tests. Distributions of (left) angular errors in the bearing from the observer to the whale, and
(middle) errors in range expressed as a percentage of true range. Grey bins represent scaled histograms of the observation errors and black lines
represent the pdfs of the fitted distributions (wrapped Cauchy for bearing; Normal for range). The scatterplots in the right panels illustrate: (top)
the range estimated by the observers during tests as function of the true range derived from GPS positions, and (bottom) the range percent
errors vs. true range, with the fitted linear regression line indicating little tendency for under- or overestimation
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volatile (posterior means for σx and σy of 0.014 and

0.012 ms−1, respectively) compared to that of other whales

(Table 4; Additional file 4: Figures S2-S14).

The complete data set of 13 whales contained large dif-

ferences in movement patterns and behaviour (Additional

file 4: Figures S2-S14), and detailed visual inspection of

the tracks suggested that the track reconstruction model

performed satisfactory under a wide range of conditions.

The positional uncertainty in tracks with none or few

Fastloc-GPS fixes (e.g. whales 2 and 3; Table 1) was gener-

ally greater than for tracks with many Fastloc-GPS fixes

(e.g. whales 7 and 13). Clear differences in the posterior

mean estimates of v
cor were observed among animals

(Additional file 4: Figures S2-S14); while in some cases its

values remained close to 0 ms−1 for the entire track dur-

ation (e.g. whales 1 and 9), in others its values gradually

changed over time (e.g. whale 13) or values indicated a

strong consistent bias in one direction (whale 3). This

between-animal variation in v
cor was also reflected in the

posterior mean estimates of σ, which ranged between

0.003 and 0.015 ms−1 and were often similar between x-

and y-dimensions (Table 4; Additional file 5: Figure S15).

Fig. 3 Example of a reconstructed track. Shown on the left are (top) the full, most probable track (i.e. the posterior means of x) and position fixes
of humpback whale 11 and (bottom) a detailed view of sections of the track. Visual position fixes were derived from ranges that were estimated
by eye or measured using a laser range finder (LRF). Information only shown in the bottom panel: the GPS positions of the observation boat,
10 % of the computed whale track realisations, and the most probable whale positions at the times of the fixes (tj) with their 95 % confidence
ellipses [109]. Movement parameters of the track are shown in the panels on the right: (from top to bottom) the whale’s body pitch and heading
angles measured in the Earth frame, the whale’s speed-through-water derived from flow noise, the uncorrected velocity of the whale, the
posterior mean velocity correction with 95 % credibility intervals (CIs), and the depth of the whale (z-axis coordinate of its position)

Table 4 Posterior probability distributions

Whale Estimated parameter

σx (ms− 1) σy (ms− 1)

mean SD 95 % CI mean SD 95 % CI

1 0.006 0.001 0.004-0.008 0.005 0.001 0.004-0.006

2 0.010 0.002 0.007-0.014 0.009 0.001 0.006-0.011

3 0.009 0.001 0.007-0.012 0.010 0.001 0.008-0.012

4 0.007 0.001 0.005-0.009 0.007 0.001 0.005-0.009

5 0.008 0.003 0.004-0.015 0.015 0.004 0.009-0.023

6 0.006 0.001 0.004-0.007 0.007 0.001 0.005-0.009

7 0.007 0.001 0.006-0.009 0.006 0.001 0.005-0.008

8 0.006 0.001 0.004-0.008 0.007 0.001 0.005-0.011

9 0.004 0.000 0.003-0.004 0.003 0.000 0.003-0.004

10 0.014 0.001 0.012-0.015 0.012 0.001 0.010-0.013

11 0.014 0.001 0.012-0.017 0.012 0.001 0.010-0.015

12 0.005 0.001 0.004-0.007 0.012 0.002 0.009-0.015

13 0.010 0.001 0.008-0.011 0.009 0.001 0.007-0.010

Mean, standard deviation (SD) and 95 % credibility interval (CI) of the marginal

posterior distributions are provided for the velocity correction process SDs, σx
and σy. For the posterior summaries of v1

cor and x1, readers are referred to

Additional file 3: Table S1
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Model performance

Results of the cross-validations were based upon a com-

bined (n = 3 whales) validation set of 206, 247, 212, 161,

96, 44, and 29 unique Fastloc-GPS positions (for 4, 5, 6,

7, 8, 9, and >9 satellites, respectively). Positional cross-

validation errors indicated that the mean posterior

tracks of the Bayesian SSMs most closely approximated

the validation data and the mean measurement errors

from the dry tests compared to other track reconstruction

methods (Fig. 4). Performance varied across methods,

with the forced-point dead-reckoning tracks being, on

average, more accurate than the tracks with linear

interpolation between Fastloc-GPS fixes and tracks with

linear interpolation between visual fixes (Fig. 4). Mean

cross-validation errors decreased with increasing #satel-

lites for all track types, indicating that the measurement

errors of the validation data formed part of the cross-

validation errors. As expected, the cross-validation errors

were greater and the differences between methods greater

when the validation sets contained blocks of 5 consecu-

tively observations (simulating periods of ~10 min without

data collection) instead of single observations (Fig. 4).

However, the above results regarding which method per-

formed best and the decreasing error with #satellites were

the same for both 10 % and 50 % data removal.

Discussion and conclusions
Accurate tracking of marine animals (e.g. mammals,

penguins, and turtles) with high-resolution multi-sensor

data loggers has become increasingly important in ecol-

ogy and conservation biology [6, 92]. These data loggers

have already provided valuable information on topics

such as foraging behaviour [20, 88, 93–95], time and

energy budgets [96, 97] and human impacts [26, 98, 99],

but the number of methods available for analysis of

marine animal movements from high-resolution data is

still very limited. To partially address this gap, our study

describes an effective SSM framework that is designed

for relatively fast reconstruction of fine-scale tracks

combining visual, Fastloc-GPS, and dead-reckoning

data. Empirical data from accuracy tests formed the

basis of the observation models.

Fig. 4 Results of the cross-validation analysis. Cross-validation errors (mean ± 2 s.e.m.) are shown as function of the number of satellites of the
validation set (i.e. the out-of-set Fastloc-GPS data) for analyses where (left) single positions were omitted (10 % of data) and (right) series of five
consecutive positions were omitted (50 % of data). Positional cross-validation errors were calculated for five different track types: 1) a track with
linear interpolation between visual position fixes (♦), 2) a track with linear interpolation between Fastloc-GPS position fixes (×), ‘forced-point’
dead-reckoning tracks initially calculated with 3) constant speed (■) or 4) speed from flow noise (▼), and 5) the mean posterior track of the
Bayesian state-space model (●). One-dimensional positional errors for Fastloc-GPS derived from the large data set collected during dry tests (▲)
are shown for comparison (see also Additional file 6: Figure S16). Symbol horizontal positions have been offset for clarity
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Visual observation is a method that is often used for

accurate tracking of marine mammals at the surface

(e.g. using land-based theodolite tracking [23], boat-

based focal follows [43], or stereo photogrammetry

[100]), but a quantitative assessment of its accuracy, as

presented in this study, is relatively uncommon. The

visual accuracy tests with a floating buoy showed that

the errors in range generally contributed most to the

combined positional error from range and bearing ob-

servations, which is consistent with results from more

extensive testing during transect line surveys [101]. The

average range estimation error (SD: 30 %) was similar

to those of naturalists on whale-watching vessels (25 %)

and less similar to range estimates of captains (19 %)

and members of the general public (45 %) on these

same vessels [102].

The use of the normally-distributed percent error for

range was a practical way to scale the error with dis-

tance, although a minor range-dependent effect in the

transformed data remained. Error models for range

based upon distributions such as the gamma or log-

normal may be more appropriate in certain situations

[103]. The accuracy tests were designed to emulate the

real focal follows as much as possible by, for example,

using the same platform and observers, and limiting the

duration that the target was visible to the observers [83].

However, these tests were not exhaustive and the esti-

mated errors were likely only reasonable approximations

to the actual errors during focal follows. We did not ac-

count for observer-specific differences in the visual esti-

mates for a number of reasons (i.e. recording who made

each observation was not part of the field protocol, low

sample size per observer for accuracy tests, and the es-

timation error of one observer from 2011 was not

quantified), but future studies could incorporate

observer-specific range and bearing errors within the

model framework.

The estimated accuracy of the three Fastloc-GPS loggers

was roughly comparable to other reports [48, 50, 55] when

we quantified accuracy in terms of 1-dimensional spatial

error (Additional file 6: Figure S16). For example, we

found that 50 and 95 % of the errors in positions based on

4 GPS satellites were within 50 and 633 m, respectively. In

comparison, the values for these respective percentiles in

[48] were 50 and 810 m and in [50] were 36 and 724 m.

The differences in accuracy compared to these other stud-

ies were likely caused by factors related to satellite cover-

age, atmospheric conditions and individual receiver

sensitivity. One important conclusion from the calibration

tests was that Fastloc-GPS errors differed between the two

orthogonal dimensions, as has been described for the

Argos system [104]. It is therefore advisable to always re-

port the latitude/northing error and longitude/easting

error separately.

The on-animal accuracy of Fastloc-GPS loggers may

vary somewhat from the accuracy measured during dry

tests because of variation in tag placement position on

the animal, recording settings, and slowly-changing at-

mospheric effects such as humidity, pressure, and iono-

spheric delay. Therefore, in the future, such covariates

could be incorporated within SSM frameworks to inves-

tigate their relative contributions or to further improve

measurement error structures and track accuracy.

This study was motivated by the need for accurate

position estimates (with uncertainty) of the whales dur-

ing relatively short (10–15 min) experimental periods

during which naval sonar signals or control stimuli were

transmitted under water [28, 73]. In a parallel analysis of

the same data set, acoustic propagation modelling will

be used for predicting the received sound levels at the

locations of the whales. Because relatively short dis-

tances between the sonar source and the whales oc-

curred during experimental periods, the estimates of

distance and their variability can greatly affect modelled

received sound levels. The reconstruction of fine-scale

tracks is only the first step in the assessment of hump-

back whale natural behaviour and responsiveness to

sonar; other planned analyses include the classification

of discrete behavioural states and behavioural responses

based on the reconstructed tracks and auxiliary informa-

tion. However, visual tracking and Fastloc-GPS are rela-

tively accurate compared to most alternative positioning

technologies (such as Argos [62, 78]), and many research

questions can be sufficiently addressed without the use

of complex methods such SSMs. Possible alternatives

are removing part of the data based upon unrealistic

speeds [105] or #satellites used in the position calcula-

tion [55, 80]. Also, various interpolation methods are

available for estimating the track between known pos-

ition fixes [106].

There are many sources of error that can influence

dead-reckoning of animals under water. Eq. 3 hints at

one such source of error; the animals naturally move in

the water frame of reference and speed is measured in

this frame, but the orientation of the whale, used to de-

rive velocity, is measured in the Earth frame (which is

eventually of most interest). In addition, water currents

may vary with depth due to the Ekman spiral, sensor er-

rors accumulate with time, and speed estimates are often

biased and not continuously observed. Also, marine ani-

mals do not always move in the same direction as their

(flexible) body is oriented due to inertia, buoyancy, and

hydrodynamic lift forces (caused by large pectoral fins,

for example) [6]. Suction-cup tags can occasionally move

over the whale’s body, which means that the correction

angles for the conversion from tag to animal frame, as

well as the flow noise/speed-relationships, may vary

throughout the tag record. Because of this complex mix
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of errors, we essentially sacrificed some realism for prac-

ticality and implemented our relatively simple process

model as a correlated random walk on the joint error in

horizontal velocity. Visual inspection indicated that vcor

co-varied with the movement parameters for some ani-

mals, but in other tracks small and consistent offsets

likely caused by water current appeared to be the domin-

ant factor (Additional file 4: Figures S2-S14). More in-

depth analysis of the estimates of vcor may provide further

insights in the relative contributions of the sources of

errors in the tracks.

The model structure presented here was written in the

BUGS language (Additional file 1) and is therefore easy to

use and adapt. Fitting the models with MCMC had the

advantage that the non-Gaussian observation error struc-

tures for Fastloc-GPS and bearings were easy to imple-

ment, but also made model fitting relatively slow

(Table 1). To make model fitting with MCMC possible,

measurement errors were not modelled at the time step of

the high-resolution data. As a result, the model underesti-

mated the positional uncertainty in the track when fixes

were not observed. This effect was likely to be small for

the short track segments in this study but will increase

with the time since the most recent location measure-

ment. More realistic confidence bounds could conceivably

be added to the track segments between surfacings using

a Kalman filter that is conditioned on the start and end

points of each track realisation.

By accounting for the observation errors in the position

fixes, our model can provide a clear improvement over sim-

pler methods to georeference dead-reckoning tracks [5].

Similarly, compared to tracks derived only from position

fixes [73], the inclusion of dead-reckoning data greatly im-

proved the level of detail in the reconstructed humpback

whale tracks (Additional file 4: Figures S2-S14). Cross-

validation analyses confirmed that out-of-set Fastloc-GPS

locations were better predicted by our model framework

than by simpler track reconstruction methods that do not

allow for positional observation error. Independent valid-

ation of our technique might be (partially) possible in the

future using double tagging experiments (e.g. [56]) with

conventional GPS, using passive acoustic locations of

animals that vocalise underwater [107], or using current

velocity data from acoustic Doppler current profilers or

numerical ocean models.

Being a recursive method, dead-reckoning generally

results in positional errors that increase with time, and

the speed of the water current may have a particularly

large influence on these errors. Knowing the rate at

which model performance deteriorated would be useful

for scientists studying different species or for users of ani-

mal data loggers who need to decide on position sampling

schemes. However, a preliminary analysis (not shown

here) of the cross-validation errors against time to the

nearest Fastloc-GPS position did not consistently demon-

strate this trend of decreasing model performance, likely

because of the relatively large contribution of Fastloc-GPS

observation errors and because time intervals between lo-

cations were relatively short (<10 min).

The integration of Fastloc-GPS, depth, speed and

inertial sensor data is an exciting development that

opens the door to the reconstruction of georeferenced

3-dimensional movement tracks with relatively high

precision compared to existing positioning methods.

As similar track reconstruction approaches are cur-

rently being developed [107, 108], a systematic com-

parison of the tracks produced by the different

techniques in the future would be valuable. High-

resolution animal tracks have the potential to answer

fascinating scientific questions about, for example,

predator movements in relation to prey fields, dyna-

mics of group movement, impacts of human disturb-

ance on behaviour, and how foraging effort and

success relate to individual and population fitness.

The advancement of bio-logging technology is rapid

and, in our opinion, scientists will benefit from the

use and development of analysis methods that make

the most out of the growing wealth of information.

Availability of supporting data
The data set of whale 11, the JAGS model code, and

examples of MATLAB code used in the analysis are in-

cluded as additional files with the article (Additional file 1).

Additional files

Additional file 1: Example data set, JAGS model, and MATLAB

code. Compressed file including the data set of whale 11, the JAGS model
code, and example MATLAB code to process the data, fit the model, and
reconstruct the high-resolution track shown in Fig. 3. (RAR 2041 kb)

Additional file 2: Figure S1. Boxplots of the Fastloc-GPS positional
errors for the three data loggers (29409, 29 402, and 29 520, from top to
bottom), four calibration test sites (A: 56.33°N, 2.78°W; B: 69.68°N, 18.99°E; C:
78.24°N, 15.54°E; D: 64.92°N, 23.25°W), and six #satellite bins (4, 5, 6, 7, 8, and
>8). The sample size for each subset is indicated on the right vertical axis.
Outlier data points were omitted to improve readability. (PDF 19 kb)

Additional file 3: Table S1. Posterior statistics and R values. Table with
the mean, SD, and 95 % CI for the posterior distributions of parameters
σx, σy, vx,1

cor, vy,1
cor, xx,1, xy,1, and the values of convergence statistic R . (XLSX 17 kb)

Additional file 4: Figures S2-S14. Figures of the reconstructed tracks
and movement parameter time series for all whales. See the caption of
Fig. 3 for more details about the information that is plotted. Note that
the scale of the depth axis differs per whale. (PDF 18518 kb)

Additional file 5: Figure S15. Posterior distributions for all whales.
(PDF 91 kb)

Additional file 6: Figure S16. One-dimensional Fastloc-GPS errors.
Positional errors during calibrations were represented as radial distances
from the median and plotted against the cumulative percentage of
positions for comparison with other studies. Each line represents a subset of
data based upon the number of satellites (4 to 12) used for the position
calculation. The insert shows the pdfs for the 9 satellite coverage categories.
The graphs were truncated at 100 m for clarity. (PDF 12 kb)
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