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A Path Space Approach to Nonholonomic Motion
Planning in the Presence of Obstacles

Adam W. Divelbiss and John T. Wen

Abstract—This paper presents an algorithm for finding a kinematically
feasible path for a nonholonomic system in the presence of obstacles.
We first consider the path planning problem without obstacles by trans-
forming it into a nonlinear least squares problem in an augmented
space which is then iteratively solved. Obstacle avoidance is included as
inequality constraints. Exterior penalty functions are used to convert the
inequality constraints into equality constraints. Then the same nonlinear
least squares approach is applied. We demonstrate the efficacy of the
approach by solving some challenging problems, including a tractor-
trailer and a tractor with a steerable trailer backing in a loading dock.
These examples demonstrate the performance of the algorithm in the
presence of obstacles and steering and jackknife angle constraints.

Index Terms—Mobile robots, nonholonomic motion planning, obstacle
avoidance, path planning, tractor-trailer.

I. INTRODUCTION

The nonholonomic motion planning (NMP) problem involves
finding a path which links some initial configuration to some de-
sired final configuration for a system with nonholonomic velocity
constraints. Nonholonomic constraints occur in physical systems for
which constraints on the generalized velocity vector are nonintegrable
to equivalent configuration space constraints. As a result of this
condition, the instantaneous velocity of a system under nonholonomic
constraints is limited to certain directions. Constraints of this kind
occur for any wheeled vehicle under the no-slip condition, for any
two bodies in rolling contact, and also for systems in free fall
where the conservation of angular momentum applies. Examples
of these types of nonholonomic systems include mobile robots,
automobiles, tractor-trailer vehicles, finger contacts in robot hand
grasping, orbiting satellites, space-based robot manipulators and even
falling cats. Nonholonomic systems, such as these, possess some
peculiar characteristics which make motion planning for them chal-
lenging. For instance, nonholonomic systems are frequently globally
controllable and yet the linearized system about an equilibrium
point is not controllable. Further, there exists no continuous time-
invariant stabilizing feedback for driftless nonholonomic systems [1],
[2]. Due to these difficulties, standard motion planning techniques
for holonomic systems are not directly applicable to nonholonomic
motion planning.

In the rapidly accumulating literature on nonholonomic motion
planning, there are mainly two classes of approaches. The search
based methods, including those found in [3]–[9], generally involve
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some type of decomposition of the configuration space into cells.
A graph is then constructed whose nodes are configurations and
whose arcs are some type of path (shortest, optimal, etc.) connecting
two configurations. The graph is searched using anA� or a similar
algorithm. One of the best characteristics of these approaches is that
they can plan paths in highly cluttered or constrained environments.
Many search based methods are also global in nature, meaning
that they search over the entire configuration space. However, these
methods can be computationally inefficient for complicated vehicles
such as a tractor with two or more trailers. Other methods involve
neural-networks and fuzzy controllers as in [10] but they require
extensive training and tuning. Control theoretic methods such as
[11]–[18], apply the tools in geometric control theory and provide
elegant insights into the structure of the solution. A popular approach
among these methods converts the system into some canonical form
and then uses cyclic motion in certain base space variables to cause a
net motion of the remaining variables [19]. Inequality constraints are
rarely considered, and physically impractical paths frequently result.

In this paper, we present a new approach to NMP. An initial path
is iteratively warped until all constraints are satisfied. Thus it is
a local path spacemethod. The local nature comes from the fact
that convergence depends on the closeness of the initial path to a
feasible solution: one that satisfying all the constraints. The initial
path is itself not required to be feasible. Both equality and inequality
constraints can be included in this formulation. Task space constraints
involving nonlinear functions of the configuration variables are also
allowed. In contrast to other path space approaches, this approach
emphasizes feasibility over optimality. Once a feasible solution is
found, optimality can be incorporated as a secondary objective.

A common starting point for the control theoretic approaches is to
pose the NMP problem as a general nonlinear control problem. Our
formulation is based on converting the nonlinear control problem
into a nonlinear algebraic equation. The problem then becomes a
nonlinear root finding problem in which the dimension of the search
space is very high (infinite iffu(t) : t 2 [0; 1]g is taken from an
infinite dimensional functional space) compared to the number of
equality constraints (for the end point constraint). The nonlinear root
finding problem can be solved by many familiar numerical algorithms
including the Newton-Raphson method, the steepest descent method,
the conjugate gradient method, etc. A similar approach has also been
proposed independently in [20]–[22] for kinematic path planning with
only the end point constraint. In all of these algorithms, convergence
relies on a certain path gradient operator being full rank. This full
rank condition has been shown to be true generically in a certain
sense [22]. Coupled with a clever generic loop argument, convergence
of this algorithm class is virtually assured. Along this same line,
a conservative strong bracket generating condition is shown to be
sufficient for the wellposedness of the initial value problem arising
from the Newton-Raphson algorithm [20], [23].

There are typically many possible solutions to the root finding
problem resulting from the path planning problem. Since many of
these solutions will result in physically unrealizable paths, additional
constraints must be enforced on the path for the algorithm to be
useful in any practical situation. To enforce these constrains, we have
adopted an approach similar to the exterior penalty function method
[24], [25] which converts inequality constraints into a zero finding
problem by solving a sequence of unconstrained minimizations. In
contrast to the standard application of this method, there is no need to
successively increase the penalty weights since the minimum values
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(i.e., zeros) of the penalty functions are by definition solutions to
the problem. Our method also differs from the familiar artificial
potential field method (popular in the holonomic path planning
literature [26]–[28]) which is an interior penalty function (or barrier
function) method in that the initial guess may be infeasible. The
exterior penalty functions associated with the inequality constraints
are combined with the equality end point constraint to form an
augmented zero finding problem. Nonconfiguration space constraints
including constraints on the corners of a vehicle, body of the robot,
etc., can also be incorporated in this formulation. For certain convex
polyhedral constraints, we show that the exterior penalty function
does not add extra path singularities. In general, however, there may
be local minima in the path space.

The remainder of this paper is organized as follows. In Section II,
some of the theory behind the basic algorithm for enforcing end
point equality constraints is presented. In Section III, the algorithm
is extended to incorporate inequality constraints on the path by
using the exterior penalty function method. In Section IV, simulations
involving tractor-trailers are presented.

II. NMP SUBJECT TO EQUALITY CONSTRAINTS

Given a mechanical system with nonholonomic equality con-
straints, an initial configuration and a desired final configuration, we
are interested in finding a path which 1) satisfies the nonholonomic
equality constraint and 2) satisfies the inequality constraints associ-
ated with internal limits of the system, external limits imposed by
the environment, and limits imposed on the control. We assume that
the system is globally controllable, the system kinematic equation
is as smooth as required, and that obstacles and boundaries in the
environment are static. In this section, we first consider the path
planning problem with only the equality constraints.

We shall need the following definitions. A path connecting some
initial configuration, denoted byx0, to some final configuration,
denoted byxf , is defined as a sequence of consecutive system
configurations evenly spaced over a specified normalized time interval
and is denoted byx = fx(tj) 2 R

n: tj 2 [0; 1]; j = 0; 1; � � � ; Ng

wheren is the state dimension,(tj � tj�1) = h = 1=(N � 1);

x(t0) = x0, and x(tN ) = xf . We denote a specific path point,
x(tj) 2 x, by xj . The ith element ofxj is denoted byxij . The
continuous form of the path is denoted byx = fx(t) 2 R

n

: t 2 [0; 1]g. The control space is defined asU Lm2 [0; 1]. The
path space,P, is the collection of all paths generated by all possible
controls.

We shall consider the problem of imposing an an equality constraint
on the final point of the path (i.e.,xN = xf ) while ensuring the
nonholonomic equality constraint is satisfied at each point along the
path. General nonholonomic velocity equality constraints are often
represented by

G(x; _x; t) = 0 (1)

wherex is the generalized coordinate vector and_x is the generalized
velocity vector. The constraints represented by (1) are said to be
nonholonomicif the equation is nonintegrable, i.e., there exists no
function of the formF (x; t) = 0 such thatG is the differential of
F . There are also nonholonomic constraints involving accelerations
[29], called second order nonholonomic constraints, which we do not
consider here, but our method can in principle be applied to such
systems as well.

In most physical cases (e.g., the no-slip rolling constraint), (1) is
linear in _x and time-invariant, and may be rewritten as

G(x) _x = 0 (2)

whereG is a fat matrix (has more columns than rows).

A. The Basic Algorithm

The nonholonomic constraint (2) can be written in the form

_x = f(x)u; x(0) = x0 (3)

wherex(t) 2 Rn is the configuration variable,u(t) 2 Rm is the
admissible velocity input, and the columns off(x) span the null space
of G(x), i.e.,G(x)f(x) = 0m�m. Using this form, the path planning
problem can be posed as a general nonlinear control problem: find an
input, u, to drive the system from the initial configurationx0 to the
desired final configurationxf . Even though the problem can be stated
in such a deceptively simple form, its solution is very challenging
due in part to the fact tha Furthermore, there exists no time-invariant
stabilizing feedback [1], [2].

Our approach is based on converting (3) to a nonlinear algebraic
equation

x(1) = F̂ (x0; u) F̂ :R
n
� L

m
2 [0; 1]! R

n (4)

wherex0 is the initial configuration,u fu(t) : t 2 [0; 1]g, and
where the final time has been normalized to 1. The analytic form ofF̂

is in general difficult to find but will not be explicitly required. In this
perspective, (3) is globally controllable if and only if the nonlinear
mapping F̂ (x0; :) :L

m
2 [0; 1] ! R

n is onto for all x0 2 Rn. The
system is locally controllable aroundu if and only if the Fŕechet
derivative of F̂ with respect tou; ruF̂ (u) :Lm2 [0; 1] ! R

n, is a
linear onto map. Since the mapping,ruF̂ (x0; u) relates variations
in x(1) to variations inu, it may be thought of as the operator
corresponding to the solution of the variational time-varying linear
system

_�x = A(t)�x+B(t)�u; �x(0) = 0 (5)

whereA(t) [ @f
@x

(x(t))u(t) � � � @f

@x
(x(t))u(t) ] andB(t)

f(x(t)). Since�x(0) = 0, the solution to this equation is written as

�x(1) = ruF̂ (x0; u)�u
1

0

�(1; s)B(s)�u(s)ds (6)

where� is the state transition matrix of the linearized system andx0
is the given initial configuration. Controllability of the system in (5)
is equivalent toruF̂ (x0; u) being onto, or,rank(ruF̂ (x0; u)) = n.

We now pose the path planning problem as a nonlinear root finding
problem as follows. Given an initial configurationx0, find a control
u 2 Lm2 [0; 1] such that

y(x0; u) F̂ (x0; u)� xf = 0: (7)

Since the dimension of the search space is much higher than the
dimension of the constraint space, there are typically a large number
of solutions, many of which are physically unrealizable. Additional
constraints must be imposed to obtain implementable paths.

Many methods are available for solving the nonlinear root finding
problem for a fixed initial configurationx0, such as Newton-Raphson,
gradient descent, conjugate-gradient, Levenberg-Marquardt, etc. We
have used the Newton-Raphson algorithm successfully. In our imple-
mentation, the controlu is iteratively updated by

u
(k+1)

= u
(k)

� �k ruF̂ x0; u
(k) +

y x0; u
(k) (8)

where�k is found through a line search to maximize the decrease
in y. A sufficient condition for the algorithm to converge is that the
gradient operatorruF̂ (x0; u) be full rank for each iteration. This
condition has been shown to be generic in some sense in [22] and an
explicit characterization of all the singular controls (i.e.,u for which
ruF̂ (x0; u) loses rank) has been found for theN -trailer system [30].
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B. Fourier Basis Representation

For implementation, the control functionu in (8) needs to be
approximated by a finite dimensional vector. We have used the
Fourier series expansion

u(t) =

1

i=1

�i(t)�i 8 t 2 [0; 1] (9)

where the�i(t)’s are the standard Fourier basis elements. Substituting
into (4), we get

x(1) = F (x0; �) = F̂ (x0; T
�1
�): (10)

where we have writtenu = T�1�. If the Newton-Raphson algorithm
is used, the update law for� is

�
(k+1) = �

(k) � �k r�F x0; �
(k) +

F x0; �
(k) (11)

wherer�F (x0; �) = ruF̂ (T�1�)T�1.

III. NMP SUBJECT TO INEQUALITY CONSTRAINTS

Many of the possible solutions to (11) will result in physically
unrealizable motions. In order for the algorithm to be of any practical
use, it must be modified to enforce inequality constraints, such as joint
limits or task space constraints, on intermediate points along the path.

Suppose that a feasible region in the path spaceP is defined by
a set ofp inequalities

c(x) � 0 (12)

where� is interpreted as a component-wise relationship. This con-
dition requires that each point along the path to lie in the feasible
region.

In the previous section, the mappingF was defined to relate the
Fourier coefficients of the control,�, to the final configuration. In
the same manner, functions relating each point inx to � are defined
as x(tj) = F̂j(T

�1�) = Fj(�), for eachj = 1; 2; � � � ; N , where
the initial configuration,x0, is assumed given. Stacking each of
these functions into a single vector yields a new functionF where
x = F(�). Substituting into (12) defines a feasible region in the
control coefficient space

c(F(�)) � 0: (13)

To enforce thep inequality constraints represented by (13) the in-
equality constraints are converted into equality constraints by defining
an exterior penalty function corresponding to theith constraint as

zi(�) = 
i

N

j=1

g(ci(Fj(�))) (14)

where
i > 0; ci is the ith constraint, andg is a continuous scalar
function with the property thatg is positive and strictly monotonically
increasing forc > 0 and zero forc � 0. We have usedg of the
following form:

g(c) =
(1� e�rc)2 if c > 0
0 if c � 0

r > 0: (15)

Each penalty functionzi forces� toward the feasible region when
the constraint is violated and has no effect when the constraint is
satisfied. The composite penalty is written asz = [z1; � � � ; zp]

T . Note
that only the active constraints (i.e.,zi > 0) need to be includedz.

The motion planning problem can now be restated as follows.
Given an initial configuration,x0, find � such thaty(�) = 0 and
z(�) = 0. The same Newton-Raphson approach can be applied

�
(k+1) = �

(k) � �k[G(�
(k))]+ (�(k)) (16)

where

 (�) =
y(�)
z(�)

; G(�)
r�F (�)
r�z(�)

= r� (�): (17)

Again, a sufficient condition for convergence is thatG be full rank for
each iteration. To consider this issue further, we first decomposeG

asG(�) = K(�)D(�) whereK(�) is the gradient of the cost vector
 with respect to the pathx (i.e.,K(�) rx (�)) andD(�) is the
gradient of the pathx = F(�) with respect to the Fourier coefficient
vector� (i.e.,D(�) r�F(�)). By taking the gradient of (14) and
putting it into matrix form,K andD can be found as

K(�)

0n;n � � � 0n;n In

1�k11(�) � � � 
1�k1N�1(�) 
1�k1N(�)

...

p�kp1(�) � � � 
p�kpN�1(�) 
p�kpN(�)

D(�)

D1(�)
...

DN�1(�)
DN(�)

:

(18)

where
�kij(�) g

0(ci(Fj(�)))[rxci(Fj(�))]
T

Dj(�) r�Fj(�):
(19)

The augmented gradientG is full rank if 1) D is of full row rank
and 2)KT (�) (�) = 0 if and only if  (�) = 0.

First considerD. A necessary condition forD to be of full row
rank is that it be fat. This condition means that there must be a
sufficiently number of Fourier basis elementsM , i.e.,M � N � n.
We further note that the system is causal (future input does not
affect past state), therefore,D(�)T (whereT mapsu to �) is block
lower triangular. Hence,D(�)T is of full row rank if and only if
each of its diagonal blocks (corresponding to each constrained path
point) is of full row rank. This condition is equivalent to the time-
varying linearized system between any two consecutive path points
being controllable. The same genericity result and characterization
of singular control for the full path (as mentioned in the previous
section) can also be applied to these path segments.

Now considerKT = 0. From (14) and (19), thejth equality,
1 � j � N � 1 in this equation can be written as

0 =

p

i=1


i�k
T
ijzi =

p

i=1


ig
0

ij r
T
x cij zi (20)

whereg0ij andcij denoteg0(ci(xj)) andci(xj), respectively, andp0

constraints are assumed to be active. This can be written in a more
compact form

(rxc(xj))
T
w(xj) = 0 (21)

where theith element ofw(xj) is wi(xj) = 
ig
0

ijzi. If the worst
case simultaneous active constraints satisfyN (rxc

T ) = f0g (N
denotes the null space), thenw(xj) = 0; j = 1; � � � ; N�1, which in
turn implieszi = 0. A necessary condition forN (rxc)

T = f0g is
thatn � p0. For example, suppose that each state is bounded above
and below. Even though there are2 � n constraints(p = 2 � n), there
can be at mostn simultaneous constraints.

TheN th equality inKT = 0 can be written in a similar fashion

(xN � xf) +

p

i=1


ig
0

iNr
T
x ciNzi = 0: (22)

If zi = 0 for i = 1; � � � ; N , thenxN = xf , and = 0 as required.
The only remaining case is that only the path end point constraint is
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Fig. 1. Triple tractor-trailer model.

active. In this case,KT = 0 reduces to (22). This condition may be
rare, but we can only conclusively eliminate it in certain polyhedral
constraint cases. Consider the case where

c(x) = Ax + b � 0: (23)

Equation (22) then becomes

(xN � xf ) +A
T
w(xN) = 0 (24)

whereA only needs to include the worst case simultaneous con-
straints. SupposeA is of full row rank (implying that the maximum
number of simultaneous active constraints is less than the number of
states), then

Axf + b = AxN + b+ AA
T
w(xN): (25)

SupposexN violates only theith constraint in (23) (this can be easily
generalized toxN violating multiple constraints), i.e.,eTi (AxN+b) >

0, wi(xN) > 0, andw(xN) = eiwi(xN) whereei is the ith unit
vector. Then

e
T
i Axf + b = e

T
i (AxN + b) + e

T
i AA

T
w(xN)

> 0 + e
T
i AA

T
eiwi(xN)

> 0:

This condition implies thatxf violates the constraints which contra-
dicts the assumption. Therefore,KT = 0 implies that = 0.

Inequality constraints may not always be directly expressed in
terms of the state variable. For example, collision avoidance may
be required for the boundary points of a vehicle. These constraints
can be converted to inequalities in the path space as in (12) through
the vehicle kinematics.

In many situations, analytic representation of the constraint may
be tedious or not possible. The penalty function can be directly
constructed based on a contour map from the task space obstacle
boundaries. The contour map assigns a cost and a gradient direction
for each point in a two-dimensional grid. Linear interpolation of the
four closest map grid points is used to compute the cost and gradient
for any point in the map, which are in turn used in the computation
of the exterior penalty function and its gradient.

IV. M ODELS AND SIMULATIONS

In this section, we apply the path planning algorithm described in
the previous sections to several different types of articulated vehicles
to demonstrate its versatility and usefulness in planning paths under
a wide variety of constraints. To begin, the kinematic models for a
general tractor-trailer vehicle withn trailers and a general tractor-
trailer vehicle withn steerable trailers are presented. Derivations for
the models are found in the [31].

Fig. 2. Steerable tractor-trailer model.

A. Kinematic Models

There have been several multibody vehicle models proposed in
[32] and [33]. These models are derived with the trailer pivot points
located at the center of the rear axle of the preceding body. This
situation is almost never the case for real tractor-trailer systems. For
instance, a car with a boat trailer has the trailer attached to a point
behind the rear axle on the rear bumper. An example of a tractor-
trailer vehicle where the pivot point is actually in front of the rear
axle is a heavy pickup truck towing a gooseneck trailer. A gooseneck
trailer has its central beam bent up and over the tailgate of the truck
and attached to a ball joint in the middle of the bed. The pivot point
is placed slightly forward of the rear axle to help stabilize the vehicle
at highway speeds.

In our examples, we consider a kinematic model for multiple
tractor-trailer vehicles which have attachment points offset from the
rear axle of the preceding body; see Fig. 1 for an example of a tractor
with three trailers. The kinematic model for this vehicle has been
derived in [31]

_x1 = c3c4u1

_x2 = c3s4u1

_x3 = u2

_x4 =
1

l1
s3u1

_x5 = f5(x)u1

=
1

l2
c3s4 �

d12

l1
s3c4 c5 � c3c4 +

d12

l1
s3s4 s5 u1

...

_xn = fn(x)u1 n = 6; 7; � � �

(26)

fn(x)

= c3s4 �
d12

l1
s3c4 �

n�1

i=5

(li�3 + di�3;i�2)cifi(x) cn

� c3c4 +
d12

l1
s3s4 +

n�1

i=5

(li�3 + di�3;i�2)sifi(x) sn ln�3

whereu1 andu2 denote the driving and steering velocities,li�3 +
di�3;i�2 is the total length of the(i� 4)th trailer, ci andsi denote
cos(xi) and sin(xi), respectively. Notice that even though Fig. 1
is drawn with the pivot points behind the axles,d’s can be chosen
negative, causing the pivot to be in front of the axle as in the case
of the gooseneck trailer.

Consider now a chain ofn steerable trailers pulled by the front
wheel drive tractor; see Fig. 2 for an example of a tractor pulling a
single steerable trailer. The kinematic equations for the front wheel
drive tractor are exactly the same as in the previous case. However
in the steerable trailer case, there is both an orientation and a steering
angle associated with each trailer. By lettingxj denote the orientation
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Fig. 3. Tractor-trailer initial guess path.

and xk denote the steering angle, the kinematic model for theith
steerable trailer can be written in the following form:

_xj = c3s4 �
d12

l1
s3c4 �

i�1

p=1

(lp+1 + dp+1;p+2)cj fj (x)

�
cjk

ck
� c3c4 +

d12

l1
s3s4

+

i�1

p=1

(lp+1 + dp+1;p+2)sj fj (x)
sjk

ck

u1

li+1

_xk = ui+2

where ji = 2i + 3 and k = 2i + 4 are the state indices for the
ith trailer, lp+1 is the length of thepth trailer, dp+1;p+2 is the
distance between thepth trailer rear axle and the(p + 1)th trailer
pivot point. Note that the model for steerable trailers has a singularity
at xk = ��=2. The physical significance of this singularity is that
when the steering wheels of a trailer are pointing perpendicular to the
central axis of the trailer it is not possible for the vehicle to move.
Because of this fact, care must be taken in motion planning to ensure
that the trailer steering wheels do not approach the singularity.

B. Simulation Results

To evaluate the usefulness of our path planning algorithm, we have
applied it to a wide variety of wheeled vehicles in various situations.
The examples range from the simplest nonholonomic system, a planar
unicycle, to complicated vehicles such as a tractor with two trailers
and a tractor with a steerable trailer. Examples presented in this
section are intended to demonstrate the algorithm’s versatility and
its efficiency in planning paths which are challenging for average
human drivers. The simulations presented in this section involve
enforcing both convex and nonconvex constraints on configuration
and nonconfiguration variables. The algorithm was implemented in
C++ on an IBM compatible 80 486 33 MHz computer. In each of the
following examples, the number of path points used (for constraint
checking) is 101 unless otherwise specified. The absolute path error is
calculated as the maximum excursion of the vehicle into the infeasible
region over the entire path. The stopping criterion is chosen to be
0.01.

Tractor-Trailer: We present three cases for a tractor-trailer back-
ing up into a loading dock. The first is totally unconstrained. The
second case enforces the steering and jackknife angle constraints.
The third case adds the no-collision constraint. The vehicle in this
example consists of a front wheel drive car with a trailer attached to

Fig. 4. Tractor-trailer unconstrained docking motion and steering angle.

the rear bumper. The car has a wheel base of 26.5 in, is 48 in long,
and 22 in wide. The trailer is 39 in long from pivot to rear axle, and
is 22 in wide. The goal is to perform a docking motion in which the
car must back the trailer into a 34 in wide loading bay. The kinematic
model used for each of the three simulations is

_x1 = c3c4u1

_x2 = c3s4u1

_x3 = u2

_x4 = 0:037 74s3u1

_x5 = 0:0256[(c3s4 � 0:4622s3c4)c5

� (c3c4 + 0:4622s3s4)s5]u1

(27)

where x5 denotes the absolute orientation of the trailer. In the
following discussions, the jackknife angle is defined as the difference
between the car orientation and the trailer orientation.

In the first case, the initial guess simply involves the vehicle drives
forward, backward, and then forward and is shown in Fig. 3. The
number of Fourier basis elements used is 41. In computing the path,
the algorithm took seven iterations with an average iteration time of
18.06 s. Fig. 4 shows the results. Notice that the steering angles go
through some very unrealistically large values. This fact demonstrates
the need to enforce inequality constraints in the algorithm.

In the second case, the initial guess of Fig. 3 is again used. The
steering angle is now limited to�30� from center and the jackknife
angle is limited to�60� from center. Under these conditions, the
algorithm took six iterations to converge to an absolute error tolerance
of 0.01 with the average iteration taking 17.71 s. Fig. 5 shows the
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Fig. 5. Tractor-trailer docking with steering and jackknife angles con-
strained: Motion and steering angle.

Fig. 6. Docking example contour map.

resulting path and steering angle. The vehicle begins at the “o”
(represented by the dashed figure), drives forward and upward to
the upper right hand location, back down to the lower location,
and finally pulls forward to the desired final configuration. The final
configuration is not shown in the figure but is the same as in Fig. 4.
Notice that the steering angle stays within the specified tolerance.

In the final case, the path of Fig. 5 is used as the initial guess
to enforce the task space constraints. The nonconvex task space
constraints are enforced using the contour map method on a total of
28 points located on the periphery of both the tractor and the trailer.

Fig. 7. Tractor-trailer docking all constraints enforced: Motion and steering
and jackknife angles.

A coarse plot of the contour map used for this simulation is shown
in Fig. 6. Notice the rectangular indentation representing the docking
space in the plot. As in the previous simulations, 41 Fourier basis
elements are used by the algorithm in computing the new path. The
jackknife angle of the trailer was further limited in this simulation
to �60� from center. In this case the algorithm took 10 iterations to
converge to an absolute error tolerance of 0.01. The average iteration
time was 24.12 s. The resulting path is shown in Fig. 7 where the
final configuration is the same as before. Fig. 7 also shows a plot
of the steering and jackknife angles. Notice in these examples that
as the vehicle and driving situation become more complicated, the
number of iterations, and the average time per iteration increases.

Tractor with Steerable Trailer:Steerable trailer vehicles are of
increasing interest because they present the possibility of increasing
the maximum allowable trailer length for tractor-trailer vehicles used
on our roads and highways. The problem with long trailers is that
in turning a corner they tend to off-track more than shorter trailers.
Off-tracking of a tractor-trailer at slow speeds occurs when the rear
wheels of the trailer take a path inside that of the other wheels. A
trailer equipped with steerable rear wheels can make turning corners
at road intersections more manageable by eliminating off-tracking, as
in the case of a ladder truck used by fire departments.
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In this example, we require a tractor with a steerable trailer
to perform the exact same task as in the previous case. In the
first simulation, the docking maneuver is performed with only the
steering and jackknife angles constrained. In the second simulation,
the nonconvex task space constraints are applied in addition to the
steering and jackknife angle constraints. As in the previous case, the
front wheel steering angle is limited to�30� from center and the
jackknife angle is limited to�60� from center. The rear wheels of
the trailer are also limited to�30� from center. The initial guess for
this simulation is the same as for the fixed-trailer case but with the
trailer steering input set to zero. The kinematic model used for this
example is similar to the fixed model and is written as follows:

_x1 = c3c4u1

_x2 = c3s4u1

_x3 = u2

_x4 = 0:037 74s3u1

_x5 = 0:0256 (c3s4 � 0:4622s3c4)
c56

c6

�(c3c4 + 0:4622s3s4)
s56

c6
u1

_x6 = u3

(28)

wherex6 is the steering angle of the trailer steering wheels, andu3

is the trailer steering control input.
As in the previous trailer case, for each of the following simula-

tions, the initial configuration has the vehicle centered at the point
marked “o” and facing toward the right with the trailer in line with
the tractor. The final configuration has the vehicle centered at the
point marked “x” and facing upward with both tractor and trailer
aligned. In each path plot, the initial and final configurations are not
shown in order to reduce the clutter of the plots.

In the first simulation, 31 Fourier basis elements are used to
represent the path and the control, respectively. In this case, the
algorithm required five iterations with an average iteration time of
23.54 s. Compare these values with the six iterations at an average
iteration time of 17.71 s in the fixed-trailer example. The added
degree of freedom provided by the steerable trailer wheels causes the
algorithm to take fewer iterations, but the time required to complete
the average iteration increases since the input vector is larger than
before. The resulting path is shown in Fig. 8. Notice that in this case,
the path is much shorter and makes a much sharper turn around the
right corner than does the fixed-trailer example. Fig. 8 also shows a
plot of the steering and jackknife angles for this simulation. Notice
that the trailer steering angle becomes quite large during the middle
portion of the path. This portion corresponds to when the vehicle
makes the corner around the obstacle.

The second simulation uses the result of the first simulation as an
initial guess and enforces the nonconvex task space constraints on the
same 28 points around the vehicle as in the fixed trailer example. The
same contour map, shown in Fig. 6, was also used to represent the
dock. In this case, the algorithm took five iterations to converge to a
solution with an average iteration time of 23.54 s which is actually
smaller than for the fixed trailer case. Fig. 9 shows the resulting
path with the vehicle located at its farthest excursions in both the
negative and positivex-directions. In both positions, the steering of
the trailer can be clearly seen. Fig. 9 also shows the steering and
jackknife angles achieved in this simulation. Notice that both the
front wheel and trailer steering angles approach their�30� limits in
several places.

The examples in this section were chosen to demonstrate the
versatility of the path planning algorithm and to demonstrate its

Fig. 8. Steerable tractor-trailer docking with steering and jackknife angles
constrained: Motion and steering and jackknife angles.

applicability to challenging driving situations. However, even though
the algorithm worked well for the nonconvex task space examples
presented, there are many other situations for which the algorithm
does not work. An illustrative example of one such scenario is the
case where a vehicle is required to drive around an elongated obstacle.
If the initial path is one in which the vehicle drives straight through
the obstacle to the final end point, the algorithm will definitely have a
local minima problem. This is because, if we think of the obstacle as
a hill in the contour map with the negative gradient direction pointing
straight out to the nearest boundary point, path points on either side
of the obstacle will be pushed in opposite directions. As the algorithm
progresses, it will reach a point where the effects of points on opposite
sides of the obstacle cancel each other, thus causing the gradient
matrixG(�) to lose rank. This example serves to illustrate that there
is still much work to be done in developing a general algorithm.

V. CONCLUSION

We have presented an iterative path space algorithm for solving
the nonholonomic motion planning problem. The method warps the
entire path at each iteration to satisfy both equality and inequality
constraints. We first transform the general nonlinear control problem
associated with motion planning to a nonlinear least squares problem
which can then be solved using many different algorithms. However,
the resulting paths will often be physically unrealizable due to
unrealistically large joint motions. To correct this problem, inequality
constraints on the path need to be imposed. We use an exterior
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Fig. 9. Steerable tractor-trailer docking all constraints enforced: Motion and
steering and jackknife angles.

penalty function to convert the inequality constraints into equality
constraints which are in turn folded into the nonlinear least squares
problem. Using this scheme, it is possible to enforce a wide variety
of constraint types including joint limits, convex and nonconvex
task space constraints, and constraints on both the configuration
and nonconfiguration variables. The convergence of the algorithm
depends on the avoidance of singular controls. In the absence of
inequality constraints, certain genericity results are available in the
literature. When inequality constraints are considered, we can show
that exterior penalty functions do not add any singular control for the
case of certain convex polyhedral constraints. Though in general the
convergence has not been shown, and indeed may not always be true,
we have demonstrated that the algorithm can tackle a large number
of challenging problems including path planning for a tractor with
multiple trailers. We have included the examples of a tractor trailer
and a tractor and steerable trailer backing into a loading dock while
satisfying a number of joint limit and collision avoidance constraints.
We are currently working on expanding our understanding of singular
control of specific classes of nonholonomic systems, developing
general rules for the construction of the penalty functions, and extend
our approach to include consideration of optimality.
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High-Order Neural Networks for the Learning
of Robot Contact Surface Shape

Elias B. Kosmatopoulos and Manolis A. Christodoulou

Abstract—It is known that the problem of learning the shape parame-
ters of unknown surfaces that are in contact with a robot end-effector
can be formulated as a nonlinear parameter estimation problem and
an extended Kalman filter can be applied in order to estimate the
surface shape parameters. In this paper, we show that the problem
of learning the shape parameters of unknown contact surfaces can be
formulated as a linear parameter estimation problem and thus globally
convergent learning laws can be applied. Moreover, we show that by
using appropriate neural network approximators, the unknown surfaces
can be learned even if there are no force measurements, i.e., the robot is
not provided with any force or tactile sensors.

Index Terms—Adaptive observers, high order neural networks, param-
eter estimation, robot contact surfaces.

I. INTRODUCTION

When it is desired to design robot manipulators that will operate
in uncertain and unknown environments, it is sometimes necessary
to provide them with appropriate devices and algorithms that are
capable of estimating and learning unknown surfaces that are in
contact with the robots’ end-effectors. In fact, it can be shown
that the contact forceF is given by F = �(t; #) where # is
the vector of the unknown surface shape parameters, and�(t; �) is
a known nonlinear function. Therefore, we can apply an extended
Kalman filter or any other nonlinear parameter estimation method to
estimate the unknown surface parameters# [1]. However, nonlinear
parameter estimation algorithms do not guarantee the convergence of
the estimated parameter vector to the actual parameter vector#; due
to the nonlinear dependence of the function�(�) on the parameter
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vector #, there are many local minima of the error functional
that the parameter estimation algorithm minimizes. Therefore the
nonlinear parameter estimation algorithm might get trapped into a
local minimum, and thus, the estimation procedure will fail.

In this paper, we show that by using appropriate neural network
approximators we can formulate the unknown surface estimation
problem as a linear parameter estimation problem, and therefore
a linear parameter estimation algorithm can be applied. The lin-
ear parameter estimation algorithms, contrary to nonlinear ones,
ensure stability and convergence to the unique global minimum.
Furthermore, we propose a new learning architecture that is capable
of estimating the unknown surface shape parameters even in the
case where the contact forceF is not available for measurement.
As we show, the whole scheme is globally stable and convergent.
The proposed algorithms make use of high-order neural network
approximators, which are linear with respect to their adjustable
parameters. Our methodology is applicable to any surface that can
be described by a smooth function of the Cartesian coordinates.

A. Notations and Preliminaries

f 2 L1 means that supt�0 jf(t)j < 1; r and r2

denote the gradient and Hessian operators, respectively.
f ! R (g1; g2; � � � ; gn) means thatf(t) converges to the
set f : jf j2 �

n

i=1
ai supt�0 jgi(t)j

2 , ai � 0: f
exp
!

R(g1; g2; � � � ; gn) means that the convergence is exponential.
We say that the functionf(t) is persistently exciting (symbolically
f 2 PE) if there are positive constants�1; �2; � such that
�1I �

t+�

t
f(s)fT (s) ds � �2I < 1; 8t � 0. Consider

now the following error systems, which will be frequently met
in the rest of the paper(E1) e(t) = ~W (t)�(t) + �(t) and (E2)
_e = Ae + ~W�(t) + �(t) where e; ~W; �; � denote the so-called
identification error, parameter estimation error, regressor vector,
and modeling error term, respectively. The matrixA is a constant
stability matrix. The parameter estimation error is defined as the
difference between an unknown constant matrixW � andW which
is the known current estimate ofW �. Consider now the following
learning law

_~W = PC ��e(t)�
T
(t);W (t) (1.1)

where� is a positive definite design matrix andPC[�; �] denotes the
projection operator defined as follows:PC[y;W ] = y if C(W ) � 0

or @C

@W
(W )y � 0 and

PC[y;W ] = y �
C(W )

@C

@W
(W )y

j @C
@W

(W )j2
@C

@W
(W )

T

otherwise, whereC is a convex set satisfyingW � 2 C, andC(W ) is
a function satisfyingC(W ) � 0 iff W 2 C. The learning law (1.1)
is known as the parameter projection adaptive law [9], [3]. The next
theorem summarizes some of the properties of this adaptive law [3].

Theorem 1: Consider either the error system(E1) or the system
(E2) and the learning law (1.1). Assume that�; _�; � 2 L1. Then
the following statements hold: 1)e;W; ~W 2 L1 andW (t) 2 C for
all t, provided thatW (0) 2 C, 2) e ! R(�), 3) if �(t) = 0 then
limt!1 e(t) = 0, 4) ~W� ! R(�), and finally 5) If jW �j 2 C and
� 2 PE then ~W

exp
! R(�).
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