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Abstract: We present polynomial-time interior-point algorithms for solving the Fisher and

Arrow-Debreu competitive market equilibrium problems with linear utilities and n players.

The algorithm for solving the Fisher problem is a modified primal-dual path-following algo-

rithm, and the one for solving the Arrow-Debreu problem is a primal-based algorithm. Both

of them have the arithmetic computation complexity bound of O(n4 log(1/ε)) for computing

an ε equilibrium solution. If the problem data are rational numbers and their bit-length is L,

then the bound to generate an exact solution is O(n4L) which is in line with the best com-

plexity bound for linear programming of the same dimension and size. This is a significant

improvement over the previously best bound O(n8L) for solving the two problems. We also

present a continuous path leading to the set of the Arrow-Debreu equilibrium, similar to the

central path developed for linear programming interior-point methods. This path is derived

from the weighted logarithmic utility and barrier functions and the fixed point theorem. The

defining equations are bilinear and possess some primal-dual structure for the application of

Newton’s path-following method.
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1 Introduction

We consider the Arrow-Debreu competitive market equilibrium problem which was first

formulated by Leon Walras in 1874 [26]. In this problem every one in a population of n

players has an initial endowment of a divisible good and a utility function for consuming all

goods—own and others. Every player sells the entire initial endowment and then uses the

revenue to buy a bundle of goods such that his or her utility function is maximized. Walras

asked whether prices could be set for everyone’s good such that this is possible. An answer

was given by Arrow and Debreu in 1954 [1] who showed that such equilibrium would exist if

the utility functions were concave. Their proof was non-constructive and did not offer any

algorithm to find such equilibrium prices.

Fisher was the first to consider algorithm to compute equilibrium prices for a related

and different model where players are divided into two catalogs: producer and consumer.

Consumers have money to buy good and maximize their individual utility functions; producer

sell their goods for money. The equilibrium prices is an assignment of prices to goods so

as when every consumer buys an maximal bundle of goods then the market clears, meaning

that all the money is spent and all goods are sold. Fisher’s model is a special case of Walras’

model when money is also considered a commodity so that Arrow and Debreu’s result applies.

Eisenberg and Gale [11, 15] gave a convex optimization setting to formulate Fisher’s

model with linear utility functions. They constructed an concave objective function that

is maximized at the equilibrium. Thus, finding an equilibrium became solve a convex op-

timization problem, and it could be solved by using the Ellipsoid method in polynomial

time. Here, polynomial time means that one can compute an ε approximate equilibrium in

a number of arithmetic operations bounded by polynomial in n and log 1
ε
. Devanur et al. [9]

recently developed a “combinatorial” algorithm for solving Fisher’s model with linear utility

functions too 1. Either the ellipsoid method or the combinatorial algorithm has a running

time in the order of O(n8 log(1/ε)). Both approaches, Eisenberg-Gale and Devanur et al.,

1There were critical errors in their initial conference paper, but they corrected them in a journal version.
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did not apply to the more general Walras model. The ε based complexity result seems more

appropriate for analyzing these problems because general solutions may be irrational even

all input data are rational.

Solving the Arrow-Debreu problem was proved to be more difficult. Eaves [12] showed

that the problem with linear utility can be formulated as a linear complementarity problem

(e.g. Cottle et al. [7]) so that Lemke’s algorithm could compute the equilibrium, if it existed,

in a finite time. It was also proved there that the equilibrium solution values were rational

as solutions to an n2-dimension system of linear equations of the original rational inputs. In

a later paper [13], Eaves also proved that the problem with Cobb-Douglass utility could be

solved in strongly polynomial time of O(n3). Other effective algorithms to solve the problem

include Primak [24], Dirkse and Ferris [10], and Rutherford [25], see the excellent survey by

Ferris and Pang [14]. None of these are proved to be polynomial-time algorithms.

More recently, however, Jain [16] has showed that Walras’s model can be also formulated

as a convex optimization, more precisely, a convex inequality problem, so that the Ellipsoid

method again can be used in solving it. Remarkably, he found out a clean set of posinomial

inequalities to describe the problem which is necessary and sufficient. This set of inequalities

can be logarithmically transferred into a set of convex inequality, which technique was used

for geometric programming in early 60’s. Similar inequalities were written in the past but

with additional inequalities, which were not convex transferable, according to Jain.

The goal of this paper is threefold. First, we develop a polynomial-time interior-point

algorithm to solve Fisher’s model with linear utility. The complexity bound, O(n4 log 1
ε
), of

the algorithm is significantly lower than either the Ellipsoid or “combinatorial” algorithm

mentioned above. Secondly, we present an interior-point algorithm, which is not primal-

dual, for solving the Arrow-Debreu competitive market equilibrium problem with linear

utility. The algorithm has an efficient barrier function for every convex inequality where

the self-condordant coefficient is at most 2. Thus, the number of arithmetic operations of

the algorithm is again bounded by O(n4 log 1
ε
), which is substantially lower than the one

obtained by the ellipsoid method. If the input data are rational, then an exact solution can
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be obtained by solving the identified system of linear equations, such as Eaves’ modle, when

ε < 2−L, where L is the bit length of the input data. Thus, the arithmetic operation bound

becomes O(n4L), which is in line with the best complexity bound for linear programming of

the same dimension and size.

Finally, we develop a convex optimization setting for Walras’ model, and present a

continuous path leading to the set of the Arrow-Debreu equilibrium, similar to the central

path developed for linear programming interior-point methods (see, e.g., Megiddo [20]). The

path is derived from the weighted logarithmic utility and barrier functions and the fixed

point theorem. The defining equations are bilinear and possess some primal-dual structure

for the application of Newton’s method.

2 An interior-point algorithm for solving the Fisher

equilibrium

In Fisher’s model the players are divided into two catalogs: producer and consumer. Con-

sumer i, i ∈ C, has given money wi to spend and buy good to maximize their individual

utility functions; produce j’s, j ∈ P , sell their goods for money. The equilibrium prices is

an assignment of prices to goods so as when every consumer buys an maximal bundle of

goods then the market clears, meaning that all the money is spent and all goods are sold.

Eisenberg and Gale [11] gave a convex optimization setting, where, without losing generality,

each producer has one unit good:

maximize
∑

i∈C wi log
(∑

j∈P uijxij

)

subject to
∑

i∈C xij = 1, ∀j ∈ P

xij ≥ 0, ∀i, j.

Here, player i, i ∈ C, has a linear utility function

u(xi·) = u(xi1, ..., xin) =
∑

j

uijxij,
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where uij ≥ 0 is the given utility coefficient of player i for producer j’s good and xij represents

the amount of good bought from producer j by consumer i. They proved that the optimal

dual vector of the convex problem is the market clearing price.

Jain has the following economic interpretation. Consider a person, he has some utility

function. This utility function is his measurement of his happiness in terms of his own mea-

suring scale. Consider two different persons. They may have two different utility functions.

They may be using different scales or units for measuring their utilities. But suppose these

two persons are in a single family, say husband and wife. If they want to measure the total

happiness of the family then what should be a natural way of combining the individual’s

utility to measure the aggregate utility of the family? Or, the society at large? In the

Eisenberg-Gale model the weights used are the amount of money a person possess, which is

known and fixed in Fisher’s model. This is very natural as shown by the following thought

experiment. Suppose we multiply the utilities with uniform weights for each player. Let us

consider each person in a family. In this family, only the wife goes to the market to buy stuff

for the family. So if the market, via open market rules, maximizes the product of utilities of

all the players then the weight of the family is only one in the product. But if both husband

and wife go to the market then the weight is two. But we know that there is nothing in

the rules of the open market which depends on the number of people going to the market.

Instead the open market rules depend upon the amount of goods and money brought into

the market. So for Eisenberg and Gale, wi is the amount of money the player has. Hence

they showed that the open market maximizes the product of utilities, where this product is

taken over all the money in the system so that the market is clear. In fact, based on this

principal, Eisenberg-Gale showed the existence of an equilibrium for the Fisher model.
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2.1 The weighted analytic center

The Eisenberg-Gale model can be rewritten as

maximize
∑

i∈C wi log(ui) (1)

subject to
∑

i∈C xij = 1, ∀j ∈ P

ui −
∑

j∈P uijxij = 0, ∀i ∈ C

ui, xij ≥ 0, ∀i, j.

Consider a more general problem

maximize
∑n

j=1 wj log(xj) (2)

subject to Ax = b,

x ≥ 0,

where given A is an m × n dimension matrix with full row rank and b is a m dimension

vector, and wj is the weight on each of the n variables. An x who satisfies the constraint

is called a primal feasible solution, while the maximal solution to the problem is called the

weighted analytic center.

If the feasible set is bounded and has an interior, the optimality conditions of the

weighted analytic center are:

Sx = w,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0,

(3)

where y and s are called dual variable and slacks, respectively, and S is the diagonal matrix

with slack vector s on its diagonals. When wj > 0 and integral for all j, a weight-scaling

interior-point algorithm was developed by Atkinson and Vaidya [2] where the arithmetic

operation complexity bound is O(n3 log(max(w)
min(w)

)) to compute a solution such that

‖Sx− w‖ ≤ O(min(w)),

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.
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They start with an approximate analytic center where all weights equal min(w), and then

scale them up to w iteratively. It is not clear how their algorithm can be adapted or analyzed

when some of wj are zeros, which is the case of Fisher’s model (1).

2.2 A modified primal-dual path-following algorithm

In this subsection, we modify the standard primal-dual path-following algorithm (e.g., Ko-

jima et al. [19], Monteiro and Adler [22] and Mizuno et al. [21]) for solving problems (2)

and (1) and analyze their complexity to computing an ε-solution for any ε > 0:

‖Sx− w‖ ≤ ε,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.

(4)

Let x > 0 and s > 0 be a primal and dual interior-point point pair such that

‖Sx− ŵ‖ ≤ ηµ, (5)

where µ represents the duality gap, η is a positive constant less than 1, and

ŵj = max{µ, wj}. (6)

Such a point pair is called an approximate central-path point pair of the primal and dual

feasible set.

Now we solve a prima-dual system of linear equations for dx, dy and ds:

Sdx + Xds = ŵ+ −Xs,

Adx = 0,

−AT dy + ds = 0,

(7)

where

ŵ+
j = max{(1− η√

n
)µ,wj}. (8)
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Note that dT
x ds = dT

x AT dy = 0 here. The arithmetic operations of solving the system is to

form the normal matrix ADAT , where D is a diagonal matrix whose diagonals are strictly

positive, and factorize it.

After obtain (dx, dy, ds) let

x+ := x + dx,

y+ := y + dy,

s+ := s + ds.

(9)

Then, we prove that x+ and (y+, s+) are an interior-point feasible pair, and

‖(S+)x+ − ŵ+‖ ≤ ηµ+ (10)

where

µ+ = (1− η√
n

)µ,

so that the computation can repeat.

First, it is helpful to re-express dx and ds. Let

p := X−.5S.5dx,

q := X .5S−.5ds,

r := (XS)−.5(ŵ+ −Xs),

(11)

Note that

p + q = r and pT q = 0

so that p and q represent an orthogonal decomposition of r.

Secondly, from (5,6,8), we have

xjsj ≥ ŵj − ηµ ≥ (1− η)µ

and

‖ŵ+ −Xs‖ = ‖ŵ+ − ŵ + ŵ −Xs‖ ≤ ‖ŵ+ − ŵ‖+ ‖ŵ −Xs‖ ≤ ηµ + ηµ = 2ηµ,
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which implies that

‖r‖ ≤ ‖(XS)−.5‖‖ŵ+ −Xs‖ ≤ 2η
√

µ√
1− η

.

Moreover, it is also proved in Mizuno et al. [21] that

‖p‖2 + ‖q‖2 = ‖r‖2 and ‖Pq‖ ≤
√

2

4
‖r‖2.

Thus,

‖(S+)x+ − ŵ+‖2 = ‖(S + Ds)(x + dx)− ŵ+‖2

= ‖Sx + Sdx + Xds − ŵ+ + Dsdx‖2

= ‖Dsdx‖2

= ‖Pq‖2

≤
√

2

4
‖r‖2

≤
√

2η2

1− η
µ

≤
√

2η2

(1− η)2
µ+.

Thus, if we choose constant η such that

√
2η2

(1− η)2
≤ η

then condition (10) holds. Moreover,

‖X−1(x+ − x)‖ = ‖X−1dx‖
= ‖(XS)−.5p‖
≤ ‖(XS)−.5‖‖p‖
≤ ‖p‖√

(1− η)µ

≤ ‖r‖√
(1− η)µ

≤ 2η

1− η
< 1,
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which implies that x+ > 0. Similarly, we have s+ > 0. That is, (x+, y+, s+) is a feasible

interior-point pair.

We can generate an initial point pair x0 > 0 and s0 > 0 such that

‖S0x0 − µ0e‖ ≤ ηµ0

where µ0 = max(w) and e is the vector of all ones. Such a point pair is called an approximate

analytic center of the primal and dual feasible set. In problem (1), the primal feasible set

has an interior and it is bounded, which implies that the dual feasible set has interior. The

complexity to generate such an initial point pair is O(n3(log 1
ε
)) arithmetic operations. Since

the dual feasible set is homogeneous, we can always scale (y, s) so that µ0 = max(w).

Note that µ is decreased at a geometric rate (1− η/
√

n) and it starts at max(w). Also,

if wj = 0 for some j, then

sjxj ≤ ε√
n

from

|sjxj − µ| ≤ ηµ

as soon as µ ≤ ε√
n(1+η)

. Thus, we have

Theorem 1. The primal-dual path-following algorithm solves the partial weight analytic

center problem (2) in O(
√

n log(n max(w)/ε)) iterations and each iteration solves a system

of linear equations in O(nm2 + m3) arithmetic iterations. If Karmarkar’s rank-one update

technique is used, the average arithmetic operations can be reduced to O(n1.5m) arithmetic

operations.

If the predictor and corrector algorithm of Mizuno et al. [21] is used, the quadratic

convergence result of [27] applies to solving problem (2). We have

Corollary 1. The primal-dual predictor-corrector algorithm solves the partial weight ana-

lytic center problem (2) in O(
√

n(log(n max(w)C(A, b)) + log log(1/ε)) iterations and each
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iteration solves a system of linear equations in O(nm2 + m3) arithmetic iterations. Here,

C(A, b) is a positive fixed number depending on data A and b, and if A and b are rational

numbers then C(A, b) ≤ 2O(L(A,b)) where L(A, b) is the bit-length of A and b.

These result indicate that the complexity of the Fisher equilibrium problem is completely

in line with linear programming of same dimension and size.

2.3 Complexity analysis of solving the Fisher equilibrium

In solving Fisher’s problem with n producers and n consumers in (1), the number of variables

becomes n2 + n and the number of equalities is 2n. We can assign the initial x0 such that

x0
ij =

1

n
, ∀i, j

so that

u0
i =

1

n

∑
j∈P

uij, ∀i.

Set the dual variable with equality constraint j

y0
j = 2nβ

and dual variable with equality constraint i be

y0
i =

β

u0
i

.

Then, we have slack variable s0
i and u0

i

s0
i u

0
i = β, ∀i

and slack variable s0
ij and x0

ij

s0
ijx

0
ij = (y0

j − y0
i uij)/n = 2β − uijβ∑

j∈P uij

, ∀i, j

which is between β and 2β. Using at most O(log(n)) interior-point iterations, we will have

an interior-point pair satisfying condition (5) (e.g., see [28]).
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Moreover, matrix A of (1) is sparse and each of its columns has at most two nonzeros.

Thus, ADAT can be formed in at most O(n2) operations, and it can be factorized in O(n3)

arithmetic operations. Thus, we have

Theorem 2. The modified primal-dual path-following algorithm solves the Fisher equilibrium

problem (1) with n producers and n consumers in at most O(n log(n max(w)/ε)) iterations

and each iteration solves a system of linear equations in O(n3) arithmetic iterations.

In addition to the feasibility conditions, the optimality condition of the Eisenberg-Gale

formulation can be written as

∑
j∈P

uijxij ≥ miuij

pj

, ∀i, j

xij

∑
j∈P

uijxij = xij
miuij

pj

, ∀i, j.

Thus, an optimal solution xij of the Eisenberg-Gale formulation is the solution of the system

equations:

∑
j∈P

uijxij =
miuij

pj

, (i, j) ∈ B∗

∑
i∈C

xij = 1, ∀j

xij = 0, ∀(i, j) 6∈ B∗

where B∗ is the set of the optimal basic-variables xij which are positive at the optimal

solution.

If we view products pjxij as new variales yij, then the system becomes a system of linear

equations:

∑
j∈P

uijyij = miuij, (i, j) ∈ B∗

∑
i∈C

yij = pj, ∀j

yij = 0, ∀(i, j) 6∈ B∗
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Hence, yij = pjxij and pj must be rational numbers and their size is bounded by the bit-length

L of all input data uij and mi. Thus, the same linear programming interior-point algorithm

rounding techniques (e.g., [28]) can be applied to identify B∗ in O(nL) the interior-point

algorithm itereations, which implies that

Corollary 2. The modified primal-dual path-following algorithm solves the Fisher equilib-

rium problem (1) with n producers and n consumers in at most O(nL) iterations and each

iteration solves a system of linear equations in O(n3) arithmetic iterations, where L is the

bit-length L of the input data uij and mi.

Our result is a significant improvement from O(n8L) arithmetic operations of either the

ellipsoid method and the combinatorial algorithm mentioned earlier.

3 An interior-point algorithm for solving the Arrow-

Debreu equilibrium

Again, with out loss of generality, assume that each of the n players has exactly one unit of

divisible good, and let player i, i = 1, ..., n, has a linear utility function

u(xi·) = u(xi1, ..., xin) =
∑

j

uijxij,

where uij is the given utility coefficient of player i for player j’s good and xij represents the

amount of good bought from player j by player i. The main difference between Fisher’s and

Walras’ models is that, in the latter, each player is both producer and consumer and the

budget of player i is not given and will be the price assigned to his or her good. Nevertheless,

we can still write a (parametric) convex optimization model:

maximize
∑n

i=1 wi log
(∑n

j=1 uijxij

)

subject to
∑n

i=1 xij = 1, ∀j
xij ≥ 0, ∀i, j,
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or

maximize
∑n

i=1 wi log(ui) (12)

subject to
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, xij ≥ 0, ∀i, j,

where we wish to select weights wi’s such that the optimal dual prices equal them respectively.

For given w’s, the necessary and sufficient optimality conditions of the model are:

uiπi = wi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, πi, xij ≥ 0, ∀i, j,

where p is the dimension-n optimal dual price vector of the first n equality constraints and

π is the dimension-n optimal dual price vector of the second n equality constraints in (12).

We call the first equation the weighted centering condition, the second the complementarity

condition, the third the dual feasibility, and the third and fourth the primal equality.

Next, we will prove that there is indeed a w ≥ 0 such that pi = wi in these conditions,

that is, there are (u, x) and (p, π) such that

uiπi = pi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, πi, xij ≥ 0, ∀i, j,

(13)
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3.1 The self-dual weighted analytic center

Consider a more general problem

maximize
∑l

j=1 wj log(xj) (14)

subject to Ax = b,

x ≥ 0,

where given A is an m× n matrix with full row rank,

b =


 e

0


 ∈ Rm,

and e is the l(≤ m)-dimension vector of all ones.

We prove the following theorem

Theorem 3. Assume that the feasible set of (14) is bounded and has a nonempty interior,

and the dual feasibility AT y ≥ 0 imply y1, ..., yl ≥ 0. Then, there exist w1, ..., wl ≥ 0 such

that the optimal dual prices, corresponding to the first l equality constraints of (14), equal

w1, ..., wl, respectively. When wj’s satisfy this property, we call the solution of (14) the

self-dual weighted analytic center of the feasible set of (14).

Proof. For any given w1, ..., wl ≥ 0, and, without loss of generality, let
∑l

j=1 wj = M for

some positive constant M , the optimality conditions of (14) are

sjxj = wj, j = 1, ..., l

sjxj = 0, j = l + 1, ..., n

s− AT y = 0,

Ax = b,

x, s ≥ 0.

(15)

These conditions are necessary and sufficient since the feasible set of (14) is bounded and

has a nonempty interior.
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Summing up the top n equalities, we have

n∑
j=1

sjxj =
l∑

j=1

wj = M.

But from the rest conditions

n∑
j=1

sjxj = xT s = xT (Ay) = (Ax)T y = bT y =
l∑

i=1

yi.

From the assumption, yi ≥ 0 for i = 1, ..., l from s = AT y ≥ 0. Thus, y(w) := (y1, ..., yl) is a

mapping from w := (w1, ..., wl) in the simplex {wi ≥ 0 :
∑l

i=1 wi = M} to itself.

In general, this mapping may not be one-to-one. But if we let

y(w) = lim
µ→0+

y(µ)

where y(µ) is the unique solution to

sjxj = wj, j = 1, ..., l

sjxj = µ, j = l + 1, ..., n

s− AT y = 0,

Ax = b,

x, s ≥ 0.

Then, the mapping is one-to-one and continuous from the weighted analytic center theory.

Therefore, the result follows from the fixed point theorem.

Theorem 3 establishes an alternative proof of the existence of the Arrow-Debreu equi-

librium. It also implies that the conditions for the self-dual weighted analytic center of the

feasible set of (14) can be written as

sjxj = yj, j = 1, ..., l

sjxj = 0, j = l + 1, ..., n

s− AT y = 0,

Ax = b,

x, s ≥ 0.
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Note that the system is homogeneous in (y, s) so that we may add a normalizing constraint

l∑
j=1

yj = M

to the conditions.

From the above conditions but excluding the second one, we have

n∑

j=l+1

sjxj = sT x−
l∑

j=1

sjxj = sT x−
l∑

j=1

yj = bT y −
l∑

j=1

yj = 0,

that is, the second condition is implied by the rest of them. This fact was first proved by

Jain [16] for the Arrow-Debreu equilibrium problem, which is a special case of problem (14).

Corollary 3. Assume that the feasible set of (14) is bounded and has a nonempty interior,

and the dual feasibility AT y ≥ 0 imply y1, ..., yl ≥ 0. Then, the self-dual weighted analytic

center of the feasible set of (14) satisfies the following necessary and sufficient conditions:

sjxj = yj, j = 1, ..., l

s− AT y = 0,

Ax = b,

x, s ≥ 0.

(16)

3.2 A convex minimization formulation

Jain [16] has also shown that pi > 0 for all i under certain rational conditions on uij in

(13). Thus, by deleting the complementarity condition and substituting ui and πi from the

equalities, the Arrow-Debreu equilibrium is a point (xij, pj) that satisfies

∑
j uijxij ≥ uij

pi

pj
, ∀i, j

∑
i xij = 1, ∀j

pi > 0, ∀i
xij ≥ 0, ∀i, j.

(17)
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Then, the problem can be formulated as the following optimization Phase I problem:

minimize θ (18)

subject to
∑

i xij = 1 + θ ∀j
∑

j uijxij ≥ uij
pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.

Here θ can be viewed as an inflated units of each player’s good, i.e., initially every player

pretends to have 1 + θ units of good. Then θ is gradually moved down to 0. One can easily

see that the problem is strictly feasible with a suitably large θ. Furthermore,

Lemma 1. For any feasible solution of Problem (18), we must have θ ≥ 0.

Proof. For all i, j, we have

xijpj

∑
j

uijxij ≥ piuijxij.

Summing over j of the inequalities, we have
(∑

j

xijpj

)(∑
j

uijxij

)
≥ pi

(∑
j

uijxij

)
.

Thus,

∑
j

xijpj ≥ pi.

Summing over i of the inequalities, we have

∑
i

∑
j

xijpj ≥
∑

i

pi,

or

(1 + θ)
∑

j

pj ≥
∑

i

pi

which implies θ ≥ 0.

According to Arrow and Debreu [1], we must also have

Lemma 2. The minimal value of Problem (18) is θ = 0.
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3.3 The logarithmic transformation and efficient barrier functions

Let yi = log pi, ∀i. Then problem (18) becomes

minimize θ (19)

subject to
∑

i xij − θ = 1 ∀j
∑

j uijxij ≥ uije
yi−yj ∀i, j : uij 6= 0

xij ≥ 0, ∀i, j.

Note that the new problem is a convex optimization problem since eyi−yj is a convex function

in y. This type of transformations has been used in Geometric Programming.

The question: is there an efficient barrier function for inequality

∑
j

uijxij ≥ uije
yi−yj , uij 6= 0.

The answer is “yes”, and its barrier function is

log

(∑
j

uijxij

)
+ log

(
log

(∑
j

uijxij

)
− log uij − yi + yj

)

where its self-condordant parameter is 2, see Proposition 5.3.3 of Nesterov and Nemirovskii

[23]. One may also construct the dual, the Legendre transformation, of the barrier function.

Thus, we can formulate the problem as a barrier optimization problem:

minimize θ − µ
∑

i,j

(
log xij + log

(∑
j uijxij

)
+ log

(
log

(∑
j uijxij

)
− log uij − yi + yj

))

subject to
∑

i xij − θ = 1 ∀j, (20)

where the barrier parameter µ > 0. Thus, one can develop an interior-point path-following

or potential reduction algorithm to compute an ε-optimal solution, i.e., θ < ε. Since the

total self-condordant coefficient of the barrier function is O(n2), and each iteration uses at

most O(n3) arithmetic operations due to the block and sparse structure of the Hessian of

the barrier function and the constraint matrix, we have
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Theorem 4. There is an interior-point algorithm to generate a solution to problem (18)

with θ < ε in O(n log 1
ε
) iterations and each iteration uses O(n3) arithmetic operations.

Note that this worst-case complexity bound is significantly lower than the Ellipsoid

method used by Jain [16].

3.4 Alternative optimization setting

An alternative Phase I problem is

minimize θ (21)

subject to
∑

i xij = 1 ∀j
θ ·∑j uijxij ≥ uij

pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.

Initially, θ > 1, which is an inflated factor for the utility value. The problem is to drive θ to

1.

Let yi = log pi, ∀i and κ = log θ. Then problem (18) becomes

minimize κ (22)

subject to
∑

i xij = 1 ∀j
∑

j uijxij ≥ uije
yi−yj−κ ∀i, j : uij 6= 0

xij ≥ 0, ∀i, j.

Again, the new problem is a convex optimization problem since eyi−yj−κ is a convex function

in y and κ, and the minimal value of the problem is 0.

3.5 Rounding to the exact solution

Eaves [12] showed that the Arrow-Debreu problem with linear utility can be formulated as

a complementarity problem, where an optimal solution xij and price p is the solution of the
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homogeneous system:

∑
j

uijpjxij = uijpi, (i, j) ∈ B∗

∑
i

pjxij = pj, ∀j

xij = 0, ∀(i, j) 6∈ B∗

where B∗ is the set of the optimal basic-variables xij which are positive at the optimal

solution.

Again, if we view products pjxij as new variales yij, then the system becomes a homoge-

neous system of linear equations. Hence, yij = pjxij and pj (after normalizing say
∑

j pj = n)

must be rational numbers and their size is bounded by the bit-length L of all input data

uij. Thus, the same linear programming interior-point algorithm rounding technique can be

applied to identify B∗ in O(nL) the interior-point algorithm itereations, which implies that

Corollary 4. There is an interior-point algorithm to compute a solution of problem (18)

with n producers and n consumers in at most O(nL) iterations and each iteration solves a

system of linear equations in O(n3) arithmetic iterations, where L is the bit-length L of the

input data uij.

Our result is a significant improvement over the ellipsoid method of Jain.

4 A path to the Arrow-Debreu equilibrium

Now, we move our attention to whether there is a direct interior-point algorithm in solving

the Arrow-Debreu equilibrium problem, similar to the primal-dual path-following algorithm

for linear programming and the Fisher equilibrium. Such an algorithm may have many

economical and practical appears.

Consider the convex optimization problem for a fixed scalar 0 ≤ µ ≤ 1 and a nonnegative
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weight vector w with
∑

i wi = n2:

maxmize µ
∑

i,j log(xij) +
∑

i wi(1− µ) log
(∑

j uijxij

)
(23)

subject to
∑

i xij = 1, ∀j
xij ≥ 0, ∀i, j.

4.1 Economic interpretations

The objective of (23), when µ = 0, is the same objective function which Eisenberg-Gale used

for Fisher’s model.

We now present economic interpretations for µ > 0. When µ = 1, then the objective

function becomes the logarithmic barrier function and the unique maximizer of (23) is the

analytic center of the feasible set, namely, xij = 1
n

for all i, j. This is probably an ideal

socialist solution if all players are homogeneous.

In our setting, the combined objective function represents a balance between socialism

and individualism. Here wi(1 − µ) is the weight for the log-utility value of player i. If

again, wi represents the amount of money player i possesses,
∑

i wi = n2 represents the

total wealthy of the population, and µ represents player i’s tax rate to be collected for social

welfare. The leftover amount, wi(1−µ), would be the weight used in Eisenberg-Gale to make

the market clear. Here, the total collected tax amount is n2µ and the tax rate is uniformly

applied among the payers.

Mike Todd also pointed out that the objective function is really the convex combina-

tion of the two different utility functions, one is un-weighted and the other is weighted,

representing two different idealisms.

4.2 The fixed point theorem

Unlike Fisher’s problem, we really don’t know how much money w each player possesses in

Walras’ model—it is up to what prices pi’s assigned to them, since they have to sell their
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goods at these prices for revenues. But prices are the optimal dual variables or Lagrangian

multipliers of the n equality constraints in (23). Then, the natural question is, is there a

vector w such that the optimal dual prices of (23) equal to wi’s, respectively. We give an

affirmative answer in the following theorem.

Theorem 5. For any scalar 0 ≤ µ ≤ 1, there exists a weight vector w ≥ 0 and
∑

i wi = n2

such that the optimal dual price vector of (23) equals w.

Proof. When µ = 1, i.e., the tax rate equals 1, the (unique) prices would be

wi = pi = n and xij =
1

n
∀i, j.

Consider 0 ≤ µ < 1. Denote the compact simplex by

S(n2) = {y ∈ Rn :
∑

i

yi = n2, yi ≥ 0, ∀i}.

From the convex optimization theory, the necessary and sufficient optimality conditions of

an x in (23) are

µ
xij

+
wi(1−µ)uij∑

j uijxij
≤ pj, ∀i, j

xij

(
pj − µ

xij
− wi(1−µ)uij∑

j uijxij

)
= 0, ∀i, j

∑
i xij = 1, ∀j
xij ≥ 0, ∀i, j.

(24)

where pj is the optimal dual price or Lagrangean multiplier for equality constraint j. The

first set of constraints is dual feasibility, the second set is called complementarity, and the

last two are primal feasibility.

Summing up the complementarity equation over i and noting
∑

i xij = 1, we have

pj = nµ +
∑

i

wi(1− µ)uijxij∑
j uijxij

≥ nµ ≥ 0, ∀j.

Summing the above equation over j, we have

∑
j

pj = n2µ +
∑

j

∑
i

wi(1− µ)uijxij∑
j uijxij
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= n2µ +
∑

i

wi(1− µ)∑
j uijxij

∑
j

uijxij = n2µ +
∑

i

wi(1− µ) = n2µ + n2(1− µ) = n2.

That is, p ∈ S(n2). For given uij’s and fixed µ ≥ 0, we may think p ∈ S(µ) being a mapping

of w ∈ S(n2), that is, p(w) is a mapping from the simplex to itself. From the Fixed Point

Theorem, there exists w ∈ S(n2) such that

p(w) = w,

which completes the proof.

Note that summing up the complementarity equation in (24) over j when w = p, we

have

∑
j

pjxij = nµ +
∑

j

wi(1− µ)uijxij∑
j uijxij

= nµ + wi(1− µ) = nµ + pi(1− µ).

That is, the individual payment spent by player i equals his net income (after tax) plus nµ

which can be viewed as a tax amount refunded back to each player uniformly.

4.3 The case µ = 0

When µ = 0, with p = w = p(w), the optimality conditions (24) become (13), which is

exactly the necessary and sufficient conditions for p being an Arrow-Debreu equilibrium

price vector.

There may be academic advantage of our constructed proof, however. First this proof

can be seen as an extension of Eisenberg-Gale proof. Second, this proof reduces the Wal-

ras model (by Arrow-Debreu’s setting) to Fisher Model. This justifies an approximation

algorithm of Jain et al. [18] to compute an approximate equilibrium. Their approximation

algorithm reduces the Walras setting to Fisher setting, and it can be simply stated as

1. Starts with arbitrary wi’s.

2. Compute the pi(w)’s.
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3. Replace the wi’s with pi(w)’s plus a residual, and repeat the loop until the pi’s computed

are almost equal to the wi’s used in the loop. (It is proved that the residual keeps going

down linearly in the process.)

Their simple and elegant algorithm converges in a time bounded by 1
ε
.

4.4 The case µ > 0

In this case, we have an interior primal maximal solution, i.e., xij > 0. Again let p = w =

p(w) in the optimality conditions of (23). Moreover, let yi =
∑

j uijxij and qi = pi(1−µ)∑
j uijxij

.

Then we have

xij(pj − uijqi) = µ, ∀i, j
yiqi − pi(1− µ) = 0, ∀i

∑
i xij = 1, ∀j

yi −
∑

j uijxij = 0, ∀i
∑

i pi = n2,

yi, qi ≥ 0, ∀i
xij, (pj − uijqi) ≥ 0, ∀i, j.

(25)

Since both the primal and dual solutions of the strictly convex optimization are unique

interior points for any given 0 < µ ≤ 1, they can be written as (xij(µ), yi(µ), qi(µ), pi(µ)).

Similar to the central path theory of linear programming (e.g., [20]), we have

Theorem 6. For any given µ > 0, the system (25) has a unique solution (xij(µ), yi(µ), qi(µ), pi(µ)),

and they form a continuous path for µ ∈ (0,∞). Moreover, when µ → 0+, the solution con-

verges the Arrow-Debreu equilibrium.

System (25) has linear and bilinear equations, which are similar to the central path

equations for linear programming and primal-dual path-following Newton’s methods might

be applicable.
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5 Final Remark

Jain has pointed [17] out that existence proof of Theorem 5 can also be done using a thought

experiment without even referring to convex programs. Suppose we have an Arrow-Debreu

setting. Suppose every player non-deterministically guesses his potential income wi’s. He

takes an advance loan from a bank based on his potential income. He goes to the market

with that money. There the market becomes Fisher setting. He sells his goods according to

the Fisher equilibrium pi(w)’s. If it turns out that the amount of money he makes is the

same as the loan he took from the bank then the non-deterministic guesses agents made were

an Arrow-Debreu equilibrium. Note that, Fisher setting guarantees that the summation of

pi(w)’s is the same as the summation of wi’s as indicated in our proof. So using the fixed

point theorem there is a set of correct guesses. An advantage of this “thought” proof is that

it works even for non-linear and concave utilities.

The general self-dual weighted analytic center introduced in this paper seems to have

more application in matrix games and other fixed-point problems. We expect more equilib-

rium problems can be transferred to convex optimization problem where efficient interior-

point algorithms may apply.

Other questions remain, such as how to handle general concave utility functions? Some

answers have been given by Codenotti, Jain, Varadarajan and Vazirani [4, 5, 6]. Are there

direct primal-dual interior-point algorithms for solving the Arrow-Debreu equilibrium? The

path developed in this paper may give an answer.
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