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Abstract. Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact

of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One

step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to

help constrain model representations of cloud processes. In this study, we outline a methodology using a basic

Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement

(ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it

provides uncertainty information on the phase classification. We also test the value of including higher moments

of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known

phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of

concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow.

Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and

snow cases are more problematic to identify correctly. When lidar data are not available, including additional

information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step

towards an operational algorithm and can be expanded to include additional categories such as drizzle with

additional training data.

1 Introduction

Cloud feedbacks are one of the largest uncertainties in global

climate model simulations of future climates, limited in part

by a lack of observations with sufficient and known ac-

curacy to constrain cloud microphysical parameterizations

(Stephens, 2005; IPCC, 2013). Cloud hydrometeor phase is

a radiatively important property of clouds (Sun and Shine,

1994; Shupe and Intrieri, 2004; Turner, 2005) that is difficult

to accurately model and observe (e.g., Komurcu et al., 2014;

Shupe et al., 2008; Cesana and Chepfer, 2013), and is also

important for understanding cloud life cycle (Shupe et al.,

2008). Quantitative microphysical retrievals make assump-

tions regarding the phase of cloud properties (ice, liquid, or

mixed) before choosing appropriate forward models to use in

algorithms (e.g., Zhao et al., 2012). Retrievals of cloud phase

are a necessary first step towards improved retrievals of water

contents and particle sizes.

The focus of this study is the development of an algorithm

that identifies cloud phase from vertically pointing radars

and lidars at the ARM (Atmospheric Radiation Measure-

ment) Climate Research Facility (www.arm.gov) that also

estimates the uncertainty of that identification. A number of

methods have been developed previously to identify cloud

phase using similar instrumentation. Shupe (2007) presented

an algorithm that uses thresholds of lidar backscatter and de-

polarization ratio, and three moments of the radar Doppler

spectrum (reflectivity, mean Doppler velocity, and spectrum

width) along with temperature to classify six different hy-

drometeor types. A target classification algorithm developed

for the CloudNet network of observation sites (Illingworth

et al., 2007) uses lidar and radar scattering parameters to
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flag times when instruments indicate detection of small liq-

uid drops, falling hydrometeors, and melting ice along with

temperature information to give likely hydrometeor classifi-

cations (Hogan and O’Connor, 2006). Both of these decision-

tree methods are based on well-established scientific under-

standing of instrument sensitivities to hydrometeors, but do

not quantify the uncertainty of the phase assignment.

Lidar backscatter, especially paired with depolarization ra-

tio, is a sensitive indicator of the presence of super-cooled

liquid water (e.g., Sassen, 1991; Shupe, 2007), which exists

at temperatures colder than 0 ◦C. A number of algorithms

have been developed for ground- or space-based active sen-

sors that use lidar backscatter thresholds or the attenuation of

the lidar (Zhang et al., 2010; Choi et al., 2010; Hogan et al.,

2003, 2004; Cesana and Chepfer, 2013) or lidar backscatter

and depolarization ratio together (Cesana and Chepfer, 2013;

Hogan et al., 2003) to identify liquid clouds.

Lidar data alone have two limitations in identifying cloud

phase. First, because lidar data are more sensitive to high

concentrations of small liquid droplets than low concentra-

tions of large ice crystals, it may fail to detect mixed-phase

conditions. A recent study by Bühl et al. (2013) showed that

using lidar measurements alone to detect mixed-phase clouds

underestimated the fraction of mixed-phase clouds compared

to combined lidar and radar methods when the concentration

of ice crystals was very low compared to the number of liq-

uid droplets. The radar wavelength on the other hand is much

longer, so the strength of the signal is proportional to the par-

ticle diameter to the sixth power and thus is much more sen-

sitive to a few large ice particles.

Another considerable limitation of lidar measurements for

phase detection is that lidars attenuate quickly in clouds with

an optical depth greater than three so can only be used in opti-

cally thin clouds. In order to circumvent this limitation, Luke

et al. (2010) trained a neural network on wavelet transforms

of the full radar Doppler spectrum to emulate lidar backscat-

ter and depolarization ratio measurements. Though noisier,

the radar Doppler spectra generally did have sufficient infor-

mation content to reproduce the phase information in opti-

cally thick clouds that would otherwise not have been retriev-

able from actual lidar observations. Yu et al. (2014) built on

this work and used wavelet transforms to deconvolve liquid

peaks in the Doppler spectra from other signals. These stud-

ies show that a good deal of information is available within

the Doppler spectra to identify liquid within a cloud in addi-

tion to the high sensitivity to ice.

The goal of this study is to test the value of two potential

improvements to previous decision-tree approaches to oper-

ational phase identification algorithms. First, the means and

covariances of observational variables are used in a simple

Bayesian classifier to estimate the probability that a given

phase category describes a particular cloud volume. This

gives an estimate of confidence in the phase identification,

a first step towards quantifying the uncertainty of micro-

physical retrievals. Second, additional variables describing

the radar Doppler spectra are used to test how much this in-

formation improves identification of liquid and mixed-phase

cases, particularly in the absence of lidar measurements.

This study describes an algorithm proof of concept, using

data from the Mixed-Phase Arctic Cloud Experiment (M-

PACE) field campaign when aircraft in situ measurements

are available along with vertically pointing lidar and radar

measurements to help train and evaluate the algorithm. Sec-

tion 2 documents the observational data used in the study.

The ground-truth data set used to train and validate the al-

gorithm is described in Sect. 3, followed by a description of

the algorithm methodology in Sect. 4. Section 5 discusses

algorithm validation. Finally, conclusions and a description

of additional work needed to create an operational algorithm

using these techniques are included in Sect. 6.

2 Remote sensing data

The time period of the M-PACE field campaign was cho-

sen because of the simultaneous availability of data from the

high spectral resolution lidar (HSRL), millimeter cloud radar

(MMCR) Doppler spectra, and aircraft in situ measurements.

The M-PACE field campaign took place in the fall of 2004 at

the ARM Barrow, Alaska, site (Verlinde et al., 2007). An-

other advantage of using the M-PACE field campaign is that

a number of studies have already been done interpreting M-

PACE aircraft data (e.g., Klein et al., 2009; McFarquhar et

al., 2007; Verlinde et al., 2013; Morrison et al., 2009), facil-

itating a quicker identification of a truth data set to train and

test the algorithm.

2.1 HSRL

The University of Wisconsin HSRL was deployed at the Bar-

row, Alaska, ARM site during the M-PACE campaign. The

lidar operates at a wavelength of 532 nm and independently

measures molecular and particulate scattering based on the

width of frequency of the returned signal (Eloranta, 2005a).

Additionally, the HSRL measures the depolarization of the

returned signal, which helps distinguish spherical from non-

spherical hydrometeor shapes. In this study, HSRL data are

used from the product provided to the ARM archive by the

University of Wisconsin lidar group directed by Ed Eloranta

(Eloranta, 2005b), which contains averaged lidar profiles

with a height resolution of 30 m and temporal resolution of

60 s. This study uses measurements of particulate backscat-

ter cross section per unit volume, particulate extinction cross

section per unit volume, and circular depolarization ratio to

help identify signatures of cloud phase.

2.2 MMCR

The MMCR is a 35 GHz vertically pointing cloud radar that

operated at the ARM Barrow site during the M-PACE cam-

paign. The MMCR measures a spectrum of Doppler veloc-
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Figure 1. Schematic of Doppler spectrum and MicroARSCL variables. Variables describing the primary peak (∗_pri) and a secondary peak

(∗_sec) are labeled in the diagram. The variables used in this study are shown in red. Each radar time and height bin measured by the

vertically pointing instrument returns a full spectrum of Doppler velocities.

ities from hydrometeor backscatter every few seconds with

approximately 45 m height bins. A sample schematic of a

Doppler spectrum from one time and height range gate is

shown in Fig. 1. This study uses two MMCR data streams

that have processed the Doppler spectra data differently.

First, we used data from the active remote sensing of clouds

(ARSCL) value added product (Clothiaux et al., 2001; John-

son and Jensen, 2009), traditionally the most accessible radar

measurements from ARM. ARSCL assesses the quality of

the radar measurements, identifies cloud boundaries, and cal-

culates three moments of the radar Doppler spectra: radar re-

flectivity, mean Doppler velocity, and spectrum width.

If the spectra were Gaussian, three moments would be suf-

ficient to describe their information. However, at the spa-

tiotemporal resolution sampled by the MMCR, spectra are

much more complicated when they represent scattering from

a heterogeneous mixture of hydrometeors (e.g., liquid and ice

particles) in a cloud volume, as illustrated in the schematic in

Fig. 1, and the spectra measurements in Fig. 2.

To include some of this additional information, a second

more recent ARM radar data processing methodology, Mi-

croARSCL (Jensen et al., 2016), was also used in this study.

MicroARSCL takes advantage of the significant increase in

temporal resolution and the continuous recording of Doppler

spectra made possible by upgrades to the MMCR hardware,

starting in 2004 (Kollias et al., 2007). MicroARSCL extracts

approximately 30, mainly objective, variables directly from

the radar Doppler spectrum of each time and range gate,

treating the primary peak and a possible weaker secondary

Figure 2. Doppler spectra example from 9 October 2004 09:00–

10:00 UTC for the 465 m height range gate (a). The data are also

plotted in 3-D (b) and with the raised noise floor to correct for spec-

tral image artifacts in (c).

peak separately, as shown in the Doppler spectra schematic

in Fig. 1. Two additional spectral moments, skewness and

kurtosis, are reported for each of these peaks, in addition
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to their dynamic range (i.e., height), velocities of their tails,

and a left-slope and right-slope, indicating the steepness of

a straight line extending from either of the tails to the spec-

trum peak. Within the primary peak, MicroARSCL identifies

up to three local maxima (if present), reporting their dynamic

ranges and modal velocities.

The decomposition of radar Doppler spectra into char-

acteristics of their subpeaks potentially offers substantial

information about underlying microphysics. However, the

MMCR also suffered from the drawback of introducing an

artificial subpeak into the Doppler spectrum, often referred to

as a spectral image, during stronger power returns. An exam-

ple of this artifact is shown in weak peaks around −2 m s−1

in Fig. 2a and b. On the positive side, these unavoidable ar-

tifacts are weak and well characterized, thus predictable. On

the negative side, while having a negligible impact on the

lowest radar moments, their influence on the shape of the

radar Doppler spectrum can be significant exactly where the

often weak signal from small particles (e.g., cloud or drizzle)

resides, introducing ambiguity into the detection and charac-

terization of these small particles. Thus, a means of mitigat-

ing their effect is required for a study such as ours. In the case

of the MMCR, it is known that the spectral images are man-

ifested as a mirror, with opposite velocity sign, of any power

in spectral bins exceeding about 30 dB. The strategy used to

mitigate their effect is then to use an artificially raised noise-

floor when computing higher-order moments, and other vari-

ables that are sensitive to their presence. This noise floor is

held to be within 30 dB below the peak power in the spec-

trum. An example of data that have been corrected with this

raised noise floor is shown in Fig. 2c. Effectively, this is a

tradeoff in which low SNR (signal-to-noise ratio) features

are discarded in favor of reliability during strong power re-

turn conditions. Sensitivity tests showed that this mitigation

only had a substantial impact on one variable (primary peak

maximum velocity) used in this study.

2.3 Merged data set

The HSRL, ARSCL, and MicroARSCL data sets have differ-

ent temporal and spatial resolutions and must be merged to a

common grid in order to create multi-instrument retrievals.

For this study, all data were mapped into a common 10 s

time (native ARSCL temporal resolution) and 45 m height

(native MicroARSCL) resolution. This time and height grid

was chosen in order to have the least impact on the values of

the radar and lidar data. In particular, we wanted to change

the radar (ARSCL and MicroARSCL) data as little as possi-

ble.

The nearest neighbor in time was used to merge the data

sets onto the same time grid, so that each profile would re-

main intact as an individual measurement. That is, for a given

time, the height profile with the closest time stamp is cho-

sen. This choice subsamples the MicroARSCL data, since

MicroARSCL processing retains the raw 3 s resolution data,

but does not change any measurement values. Because the

HSRL data used are a 60 s average, the same HSRL profile

is assigned to six time stamps. Even though the HSRL data

have a higher temporal resolution in raw form, raw lidar data

can be quite noisy so averaging is required to improve data

quality.

Linear interpolation was used to map the values of each

profile to the common height grid. Since the native Mi-

croARSCL height was used as the merged data grid, no in-

terpolation is done to the MicroARSCL variables, the data

stream we were most interested in preserving without aver-

aging. The ARSCL data and HSRL data have height reso-

lutions of 44 and 30 m respectively, leading to only minor

changes when interpolating to a regular 45 m grid.

Once the data sets are merged onto the common grid, an

algorithm to identify cloud layers is applied to the backscat-

ter cross section measurements to create a lidar cloud mask

(Wang and Sassen, 2001), including eliminating observations

when the lidar is attenuated. The lidar mask is combined with

the MicroARSCL radar cloud mask to create a merged mask

that identifies each cloud point as being detected by lidar,

radar, or both.

3 Identifying cases of known phase

In order to develop a phase detection algorithm with uncer-

tainty estimates, some data of known phase must be available

for training the algorithm. Four classifications were chosen

in this study because sufficient data for these cases could be

identified based on expert knowledge and in situ aircraft mea-

surements. The time and height periods defining test data for

each of these cases are given in Table 1, and the details of

how they were chosen is described below. Though these cat-

egories describe a large fraction of the cloud phases observed

during M-PACE, they are not exhaustive, which will be dis-

cussed in more detail in Sect. 5.

In situ measurements are particularly important for iden-

tifying known mixed-phase cases, with both ice and liq-

uid present in a cloud volume, as these are harder to iden-

tify correctly than cloud volumes with a single hydrome-

teor type. During M-PACE several days of persistent, single-

layer mixed-phase clouds were sampled by the University of

North Dakota Citation aircraft (Verlinde et al., 2007). Mea-

surements from multiple cloud probes were merged and pro-

cessed by McFarquhar and Zhang (2007) using the method

described in their paper (McFarquhar et al., 2007). The

mixed-phase and snow-training data in this study are ob-

tained from 9 October 2004. This case has been studied ex-

tensively with aircraft and ground-based remote sensing in-

struments indicating a long-lived single-layer mixed-phase

cloud with a thin liquid layer top and large ice particles

falling out the base of the cloud (Forbes and Ahlgrimm,

2014; Klein et al., 2009; McFarquhar et al., 2007).
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Table 1. Time, height, and temperature thresholds defining data used to train the model.

Category Day Time (UTC) Height Other condition

Ice 22 Oct 2004 00:00–06:00 2000–7000 m

Ice 1 Oct 2004 20:00–23:59 2000–6000 m

Liquid 4 Oct 2004 00:00–10:00 0–1000 m

Snow 9 Oct 2004 15:00–23:59 200–1000 m Temperature ≥ −9.2 ◦C

Mixed 9 Oct 2004 17:00–23:59 200–1000 m Temperature < −10 ◦C

Mixed 9 Oct 2004 00:00–13:59 200–1000 m

Sampling differences between aircraft and remote sens-

ing data introduce a significant challenge in using the in situ

measurements to provide truth data for the remote sensing

retrievals. For example, Fig. 3 shows the flight track of the

airplane for the mixed-phase case used in this study, show-

ing that the aircraft does not fly directly over the ground-

measurement station (yellow pin). This is true in all flights

during the M-PACE campaign. Thus, the comparison be-

tween aircraft and remote sensing data must be done in a sta-

tistical sense rather than a direct point-by-point comparison.

On 9 October 2004, a statistical comparison is reasonable be-

cause measurements were made in a long-lasting, relatively

homogeneous cloud (Verlinde et al., 2007). Profiles of ice

water mass fraction as a function of atmospheric tempera-

ture from the aircraft in situ measurements (Fig. 4a) show

that, at temperatures between −14 and −16 ◦C, the cloud is

composed primarily of liquid drops with a small amount of

ice present (ice fraction near 0.0). Between −14 and −10 ◦C

the cloud contains a substantial mass of both ice and liquid,

with a gradual increase in ice mass fraction as temperature

increases (altitude decreases). At roughly −10 ◦C the cloud

has shifted to primarily ice (ice fraction near 1.0). Here ice

fraction is calculated as, Fice = IWC/(LWC + IWC), where

IWC is ice water content and LWC liquid water content.

Lidar depolarization ratio, δ, measurements are particu-

larly sensitive to cloud hydrometeor phase. Previous mea-

surements indicate that liquid drops have small linear δ rang-

ing from 0.0–0.09 and ice crystals have values of roughly

δ > 0.1 (Luke et al., 2010; Schotland et al., 1971; Shupe,

2007).

Profiles of δ during two different time periods of the air-

craft flight (Fig. 4b and c) indicate a shift in δ from ∼ 10−2

to ∼ 1.0 near −10 ◦C, which indicates a shift from mixed

phase to ice. The large δ at warmer temperatures indicate as-

pherical hydrometeors typical of snow or ice, whereas the

smaller δ at colder temperatures (higher in the cloud) in-

dicate that spherical liquid droplets dominate the lidar sig-

nal. This also corresponds with the aircraft measurements

of ice fraction showing mixed-phase conditions. At tempera-

tures around −13.5 ◦C the lidar attenuates and the data higher

in the cloud is not used for training the phase algorithm.

The lower horizontal line in Fig. 4b and c show a tempera-

ture threshold of −9.2 ◦C. At temperatures warmer than this

Figure 3. Flight track for UND Citation on 9 October 21:46–

22:07 UTC during M-PACE campaign. ARM ground-measurement

site marked with the yellow pin.

threshold, after 17:00 UTC, hydrometeors were identified as

snow as indicated by the white lines plotted in Fig. 5. This

threshold was chosen from visual inspection of the depolar-

ization ratios in Fig. 4, and was set to exclude cases that

were not dominated by ice. The radar reflectivity measure-

ments (Fig. 5) are relatively large (−10 to +10 dBZ), which

indicates the hydrometeors are large, typical of snow. During

the same time period, remote sensing data were considered

mixed phase when temperatures were colder than −10 ◦C. A

mix of high and low depolarization ratios are seen for temper-

atures colder than −10 ◦C (Fig. 4c), which may indicate the

changing mixed-phase conditions that are dominated by ice

or liquid as shown in the variability of the aircraft measure-

ments (Fig. 4a). Finally, the time period 00:00–14:00 UTC

(shown as a white box in Fig. 5) was also included as mixed

phase in order to give sufficient data to train the algorithm.

Since the liquid cloud base level occurs at a lower altitude

(determined by HSRL extinction) and the depolarization ra-

tios are not as high below the liquid level as later in the day

(Fig. 5), no distinction was made between mixed phase and

snow in this part of the cloud.

Lidar depolarization measurements are also used to distin-

guish liquid drops and ice crystals to identify training data
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Figure 4. Profiles of (a) ice water fraction from aircraft, HSRL
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(c) for a longer period of time. Times listed are in UTC. Horizontal

lines in (b) and (c) show the temperature thresholds used to divide

data between snow and mixed phase, as well as indicating the region

where the HSRL is attenuated and no longer gives a reliable signal.

cases consisting of all ice or all liquid. We use δ to identify

two ice cases to use for training the ice phase for the detec-

tion algorithm (Figs. 6 and 7). Both cases have significant de-

polarization ratios (indicating aspherical hydrometeors with

aspect ratios less than 1), extinction coefficients indicative of

ice clouds (Young and Vaughan, 2009), and reflectivity val-

ues indicating the presence of large particles (Atlas et al.,

1995). These factors, along with the macrophysical cloud

structure, and the fact that the lidar does not significantly at-

tenuate are typical of cirrus clouds. Additionally, at least part

of the cloud on 22 October (Fig. 7) is colder than −38 ◦C,

the temperature where hydrometeors freeze by homogenous

freezing mechanisms.

The liquid training case used in the algorithm is displayed

in the white box in Fig. 8. Several measurements confirm

our decision to identify this as a liquid cloud. First, the lidar

backscatter reveals that the lidar beam is completely atten-

uated before reaching the cloud top, indicative of high drop

concentrations (∼ 100 cm−3) typically found in Arctic liquid

layer clouds (Rangno and Hobbs, 2001; Shupe et al., 2001).

Second, the HSRL circular depolarization ratio remains be-

low 0.09, which falls below the δ threshold for identifying

liquid layers using lidar measurements. Note the change in δ

from < 0.09 to > 1.0 as the below cloud precipitation in Fig.

8 transitions from liquid to ice (or possibly mixed) phase

just after 12:00 UTC. Finally, the radar reflectivity during
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Figure 5. On 9 October 2004, vertical profile data from MMCR re-

flectivity, HSRL extinction, and HSRL circular depolarization ratio.

Periods identified as snow, and mixed phase are outlined in white.

this time period is less than −25 dBZ, indicating hydrom-

eteors are small, also typical of liquid clouds. Aircraft mea-

surements in Arctic non-precipitating liquid clouds show that

drop sizes are generally < 9 µm, which correspond to reflec-

tivity less than −20 dBZ (Shupe et al., 2001).

4 Algorithm description

The cloud-phase identification problem was treated as a mul-

tivariate statistics classification problem: classifying volumes

within the cloud into one of four possible cloud-phase popu-

lations: ice, liquid, mixed phase, and snow. Note that at our

current resolution, each day of measurement data can have

tens of thousands to a million pixels (depending on the oc-

currence of clouds during the day). For example, the mixed-

phase case on 9 October, has about 100 000 pixels of good

data. Thus, to create an algorithm that can be run opera-

tionally on multiple years of data at multiple sites, we need a

solution that is computationally efficient.

4.1 Algorithm theory

A simple-to-implement classifier was developed using

Bayes’ Theorem. At every cloud volume (i.e., at pixel j ),

there is a vector of data Xj and a discrete random variable

Mj , which represents the cloud-phase population member-
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ship at that volume (Mj = 1 for “ice,” Mj = 2 for “liquid,”

etc.). The likelihood functions of the data f
(

Xj |Mj

)

are as-
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sumed to be multivariate normal density functions with dif-

ferent mean vectors (µi) and covariance matrices (6i):

f
(

Xj = xj |Mj = i
)

= fi

(

xj ;µi, 6i

)

= (2π )−
k
2 |6i |

− 1
2

exp

(

−
1

2

(

xj − µi

)′
6

−1
i

(

xj − µi

)

)

, (1)

where k is the number of variables in x. The uninforma-

tive prior probability distribution for Mj is π
(

Mj = i
)

=

pi = 0.25. Thus, the posterior conditional distribution for Mj

given Xj is

Pji = π
(

Mj = i |Xj = xj

)

=
pifi

(

xj ;µi,6i

)

∑4
l=1plfl

(

xj ;µl,6l

)

, (2)

as described by Anderson (1958, Sect. 6.6). We use robust

population parameter estimates in the computation of the

posterior probabilities as described in Sect. 4.2 below. The

algorithm is related to the naïve Bayesian classifier (Domin-

gos and Pazzani, 1997), except we do not assume that the

lidar and radar variables are independent.

A phase classification is assigned to a set of observations

when the probability of a given phase is 60 % or greater. The

60 % threshold was used instead of choosing the phase with

the highest posterior probability to remove cases when two

classes had similar probabilities. If all phase likelihoods are
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Table 2. Lists variables used in the 5- and 10-variable algorithms.

All variables from the MicroARSCL data set refer to the primary

peak detected in the Doppler velocity spectrum.

Variable Originating data set 5 var 10 var

log(particulate extinction) HSRL Y

log(depolarization ratio) HSRL Y Y

log(attenuated backscatter) HSRL Y

reflectivity ARSCL Y

spectral width ARSCL Y

mean doppler velocity ARSCL Y

reflectivity MicroARSCL Y

spectrum width MicroARSCL Y

skewness MicroARSCL Y

left slope MicroARSCL Y

right slope MicroARSCL Y

max velocity MicroARSCL Y

min velocity MicroARSCL Y

signal to noise ratio MicroARSCL Y

smaller than 1 × 10−20 the algorithm returns the prior prob-

abilities and no phase assignment is made.

4.2 Population parameter estimation

Because the population parameters (mean vectors µ and co-

variance matrices 6) are unknown, they must be estimated

from measurements of known phase. The parameters of the

four populations were robustly estimated using the training

data described in Sect. 3. Robust estimators were used to ac-

count for possible errors in the identification of the training

data since robust estimators will downweight the influence

of the incorrectly labeled data as long as most of the data are

correctly labeled. The population means were calculated us-

ing trimmed means, that is, trimming 15 % of the data from

both extremes. The covariance matrices were robustly esti-

mated using the method described by Croux et al. (2007) and

implemented in R’s pcaPP package (covPCAproj) by Hein-

rich Fritz and Peter Filzmoser (P.Filzmoser@tuwien.ac.at).

4.3 Variables included in parameter estimation

Two algorithms were created using two distinct collections

of input variables. These variables and their originating data

sets are listed in Table 2, and probability distribution func-

tions of their values are plotted in Fig. 9. Note that temper-

ature is not included in the retrieval algorithm in order to

be able to study the statistical relationship between tempera-

ture and cloud phase. The 5-variable algorithm uses the three

radar moments available in the ARSCL data set along with

the attenuated backscatter and circular depolarization ratio

from the HSRL, comparable to the information used in the

phase-identification algorithm described by Shupe (2007).

The 10-variable algorithm includes 8 variables (see Table 2)

from the MicroARSCL processing of the radar Doppler spec-

tra along with the particulate extinction cross section and

Figure 9. Histograms of algorithm training data set input variable

values for four phase categories. Note that temperature is not in-

cluded in the retrieval algorithm, but is included here for reference.

Most clouds examined in this study are in the potentially mixed-

phase temperature range (−40–0 ◦C).

circular depolarization ratio from the HSRL. While addi-

tional radar Doppler spectra variables are available in the

MicroARSCL processing, we chose these variables because

they each gave some separation between the four cloud-phase

populations as can be seen in their probability distributions

(Fig. 9). The distributions show that normal distributions are

a reasonable approximation for the variables used in these

algorithms. The logarithm of the lidar variables was taken

in order to make the distributions of these variables more

normally distributed. The population parameters were only

trained when all variable data were available, though can be

applied to any subset of available variables. This assumes

that missing variables are randomly occurring and are not in

themselves dependent on the cloud phase.

5 Algorithm validation

Figures 10–13 show the application of the 5- and 10-variable

algorithms to the test cases. Posterior probabilities are plot-

ted for each phase category in gray scale in percentages. A
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Table 3. Cross-validation results given in percentage of validation

data in a given class. (a) 10 variable: complete testing data results.

(27.9 % of data). (b) 5 variable: complete data (52.2 % of data).

(c) 10 variable: the no lidar data results. (71.8 % of the incomplete

data). (d) 5 variable: no lidar data (92.7 % of the incomplete data).

Validation Ice Liquid Mixed Snow NoID

(a) Identified as

Ice 98.33 0.00 0.00 0.00 1.67

Liquid 0.00 94.18 0.79 0.00 5.03

Mixed 0.00 3.56 88.22 6.56 1.67

Snow 0.00 0.00 9.35 88.63 2.03

(b)

Ice 96.40 0.01 0.26 2.83 0.50

Liquid 0.0 98.88 0.55 0.00 0.57

Mixed 0.0 1.15 91.51 6.56 0.77

Snow 0.0 0.00 8.29 91.29 0.42

(c)

Ice 96.92 0.42 0.52 0.00 2.14

Liquid 0.00 96.47 0.49 0.03 3.01

Mixed 0.01 4.63 64.33 23.40 7.62

Snow 0.00 0.19 26.27 62.69 10.85

(d)

Ice 96.57 0.17 2.29 0.00 0.97

Liquid 0.09 99.16 0.14 0.00 0.61

Mixed 0.12 1.55 51.82 17.26 29.25

Snow 0.00 0.11 21.65 44.62 33.62

phase identification that uses a threshold of 60 % probability

to define a phase category is plotted in color.

5.1 Cross-validation results

Cross-validation was used to test the accuracy of the algo-

rithm. Half of the complete phase data set was randomly cho-

sen to train the algorithm, and the other half was reserved to

test how well the algorithm performed. Both the 10-variable

(Table 3a) and 5-variable (Table 3b) algorithms identify the

pure ice and liquid cases well with over 94 % of liquid data

identified correctly and 96 % of ice data identified correctly,

indicating very distinct signatures of pure liquid or cirrus

type ice clouds. This clear identification of ice and liquid

cases also corresponds to very high posterior probabilities of

phase identification as can be seen in Figs. 10–12, indicating

a high degree of confidence in the ability of the algorithm to

perform in these conditions.

It is more difficult for the algorithms, however, to distin-

guish between the mixed-phase and snow cases on 9 October.

The 10-variable algorithm identifies about 88 % of mixed and

snow data as it was defined in the validation/training data set

(Table 3a). About 3.5 % of the mixed-phase data are identi-

fied as liquid, which from Fig. 13 appears to be either at the
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Figure 10. Application of 5-variable (left) and 10-variable (right)

phase algorithms to 1 October 2004 test case. Color panels show

algorithm identification when probability of a given phase is greater

than 60 %. Gray-scale figures show probabilities of a given phase in

percentage.

top of the cloud or in bands such as that around 03:00 UTC

that may be drizzle, or liquid sections of the cloud. These few

liquid cases may indicate that the validation classification is

incorrect rather than the phase algorithm, though this cannot

be determined. The remaining misclassification of snow and

mixed-phase cases reflects the uncertainty in distinguishing

these two categories in the remote sensing data, as well as the

difficulty in identification of mixed-phase and snow data in

the validation data as described in Sect. 4.1. This uncertainty

is largely captured in the variable posterior probabilities of

mixed and snow identification over this day (note the speck-

led pattern in Fig. 13). The 5-variable phase algorithm shows

similar results on 9 October, with 91 % of mixed-phase and

snow cases identified correctly, a small fraction of data iden-

tified as liquid, and 6–8 % of data misclassified (Table 3b).

The difference in the accuracy of the 5- and 10-variable

phase algorithms is seen primarily in cases when HSRL data

are not available. Comparing Table 3a and b with Table 3c

and d shows that identification of ice and liquid cloud vol-

umes does not significantly depend on the availability of li-

dar data, the percentage of points identified correctly does

not drop when only examining data when the lidar is present.

However, in mixed and snow cases the validation percent-
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Figure 11. As in Fig. 10, but for 22 October 2004.

age drops to around 63 % in the 10-variable algorithm and

less than 52 % in the 5-variable algorithm when lidar data

are not available. In the 5-variable algorithm almost a third

of the mixed and snow data return no retrieval, compared

to less than 10 % in the 10-variable algorithm, caused by

the algorithm returning fewer posterior probabilities higher

than 60 %. This indicates that including additional informa-

tion from the radar Doppler spectra does indeed reduce the

uncertainty in phase classification, which is illustrated by the

wider range of posterior probabilities plotted in the left col-

umn of Fig. 13 than the right column.

5.2 Testing the algorithm in other conditions

The phase classification algorithm was trained on a limited

number of cases with only four categories of hydrometeors.

To be reliable operationally, the algorithm will need to be

trained on a representative sample of cloud types at a given

site. One known deficiency in our training data set is that no

cases with liquid precipitation like drizzle or rain were used.

This was due to a lack of aircraft in situ data available to iden-

tify drizzle in the data set. Verlinde et al. (2013) did a care-

ful comparison of aircraft measurements and radar Doppler

spectra during the M-PACE campaign and identified a period

of time dominated by super-cooled drizzle. One such time

period is indicated by the red box in Fig. 14, identified by ex-

   

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

5 variable
Liquid

Mixed

Ice

Snow

No Soln

T=-40

T=-12

T=0

   

0
500

1000

1500

2000

2500

3000
10 variable

   

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Ice

80–100

60–80

40–60

20–40

0–20

No Soln

   

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Liq

   

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Mix

00:00 05:00 10:00
Time, UTC

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Snow

   

0
500

1000

1500

2000

2500

3000
P - Ice

   

0
500

1000

1500

2000

2500

3000
P - Liq

   

0
500

1000

1500

2000

2500

3000
P - Mix

00:00 05:00 10:00
Time, UTC

0
500

1000

1500

2000

2500

3000
P - Snow

Figure 12. As in Fig. 10, but for 4 October 2004.

amination of Fig. 12 in the Verlinde et al. (2013) study. There

were too few data points identified as drizzle in Fig. 14 to re-

liably use this data to train the algorithm, but an examination

of the lidar and radar data at that time does give us some un-

derstanding of how our phase algorithm will behave in driz-

zle. Figure 14 shows that the 10-variable algorithm identifies

some of the points in the red box as liquid and fails to clas-

sify other points. The points with no classification suggest

that the measurements may be able to distinguish a separate

category from the four used in this study if sufficient ground-

truth data were available to train the algorithm. Red x’s in

Fig. 15 show the values of reflectivity and depolarization ra-

tio for these drizzle points in the context of the measurements

used to train the algorithm (colored contours) and the one and

two sigma probabilities from the normal distribution fit to

that training data (black ellipses). Examination of these two

variables further supports the possibility that drizzle could

be identified as a distinct hydrometeor category since the red

points lie on the borders of the liquid and mixed distribution

functions for the reflectivity and depolarization ratio.

6 Conclusions and future work

This paper describes a proof-of-concept cloud-phase identi-

fication algorithm for vertically pointing lidar (HSRL) and

cloud radar (MMCR) at the Barrow, AK, ARM site. The al-

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 49–62, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/49/2016/



L. D. Riihimaki et al.: Cloud phase from active sensors 59

     

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

5 variable
Liquid

Mixed

Ice

Snow

No Soln

T=-40

T=-12

T=0

     

0
500

1000

1500

2000

2500

3000
10 variable

     

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Ice

80–100

60–80

40–60

20–40

0–20

No Soln

     

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Liq

     

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Mix

00:00 06:00 12:00 18:00  
Time, UTC

0
500

1000

1500

2000

2500

3000

H
ei

gh
t (

m
)

P - Snow

     

0
500

1000

1500

2000

2500

3000
P - Ice

     

0
500

1000

1500

2000

2500

3000
P - Liq

     

0
500

1000

1500

2000

2500

3000
P - Mix

00:00 06:00 12:00 18:00  
Time, UTC

0
500

1000

1500

2000

2500

3000
P - Snow

Figure 13. As in Fig. 10, but for 9 October 2004.
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Figure 14. Phase identified by the 10-variable algorithm on 6 Oc-

tober 2004, 11:00–12:00 UTC; red box indicates region expected to

be primarily drizzle based on study by Verlinde et al. (2013).

gorithm uses a simple Bayesian classifier to calculate poste-

rior probabilities that a given cloud volume is made of ice,

liquid, snow, or mixed phase (a mixture of ice and liquid hy-

drometeors). The four cloud-phase categories are assumed to

follow multivariate normal probability density functions with

parameters robustly estimated from cloud-phase data identi-

fied by comparison with aircraft in situ measurements and

known properties of the remote sensing data.

This work builds on previous studies such as the phase

classifier work done by Shupe (2007), but tests two new

approaches. First, calculating Bayesian posterior probabili-

ties gives information on the uncertainty of the phase clas-

sification, which is important when comparing observa-
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Figure 15. Contour lines show frequency of data points in training

data set using color scale to the right. Ellipses indicate 1 and 2 sigma

normal distributions for these two variables. Red x’s correspond to

values of drizzling conditions from the box in Fig. 14.

tions and models or using the classification in microphysi-

cal cloud property retrievals. Second, additional information

was included from the MicroARSCL processing of the radar

Doppler spectra. By and large, the three radar variables used

in the Shupe (2007) algorithm contained sufficient informa-

tion to classify liquid and ice phase clouds, but had difficulty

in distinguishing mixed-phase and snow categories when li-

dar data were unavailable. Additional variables from the Mi-

croARSCL processing of the radar Doppler spectra improved

the ability of the algorithm to distinguish phase-in-cloud vol-

umes without lidar measurements.

This phase classification method has a number of

strengths. It is a relatively simple algorithm that is easy to

parallelize and run operationally. The method is also very

useful for understanding the sensitivity of the results to data

input into the algorithm as is seen in the comparison of re-

sults using 5- or 10-variable inputs and statistics when lidar

measurements are or are not available. It includes the infor-

mation from the covariance between multiple variables in a

seamless way that can handle missing input variables. As

long as that missing data are random with respect to phase,

the loss of information content is reflected in the phase proba-

bility estimates. Since the mean and covariance matrices are

trained with operational data, the algorithm also inherently

includes random measurement uncertainties in the posterior

probability estimates.

The primary limitation of this classification method is that

it is only as good as the accuracy and representativeness of

the data used to train it. This is of course a primary limi-

tation in any attempt to estimate measurement or retrieval

uncertainty, because without a valid standard of truth, there

is no way to define uncertainty. This is a particularly diffi-

cult problem in cloud remote sensing retrievals. Aircraft in
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situ measurements are the typical truth data set used to vali-

date remote sensing retrievals, but the challenges associated

with collocation of aircraft and remote sensing data as well

as sampling issues are not trivial. The proof of concept al-

gorithm shown in this study uses training data for liquid,

ice, mixed-phase, and snow cases that could fairly reliably

be identified from a combination of aircraft in situ measure-

ments and expert interpretation of remote sensing data. The

4 days used in this study are not representative of all hydrom-

eteor conditions encountered at the Barrow site, however, and

to create an operational retrieval additional categories and

training data sets are needed. For example, one short period

that was identified in the literature as a super-cooled drizzle

case (Verlinde et al., 2013) was examined. The 10-variable

algorithm identified that period either as liquid or no solu-

tion. These were reasonable results given the categories used

to train the algorithm, and examination of observational val-

ues suggested that drizzle could be retrieved reliably if suffi-

cient training data for known drizzle cases were available.

What is most needed to improve this retrieval algorithm

is additional training data that are representative of the span

of cloud conditions seen in the atmosphere. The ARM Air-

borne Carbon Measurements (ARM-ACME-V) field cam-

paign based out of Deadhorse, AK, will have aircraft flights

focused over Oliktok Point, AK, where an ARM Mobile Fa-

cility (AMF-3) is located, and Barrow, AK, where a fixed

ARM site is located, will fly transects between the two lo-

cations and create an opportunity to collect more cloud con-

dition data. ACME-V will occur during the summer of 2015

and will provide routine (2–3 flights per week) aircraft in

situ cloud measurements over a 3-month period with many

over-flights of the two ground sites that will sample the same

clouds with lidar and radar instruments. This field experi-

ment has the potential to provide an extensive truth data set

to better train and evaluate the cloud-phase algorithm under

a wider range of cloud conditions.

In addition, future development is planned to test and train

the algorithm at different sites in the mid-latitudes and trop-

ics that may include higher updraft speeds and turbulence,

and thus impact the values of radar Doppler spectra variables

associated with hydrometeor classes. When a more complete

training data set is available that describes the full space of

potential atmospheric conditions, sensitivity tests will be per-

formed to evaluate the optimal set of radar Doppler spectra

variables that give sufficient accuracy at the lowest computa-

tional cost.

7 Data availability

All data in this paper are available at the ARM archive, as

cited in the references (Eloranta, 2005b; McFarquhar and

Zhang, 2007; Johnson and Jensen, 2009; Jensen et al., 2016).
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