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Abstract

Huntington’s disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the
Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic
effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level.
In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete
penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of <21 nucleotides
in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG
expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly
decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs
efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays
showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results
suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing
machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs
may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic
approaches.
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Introduction

Huntington disease (HD), a dominantly inherited neurodegen-

erative disorder, is caused by an abnormal CAG expansion within

the first exon of the Huntingtin gene (HTT), leading to an

expanded polyglutamine (polyQ) track in the HTT protein. HTT

is ubiquitously expressed in the cytoplasm of most cells in the

body, with higher expression levels in brain and testis [1,2].

However the disease shows a selective pattern of neurodegener-

ation, with clear effects in the cerebral cortex, and a more

pronounced neuropathology in the striatum [3,4].

The number of CAG repeats influences the severity and the age

of onset of the disease. Longer expansions associate with a more

severe form and an earlier manifestation of the disease [5].

It has been widely reported that the polyQ expansion in the

HTT protein leads to protein aggregation and cell toxicity [6], a

mechanism thought to be primarily involved in several neurolog-

ical disorders caused by CAG repeats [7–10]. However, whether

the mutant HTT aggregates are pathogenic, incidental or

neuroprotective is still controversial. It has been shown that

mutant HTT aggregates may function as sinks where essential

proteins are sequestered [11], compromising cell survival [12].

Other studies show that increased levels of diffuse mutant HTT

are responsible for neuronal cell death [13]. In agreement with the

two possibilities, the activation of autophagy, reduce both soluble

mutant protein and aggregate levels, and reduces toxicity [14,15].

In addition to the widely described pathogenic role of expanded

polyQ tracks, several studies have also shown that different

neurodegenerative disorders caused by trinucleotide repeat

expansions may involve RNA-mediated mechanisms [16,17].

These include the sequestration of RNA-binding proteins by the

expanded trinucleotide repeats, and activation of a variety of
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pathways such as RNA interference (RNAi) and protein misfolding

pathways. The understanding of how expanded-repeat RNAs

confer neurotoxicity is crucial to developing effective treatments.

A neurotoxic effect for CAG-expanded transcripts has been

recently demonstrated in Drosophila models of Ataxin-3 [18] and

Myotonic Dystrophy [19]. In the later, the authors propose a

pathogenic role of siRNAs derived from complementary sense and

anti-sense expanded (CUG/CAG) transcripts. In line with this,

double-stranded CAG/CUG repeat RNA produced by bidirec-

tional transcription induces neurodegeneration and movement

disorder in Drosophila model [20]. This neurotoxic effect is largely

dependent on Dicer activity and linked to the formation of

(CAG)7mers. In addition, other studies describe that trinucleotide

repeated transcripts form secondary structures [21] that can be

cleaved by Dicer in vitro [22,23] resulting in the generation of

trinucleotide repeated short RNAs. Together, these data suggest

that different mechanisms lead to the formation of aberrant small

RNAs in trinucleotide expansion diseases.

Huntington’s disease like 2 (HDL2) is caused by a CTG.CAG

expansion in the JPH3 gene, and the neuropathologic outcome

and clinical features largely resemble HD. CUG expansions in the

JPH3 gene correlates both with the formation of RNA foci and cell

toxicity, suggesting RNA mediated toxicity [24,25]. RNA

pathogenic mechanisms have been little explored in HD.

Expanded HTT transcripts are retained in the nucleus of human

HD fibroblasts and co-localize with the MBNL1 protein [26], a

splicing factor involved in the pathogenesis of CTG/CAG

expanded transcripts [27]. In addition, mutant HTT protein

alters microRNA (miRNA) biogenesis [28], and a strong miRNA

deregulation is observed in HD brains [29–32], which may

contribute to the aberrant gene expression observed in HD.

Here we provide evidence for a pathogenic role of the mutant

HTT RNA. CAG-expanded HTT RNA can be processed to

generate CAG-repeated short RNAs with neurotoxic activity. We

show that expanded HTT toxic effect is dependent on RNA-

induced silencing complex (RISC) and further demonstrate that

expanded HTT participates in posttranscriptional gene silencing

of genes containing pure and interrupted CTG repeats. This,

together with HTT polyglutamine toxicity, may contribute to the

neurodegeneration pattern observed in HD.

Results

Expanded exon 1 of human HTT is toxic at the RNA level
To evaluate the contribution of CAG-expanded RNA in HD

pathogenesis, we generated vectors expressing unexpanded and

CAG-expanded forms of exon 1 of human HTT (HTT-e1).

HTT-e1 constructs containing 23 CAG repeats (23*CAG) were

used as wild-type (unexpanded) model. For the expanded HD

mutation, we generated HTT-e1 constructs containing 80 CAG

repeats (80*CAG). Each set of vectors was produced as a form

that could be translated into protein, and as a variant lacking the

translation initiation codon, that was only expressed as RNA.

Due to the reduced size of HTT-e1, the different variants were

cloned into a pIRES-GFP expression vector. This strategy

allowed the monitoring of the transfected cells avoiding the

generation of a GFP fusion protein that could lead to artefactual

localizations (Figure 1A, 1B and Figure S1). A recent study

reveals that RNA transcripts with expanded CAG repeats can be

translated in the complete absence of a starting ATG [33]. Thus,

we evaluated whether the constructs lacking translation initiation

codon expressed polyglutamine, using the anti-glutamine mono-

clonal antibody 1C2 (Figure 1B). The different HTT-e1

constructs were efficiently expressed, as shown by PCR

amplification of HTT-GFP (Figure 1B left panel). However, we

only detected a polyglutamine track in the constructs containing

the ATG starting codon, suggesting that repeat-associated non-

ATG translation (RAN translation) is not compatible with the

type of vector used to clone the different HTT-e1 forms, at least

for polyglutamine production. Since RAN translation can occur

in all frames [33], the possibility that CAG expansion produce

homopolymeric polyalanine and polyserine proteins cannot be

ruled out. It is worth mentioning that 1C2 antibody does not

allow quantitative comparison of the levels of 23*CAG-Prot

versus 80*CAG-Prot; thus, the differences in the intensity of the

1C2 detected bands is a consequence of the number of

glutamines in each HTT-e1, expressed vector (Figure 1B right

panel).

We transiently transfected these four different HTT-e1

expressing vectors in differentiated human neuroblastoma cells

(SH-SY5Y) as a post-mitotic neuronal cell model. Transfection

experiments revealed that CAG expansion in HTT mRNA was

sufficient to induce a dramatic cytotoxic response in differenti-

ated SH-SY5Y cells (Figure 1C). Cell toxicity assays demonstrat-

ed that both CAG-expanded constructs (translated and non-

translated forms) drastically affected neuronal cell viability, only

differing in the timing of the response, that was earlier for the

80*CAG-RNA construct. However, a expanded polyglutamine

expressing vector using CAA instead of CAG repeats (80*CAA),

induced a mild toxic effect at the latter time-point that did not

reach statistical significance (Figure 1C). These results suggest

that the toxic effect induced by the expanded polyglutamine tract

is specific for expanded CAG. The HTT RNA toxicity was

further confirmed with the analysis of early and late apoptotic

markers. The results obtained revealed that the expression of

CAG-expanded HTT-e1 RNA is sufficient to induce nuclear

condensation (Figure 1D) and caspase 9 activation (Figure 1E),

processes previously reported to occur in HD brain samples

[34,35]. On the contrary, 80*CAA expressing vector induced

milder caspase 9 activation. These data point to a direct link

between the toxic effect of expanded HTT RNA and an intrinsic

apoptotic process.

Author Summary

Huntington’s disease (HD) is a neurodegenerative disorder
caused by an abnormal CAG expansion in the Huntingtin
gene (HTT), resulting in an expanded polyglutamine track
in the HTT protein. Longer CAG expansions correlate with
an earlier more severe manifestation of the disease that
produces choreic movement, behavioural and psychiatric
disturbances, and dementia. Although the causative gene
is widely expressed, neuropathology is characterized by
striatal and cortical atrophy. HTT interacts with proteins
involved in transcription, cell signaling, and transport. The
pathogenic role of mutant HTT is not fully understood.
This study shows that CAG expanded HTT RNA also
contributes to neuronal toxicity. Mutant HTT RNA gives
rise to small CAG-repeated RNAs (sCAGs) with neurotoxic
activity. These short RNAs interfere with cell functions by
silencing the expression of genes that are fully or partially
complementary, through a mechanism similar to that of
microRNAs. These findings suggest that a small RNA–
dependent mechanism may contribute to HD neuronal cell
loss. The exhaustive identification of the target genes
modulated by sCAGs may lead to a better understanding
of HD pathology, allowing the development of new
therapeutic strategies.

Small CAG-Repeated RNAs in Huntington’s Disease

PLoS Genetics | www.plosgenetics.org 2 February 2012 | Volume 8 | Issue 2 | e1002481



Expanded HTT generates small CAG-repeated RNAs with
cytotoxic activity
Transcripts containing long hairpin structures composed of

CNG repeats are Dicer targets [22,23]. The resultant sRNA

products may trigger aberrant gene silencing with putative

downstream detrimental effects. To test whether mutant HTT-

e1 toxicity was associated to sRNA related mechanisms, we

isolated the sRNA fraction (,100 nt) from cells expressing the

23*CAG and 80*CAG forms of HTT-e1, and transfected these

sRNA into differentiated human SH-SY5Y neuroblastoma cells.

Cell viability assays demonstrated that the sRNA population

obtained from cells expressing 80*CAG-PROT and 80*CAG-

RNA constructs, induced a remarkable cell death response

(Figure 2A), compared to the sRNA population originated from

cells expressing the 23*CAG control constructs. These results

indicate that the expression of expanded HTT-e1 RNA is

sufficient to deregulate the sRNA profile, thereby impairing

neuronal viability. Furthermore, the sRNA fraction of cells

expressing 80*CAA-PROT failed to induce cell toxicity, suggest-

ing that the sRNA detrimental effect is linked to expanded

constructs containing CAG repeats.

In agreement with previous studies demonstrating the generation

of trinucleotide-repeated sRNA from triplet-expanded transcripts

[19,23], the expression of CAG-expanded HTT RNA led to the

generation of CAG-repeated sRNAs (sCAG), of around 21 nt long

(Figure 2B). The identity of these products was further confirmed by

direct sequencing of the PCR products (Figure S2) and northern

blotting (Figure S3). However, cells expressing the CAA expanded

construct failed to produce sCAG, suggesting that the production of

these species is not an experimental epiphenomenon.

Figure 1. CAG-expanded exon 1 of human HTT is toxic at the RNA level. A. CAG-unexpanded (wild-type; 23 CAG repeats) and CAG-expanded
(mutant; 80 CAG repeats) constructs of human HTT exon 1 (HTT exon 1) were subcloned into a pIRES-EGFP vector. Each variant was produced as a
normal translated form (left) and a form lacking the translation initiation codon (right). The specific role of the expanded protein was analyzed with a
construct expressing CAA-expanded HTT-e1. The use of IRES-based bicistronic vectors with a GFP reporter allows monitoring of transfected cells. B.
The four different constructs express the mRNA HTT-IRES-GFP (left) and the GFP reporter protein (right). HTT protein is only expressed in the
constructs containing the ATG translation initiation codon (right). C. Differentiated SH-SY5Y cells were transfected with the HTT-IRES-GFP vectors and
LDH cell toxicity assay was performed 18 h and 24 h after transfection. Expression of CAG-expanded HTT (RNA or protein) resulted in dramatic cell
death. CAA-expanded HTT-e1 didn’t induce a significant effect on cell viability at the time points analyzed (n = 4; *p,0.05, **p,0.01, ***p,0.001). D.
The percentage of dead transfected cells was also determined 36 hours after transfection by counting 200 GFP-negative cells (left) and 200 GFP-
positive cells (right), scoring in each case the presence of nuclear fragmentation. Values represent the percentage of cells showing nuclear
condensation in each situation 6 SD (n = 3; **p,0.01). E. Expression of CAG-expanded HTT RNA induced caspase 9 cleavage. GFP blots highlight the
expression of all constructs in transfected cells and polyglutamine (PolyQ) blots show expression of expanded HTT protein. Densitometry
determinations of cleaved caspase 9 vs. a-Tubulin were performed on cells lysated 24 hours after transfection. Results are presented as the mean of
arbitrary optical density units (O.D. units 6 SEM; n = 3; *p,0.05, ***p,0.001). In C. and E., values represent the mean fold change with respect to the
control non-transfected cells 6 SEM.
doi:10.1371/journal.pgen.1002481.g001

Small CAG-Repeated RNAs in Huntington’s Disease
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Variable penetrance for alleles carrying 36–39 CAG repeats has

been noted, but the disease appears fully penetrant when the

repeat numbers are above 40 [5]. To confirm the sRNA toxicity in

HTT carrying a moderate number or repeats, we generated HTT

constructs with 35, 40 and 48 CAG repeats (Figure S4). We

performed transfection experiments using the sRNA fractions of

cells expressing HTT vectors with 23*CAG (normal), 35*CAG

(normal), 40*CAG (pathogenic) 48*CAG (pathogenic) and

80*CAG (model for juvenile HD) and subsequently determined

cell viability. The sRNA fraction isolated from 40*CAG, 48*CAG

and 80*CAG expressing cells induced a significant toxic effect

(Figure 2C). Furthermore, the severity of the toxic effect in

differentiated SH-SY5Y driven by the sRNA fractions was

associated to the length of the CAG stretch, as previously

described for the full protein [36] (Figure 2C). In addition, the

pools of sRNAs isolated from 40*CAG, 48*CAG and 80*CAG

expressing cells contained progressively increasing amounts of

sCAGs when compared with that of the 23*CAG and 35*CAG

expressing cells (Figure 2D). These results suggest that sRNAs

derived from moderately expanded HTT are sufficient to induce a

detrimental response and further indicate that expansions above

40*CAG repeats are enough to produce significantly increased

amounts of sCAG and a parallel toxic effect.

To analyse the role of sCAG products in HTT sRNA toxicity,

we then co-transfected sRNAs pools derived from cells expressing

23*CAG or 80*CAG vectors along with either antisense RNA

oligonucleotides that specifically block the action of sCAG (anti-

sCAG), or scrambled inhibitors as negative controls (Scrambled

sRNA inhibitors). The toxic effect of 80*CAG- versus 23*CAG-

derived small RNA was not affected in cells transfected with a

scramble siRNA. However anti-sCAG significantly decreased the

detrimental effect of the HTT-e1 expanded constructs (Figure 2E).

We therefore propose that the generation of sCAG is a key

element in the toxicity mediated by CAG-expanded HTT-e1.

Figure 2. Expanded HTT generates CAG-repeated sRNAs with toxic activity. A. sRNA fraction (,100 nt) were isolated from cells expressing
HTT-e1 constructs and equal amounts of each pool were transfected. Both 80*CAG-RNA and 80*CAG-PROT- derived sRNA pools induced death of
differentiated SH-SY5Y cells (n = 5; *p,0.05,**p,0.01). 80*CAA-PROT-derived sRNA pools didn’t affect SH-SY5Y cell viability. B. The expression of
CAG-expanded HTT leads to an increase in CAG-repeated sRNAs of ,21-nt (sCAG). sCAG levels were quantified using RNU66 as the reference sRNA,
and normalized with respect to GFP expression, which indicates the percentage on transfected living cells 24 hours after transfection (n = 4;
**p,0.01). C. HTT sRNA toxicity correlates with the length of the CAG expansion, distinguishing pathogenic and non-pathogenic number of CAG
repeats (n = 4; * p,0.05, **p,0.01 ***p,0.001. D. HTT sRNA toxicity correlates with the generation of sCAG species (n = 4; **p,0.01). E. Anti-(CAG)7
sRNA (anti-sCAG) prevents cell damage caused by mutant-HTT-derived sRNA pool. Control sRNA inhibitors did not mitigate sRNA HTT toxicity (n = 4;
*p,0.05, **p,0.01, **p,0.001, determinations were performed in quintuplicates). Values represent mean of the ratio expanded-HTT sRNA toxicity vs
non-expanded-HTT sRNA toxicity6 SEM. In A. B. C. and D. values represent the mean fold change with respect to the control non-transfected cells 6
SEM and are referred to the control cells lacking HTT expression. In all experiments, cells were processed 24 hours after transfection in all the
experiments.
doi:10.1371/journal.pgen.1002481.g002

Small CAG-Repeated RNAs in Huntington’s Disease
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sCAG levels are increased in HD brain samples
We next examined whether sCAG were detected in different

brain areas of the R6/2 HD mouse model, a transgenic line that

over-expresses the exon 1 of human HTT with more than 100

repeats, and recapitulates many of the key features found in

patients with HD [37]. R6/2 mice of 8 weeks of age exhibited

deficits in coordination and activity, striatal atrophy, HTT-

aggregate accumulation and down-regulation of striatal-neuron

integrity markers [38]. RT-PCR analysis revealed increased sCAG

levels in the cortex and striatum of R6/2 mice with respect to their

wild-type littermates (Figure 3A), two brain areas preferentially

affected in HD. However, no differences in the expression of

sCAG species were detected in the cerebellum and hippocampus

of R6/2 mice. These results suggest the existence of region specific

mechanisms modulating sCAG biogenesis and/or stability in the

R6/2 mouse model.

sCAG levels were subsequently analysed in post-mortem brain

samples from HD patients and control subjects. RT-PCR analyses

confirmed an increase of sCAG in the frontal cortex and caudate

regions from HD samples (Figure 3B and Figure S5). The PCR

products were sequenced, and sCAG species of 18 nt length were

found in both control and HD brain samples. However, sCAG

species of 21 nt-long were only detected in HD human brain

samples (Figure S6).

To further validate the pathogenic role of sCAG in human

brain samples, we isolated the sRNA fractions from control and

HD frontal cortex and caudate, and transfected them into

differentiated SH-SY5Y cells. HD-sRNAs reproduced the toxicity

exerted by the expanded HTT-e1 sRNAs (Figure 3C). Further-

more, anti-sCAG dramatically diminished the toxic effect of HD-

derived sRNA, supporting a pathogenic role of sCAG species

produced in HD brains.

sCAG generation and activity depends on RNAi
machinery
In CAG-repeat expansion diseases, Dicer-dependent mechanisms

result in the formation of sCAGwith putative functions in pathogenic

gene silencing [19]. We therefore investigated whether RNAi

machinery is involved in the generation and function of sCAG inHD.

Figure 3. Cytotoxic sCAGs are increased in brain regions of HD. A. sCAG levels are increased in affected brain areas from R6/2 HD mouse
model compared to control mice. sCAG were quantified by qRT-PCR using RNU6B as the reference sRNA; HC, hippocampus; STR, striatum cortex; CX,
cortex; and CB, cerebellum. Values represent mean fold change with respect the control samples 6 SEM (n = 3; *p,0.05 ***p,0.001). B. Increased
expression of sCAG in HD human brain samples compared to control subjects. CA, caudate; and FC, frontal cortex. RNU66 sRNA was used as reference
sRNA. Values represent mean fold change with respect to the control samples 6 SEM (n= 3; *p,0.05 ***p,0.001). C. HD-derived sRNA pools induce
neuronal toxicity. sRNA pools were isolated from control and HD human brain samples and delivered to differentiated SH-SY5Y cells; cell death was
determined 24 hours later. The use of anti-sCAG dramatically reduced the cytotoxic effect. Control sRNA inhibitors (scrambled anti-sRNA) were used
as a negative control. Values represent mean of the ratio (HD sRNA toxicity/Control sRNA toxicity) for each condition 6 SEM (experiments were
performed in quintuplicates, n = 6; *p,0.05). Pools from four control individuals and four patients with HD were used.
doi:10.1371/journal.pgen.1002481.g003

Small CAG-Repeated RNAs in Huntington’s Disease
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To that end we performed Dicer knockdown experiments in

differentiated SH-SY5Y cells that were subsequently transfected

with HTTe1-expressing vectors. Dicer depletion prevented the

generation of sCAG (Figure 4A and Figure S7) and efficiently

mitigated 80*CAG RNA toxicity in SH-SY5Y cells, as indicated

by the decrease in LDH release and the inhibition of caspase 9

cleavage (Figure 4B). This result suggest that the toxic effect of the

80*CAG-derived sRNA is caused by a major pathogenic pathway

triggered by sCAG.

Since the generation of sCAG was largely dependent on Dicer,

we determined Dicer levels in several brain areas of control and

R6/2 mice (Figure S8). Dicer expression was significantly

decreased in the hippocampus and cerebellum of R6/2 mice

while no differences in sCAG levels were detected in these areas

(Figure 3A), suggesting that this could be a factor modulating

sCAG generation from mutant HTT.

To explore the potential mechanisms of HTT sRNA toxicity

and sCAG deleterious effect, we next examined the relationship

between 80*CAG toxicity and Ago2 activity, a key factor in

miRNA/siRNA gene silencing [39,40]. Cell viability assays

revealed that the toxic effect of sRNA pools originated from cells

expressing 80*CAG-PROT and 80*CAG-RNA was diminished in

cells depleted of Ago2 (Figure 4C). This result indicates that Ago2

is an important player in the pathogenic effect of 80*CAG-derived

sRNA species.

The initiation of a sCAG-mediated gene silencing process

requires the incorporation of sCAG into RISC. To test whether

sCAG could be loaded into the Ago2 silencing complex, we

transfected the HTT-expressing constructs into SH-SY5Y cells

stably expressing Flag-Ago2. We performed immunoprecipitation

(IP) assays using anti-Flag antibodies for Ago2 IP or anti-V5

antibodies as negative control (Figure S9) and RNA bounded to

immunoprecipitated Flag-Ago2 was isolated. The analysis of the

Ago2-associated sRNA revealed that sCAG generated from

mutant HTT RNA efficiently bound to the Ago2 complex

(Figure 4D).

These results, along with the protective role of anti-sCAG,

suggest that sCAG initiate a transcriptome-dependent detrimental

Figure 4. sCAG neurotoxic effect is dependent on Dicer and Ago proteins. A. Dicer knockdown inhibits the generation of sCAGs produced
by the expression of 80*CAG HTT-e1. sCAG levels were normalized to RNU66 levels. GFP blots indicate the expression of the HTT-constructs (n = 3;
interaction p-value= 0.000138; F = 46.220). B. In the same experiments, cell viability and caspase 9 cleavage analysis show that Dicer depletion
mitigates cell death induced by expanded HTT (n = 5; interaction p-value= 0.000135; F = 18.263). C. Ago2 depletion mitigates the toxicity of sRNA
obtained from mutant HTT expressing cells (n = 3; interaction p-value= 0.011; F = 10.821). D. sCAG efficiently associate to Ago2 in vivo. HTT-expressing
constructs were transfected on cells stably expressing Flag-Ago2. Flag IP demonstrate that sCAG binds to Ago2 complex. No significant binding was
detected in control IP experiments (a-V5). The plot shows the mean ratio of sCAG levels in FLAG IP vs. control V5 IP (n = 3; *p,0.05). E. The expression
of Flag-Ago2 in cells depleted for endogenous Ago2 partially, but significantly, rescued CAG-expanded HTT toxic effect (n = 3; *p,0,05). Values
represent the mean of the ratio expanded-HTT sRNA toxicity vs non-expanded-HTT sRNA toxicity 6 SEM in each experimental condition. Toxicity
levels are referred to the control cells lacking HTT expression. In A. B. and C., values represent the mean fold change with respect to the control, non-
transfected cells 6 SEM. Cells were processed 24 hours after double transfection in all the experiments.
doi:10.1371/journal.pgen.1002481.g004

Small CAG-Repeated RNAs in Huntington’s Disease
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response through Ago2-mediated gene silencing mechanisms. To

evaluate the direct role of Ago2 in the toxic effect of expanded

HTT-e1 we restored Ago2 levels in cells depleted of Ago2, and

determined cell death (Figure 4E). Restoration of Ago2 levels by

the co-transfection of a Flag-Ago2 expressing vector significantly

re-established HTT toxicity (Figure 4E).

In humans, the Ago subfamily consists of Ago1, Ago2, Ago3

and Ago4 that guide both siRNAs and miRNAs to comple-

mentary sites on target RNAs to modulate their expression [41].

We therefore asked whether Ago2 was the critical mediator on

HTT sRNA toxicity or other Ago proteins could be

participating as well. Given that Ago3 and Ago4 are not

significantly expressed in SH-SY5Y cells (data not shown), we

analyzed Ago1 contribution in HTT toxicity. The toxic effect of

expanded HTT-e1 was significantly decreased in cells with

reduced levels of Ago1, suggesting that mutant HTT effect is

also mediated by Ago1 (Figure S10). Since Ago2 is the only

member of the Ago family with endonucleolytic activity [40,42],

the results linking both Ago2 and Ago1 with HTT toxicity

suggest that sCAG may be modulating gene expression through

target mRNA degradation and/or translational inhibition, as

described for miRNAs [43].

sCAGs induce neurotoxicity
To validate the possible detrimental effect of sCAG in human

cells, a synthetic 21-nt long CAG-repeated siRNA, [(CAG)7
siRNA], was delivered to a panel of primary human cell lines

including, breast (HMEC), bladder (UROTSA) and pancreatic

cells (HPDE). Differentiated SH-SY5Y cells were used as a

neuronal model. (CAG)7 siRNA impaired cell viability at variable

levels in different cell types. Although these results indicate that

(CAG)7 siRNA detrimental effect is not restricted to SH-SY5Y

cells, this cell model displayed significant higher sensitivity to

(CAG)7 (Figure 5A and Figure S11). We performed additional

experiments in SH-SY5Y cells following several differentiation

protocols that result in differential cell morphology (Figure 5B and

Figure S12). These assays demonstrated a correlation between the

type of differentiation of SH-SY5Y cells and the sensitivity to

(CAG)7 which supports a transcriptome-dependent response in

sCAG-mediated toxicity.

Expanded HTT induces gene silencing of CUG-rich
transcripts
To validate the gene silencing activity of sCAG, and determine

whether a full or partial complementary with the target genes was

Figure 5. sCAG toxicity is variable in different human cells, preferentially affecting neuronal viability. A. Exogenous administration of
(CAG)7 siRNAs interfere with cell viability depending on the cell type (n = 3, p,0.0083). HMEC, HPDE and UROTSA cell lines were used as a source for
breast, pancreatic and bladder primary human cells. Differentiated SH-SY5Y cells were used as a post-mitotic neuronal cell model (n = 3; one-way
ANOVA *p,0.05 ***p,0.001; F = 15.203). B. The toxic effect of (CAG)7 siRNA is dependent on the type of differentiation. SHSY5Y cells were subjected
to several neuronal differentiation protocols, and CAG)7 or scrambled sequences (control siRNA) were administered in each situation. SH-SY5Y
sensitivity to (CAG)7 significantly differs in each differentiation condition (*), excepting for TPA standard differentiation condition (#), whose effect
wasn’t significantly different from the effect observed under TPA long exposure conditions (One-way ANOVA; F = 63.926). (n = 3, p,0.0083). MTT
assays were performed 48 hours after transfection. Graphs show relative cell survival indicated as the ratio between cell viability in cells transfected
with controls siRNA vs cell viability in cells transfected with (CAG)7. Values indicate the mean ratio 6 SEM of three independent experiments.
doi:10.1371/journal.pgen.1002481.g005
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needed, we generated firefly luciferase-expressing vectors carrying

a (CTG)14 stretch in the luciferase 39UTR. We also developed

constructs with the sequence (CAG)14, which offer an interrupted

binding to sCAG. In an attempt to evaluate the consequences of

an imperfect matching, we also cloned the sequences 59-

TCCGTGCTGAGCCTGCCTGTCGTCTGTG-39 and 59-

TGCTAGTATCAGATCTGCTGTGGAATTG-39, present in

the genes ADORA2A and MEIS2 respectively. These two genes

are downregulated in affected brain areas of HD patients and

brains from the R6/2 mouse model [44]. Furthermore, in silico

analysis of the sCAG and MEIS2 or ADORA2 duplex stability

using RNA hybrid suggests that MEIS2 and ADORA2 could be

putative targets of sCAG.

HeLa cells were co-transfected with the different combinations

of HTT-expressing vectors and the luciferase vectors, and

luminescence was measured 24 hours after transfection. Expanded

HTT RNA was able to moderately silence luciferase expression in

a construct containing a CTG14 sequence in the 39UTR,

compared to control luciferase vectors, and the non-expanded

forms of HTT-e1 (Figure 6A). These experiments suggest that

sCAGs derived from expanded HTT are involved in post-

transcriptional silencing of genes containing CTG repeated tracks.

In addition, we also detected a moderate reduction of luciferase

activity in constructs harbouring the sequence CAG14, suggesting

that, expanded-HTT-e1 targets genes with CAG repeats, although

the mechanism related may differ from the canonical miRNA/

siRNA silencing pathways.

Interestingly, HTT construct expressing 80*CAG moderately

decreased the expression (10% of reduction) of the reporters

containing ADORA2A and MEIS2 regions (Figure 6A). This result

indicates that full complementary between sCAG and its target

genes are not needed to induce gene silencing. Therefore, sCAG

may behave as siRNA molecules, but also as miRNA-like species,

and offer an additional explanation for the broad gene expression

deregulation observed in HD [44]. This possibility was further

confirmed by RT-PCR quantification of ADORA2 and MEIS2

expression in SH-SY5Y cells transfected with the HTT-e1

expressing vectors. (Figure 6B and 6C). The results obtained

reproduced the decrease observed in the luciferase assays.

Accordingly, the expression of CAA expanded constructs, which

failed to generate sCAG, didn’t affect ADORA2A or MEIS2

expression levels. We also evaluated if the 80*CAG construct

silenced the expression of genes containing a CUG tract, including

DMPK, ASTN2 and ZFR (Figure S13). The expanded HTT-e1

Figure 6. sCAGs induce post-transcriptional gene silencing in genes with CTG regions. A. Hela cells were cotransfected with firefly
luciferase expressing vectors containing the indicated nucleotide sequences in its 39-UTR, the specific HTT-e1 expressing vectors or the (CAG)7 siRNA
and Renilla luciferase plasmid to normalize data. Assays were performed 24 hours after transfection. Data were first normalized to the 100% of
luminescence obtained with the control luciferase vector, lacking 39UTR inserts (n = 3; *p,0.05, p**p,0,01). B,C. Levels of ADORA2A and MEIS2
transcripts in SH-SY5Y cells transfected with normal and expanded HTT vectors. MRIP was used as endogenous control. qRT-PCR was performed in
cells fixed 24 hours after transfection. (n = 3; *p,0.05). Values represent the mean fold change with respect to the control, non-transfected cells 6
SEM. D. Western blot showing reduced MEIS2 protein levels in differentiated SH-SY5Y expressing expanded HTT RNA 24 hours after transfection. The
graph shows the densitometry determination of MEIS2 levels vs b-Actin. Results represent the mean arbitrary optical density change normalized to
the mean value obtained in non-transfected cells (n = 4; *p,0.05).
doi:10.1371/journal.pgen.1002481.g006
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induced variable silencing of the different genes that did not

correlate with the number of CUG repeats. DMPK is the

transcript with higher number of CUG repeats in the 39UTR with

13 CUG repeats; ASTN2 presents a moderate number of

consecutive CUG repeats and ZFR transcripts contains a region

harboring 4*CAG immediately followed by 5*CTG. The

variability in the dowregulation response suggests that the number

of CUG repeats it’s not a key factor in mutant HTT-e1 silencing

activity.

We evaluated a possible enrichment in CTG regions (of a

minimal size of 7) either in the full transcript or in the 39-UTR of

HD downregulated genes. For this analysis we considered the

downregulated genes (,21,2 downregulation and p,0,05),

upregulated genes (.1,2 upregulation and p,0,05) and the group

of genes that did not show significant expression deregulation,

provided in the study by Hodges et al [44]. No significant

enrichment in genes containing CTG regions was detected in the

downregulated, upregulated or non-regulated genes (X-square

p.0,05), suggesting that the overall mRNA gene expression

deregulation was dependent on several pathogenic factors besides

sCAG-mediated gene silencing.

We next asked whether sCAG could be inducing gene silencing

by target mRNA degradation or by translation inhibition. The

levels of MEIS2 protein were analyzed in differentiated SH-SY5Y

cells transfected with normal and expanded HTT-e1. Cells were

lysated 24 hours after transfection, a time point in which CAG-

expanded HTT RNA toxicity was validated. Given that neural

cells are more sensitive to HTT-e1 expression and cell death can

be detected 21 h after transfection, MEIS2 levels were normalized

by Actin and also referenced to GFP expression, which indicates

the percentage of transfected living cells at the time of the analysis.

Figure 6D shows MEIS2 protein levels after performing this

analysis, confirming that CAG-expanded HTT-e1 induce a

reduction in MEIS2 levels by 10%, in agreement with the

luciferase reporter assays and mRNA quantification. The decrease

in MEIS2 protein levels is similar to the reduction in MEIS2

mRNA level, which may suggest that mRNA degradation is the

main mechanism in the particular case of MEIS2 post-transcrip-

tional gene silencing. However, an exhaustive study should be

performed to fully identify sCAG targets and characterize the

mechanisms of gene silencing in each particular case.

Discussion

The latest evidences suggest that RNA detrimental effects

contribute to neurodegeneration in a number of trinucleotide

repeat expansion diseases. However, these processes have not been

extensively addressed in HD, where pathogenesis has been

traditionally thought to involve the mutant HTT protein. Our

results suggest an RNA pathogenic mechanism in HD that

involves the aberrant generation of sCAG RNA species with an

inherent toxic effect in a neuronal cell model. We have shown that

the generation of sCAG species from expanded HTT exon 1 is

largely dependent on Dicer, in agreement with previous studies

showing that triplet repeats formed by CNG units adopt hairpin

structures that become sliced to sCNG by dicer [22,23]. In

addition, it has become apparent that most of the expanded repeat

disease loci have transcription occurring from both strands, raising

the possibility that the complementary repeat RNAs form double-

stranded structures susceptible to be processed by Dicer. Recently,

a natural antisense transcript for HTT (HTTAS) has been

described, covering the exon-1 CAG repeat [45]. Although

HTTAS is under the control of a weak promoter, it is expressed

throughout the brain and other tissues. Therefore, the production

of sCAG in HD brains shown in the present study and in

fibroblasts of HD patients [22] may originate both from HTT

expanded hairpin structures and HTT/HTTAS double stranded

RNAs.

Importantly, CAG repeat lengths above the threshold for

complete penetrance (40 or greater) generated increased amounts

of sCAG compared with non-pathogenic repeat lengths. Further-

more, our data suggest that the generation of sCAG correlated

with the length of the repeat, being sCAG levels progressively

higher in cells transfected with HTT-exon-1 constructs harboring

40, 48 and 80 CAG repeats, respectively. This correlated with a

gradually increasing detrimental effect driven by the small RNAs

fraction of cells expressing HTT-e1 with 40, 48 or 80 CAG

repeats, respectively. These results agree with the increased

severity of the disease in HD cases presenting extremely long

CAG expansions in the HTT gene [46].

The amount of sCAG products was not equivalent in different

brain areas in a HD mouse model, where increased sCAG levels

were detected in the more affected areas. Our data suggest that

decreased levels of Dicer could contribute to explain the lack of

sCAG increase in the hippocampus and cerebellum of R6/2 mice.

However, It is worth mentioning that Dicer activity is subject to

regulation that affects the accumulation of miRNAs and probably

sCAG. Recent work has identified a battery of proteins that

regulate processing either interacting with Dicer or with miRNA

precursors, being the activity of some regulators restricted to

specific miRNA families [47]. In this context, whether Dicer is

particularly active in the cortex and the striatum under basal

conditions and/or in HD, the possible mechanisms modulating

Dicer activity in specific areas and/or diseased state and its

relevance to human disease are open questions that deserve

specific research.

Our data indicate that the toxic effect of the sRNA fraction

generated by expanded HTT is dependent on Ago proteins and is

abolished by anti-sCAG. Furthermore, increased levels of sCAGs

were found in Ago2 immunoprecipitates of cells expressing

expanded HTT-e1, suggesting that sCAG-driven gene silencing

may underlie HTT-RNA toxicity. In agreement with RISC-

dependent mechanisms, expanded HTT-e1 constructs moderately

silenced genes showing pure and interrupted CUG tracks,

complementary to sCAG. However, we did not detect a significant

enrichment in mRNAs harboring CUG-tracks among those found

to be downregulated in human HD brain samples [44]. This

suggests that gene expression perturbation in HD brains may

reflect primary and secondary pathogenic triggers. In addition, the

possibility that sCAG may act through translational repression, a

gene silencing mechanism also described for miRNAs [43], cannot

be ruled out.

Interestingly, expanded HTT induced similar silencing when

using CAG repeats as the target sequence in the luciferase assay.

The main structural requirements for gene targeting in miRNA-

RISC mediated gene expression regulation are well defined for the

most expressed miRNAs, including seed region perfect pairing in

the 39-UTR of the target genes [48]. However, knowledge about

the determinants governing gene targeting is far from complete. In

fact, targeting can occur through sites other than the 39-UTR and

seed region base pairing is not always required [49]. Whether

imperfect base pairing between the CAG tracks in the small RNA

and the target genes is compatible with the location and

configuration of the sCAG-RISC complex, is an interesting

question that should be specifically addressed.

In addition, since trinucleotide repeats have been shown to bind

proteins, additional functions for sCAGs should be considered.

Gene expression modulation by miRNAs recently included a
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decoy function, where miRNAs bind to proteins that regulate gene

expression, thus modulating their activity [50]. The characteriza-

tion of the sCAG binding proteins that could have consequences in

gene expression regulation may shed light to possible additional

RNA related pathogenic mechanisms.

In summary, we propose a pathogenic RNA dependent

mechanism in HD by which sCAG produced over a threshold

are neurotoxic. In HD, this mechanism may complement other

RNA dependent processes including miRNA deregulation [28–32]

and possible alterations in alternative splicing driven by MBNL1

sequestration [26,51] (Figure 7). The detrimental effect may

depend not only on the amounts of sCAG generated, but also on

the target transcriptome and factors modulating RISC function.

These aspects may contribute to sCAG variable vulnerability in

different human cells observed in the present study. sCAG induced

pathogenesis may underlie common phenotypes in triplet repeat

diseases showing CAG expansions in different coding RNAs

(leading to polyglutamine expansions in several proteins) and

untranslated RNAs [19]. The identification of the specific sCAG-

targeted genes and the cellular processes affected by sCAG should

pave the way for the development of new therapeutic approaches

for HD and other CAG-repeat expansion diseases.

Materials and Methods

Cell culture
Human Mammary Epithelial Cells (HMEC) were maintained

in MEBM medium supplemented with Bullet-kit (Lonza), Human

Pancreatic Duct Epithelial Cells (HPDE) were cultured in KSFM

medium (Invitrogen) supplemented with epithelial growth factor

(0.1–0.2 ng/mL) and bovine pituitary extract (25 mg/mL). UR-

OTSA cells were maintained in RPMI medium (Invitrogen)

supplemented with 10% FBS (Fetal Bovine Serum, Invitrogen).

HeLa cells and SH-SY5Y neuroblastoma cells were maintained in

Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen)

supplemented with 10% FBS, 2 mM L-glutamine, 100 units/ml

penicillin and 100 mg/ml Streptomycin (GIBCO, Invitrogen). In

the case of SH-SY5Y cells, FBS was heat inactivated for 45 min at

56uC prior to use. Unless otherwise indicated, SH-SY5Y cells

differentiation was performed culturing the cells in the standard

growing medium containing 10 mM retinoic acid (RA) during four

days. The media was then replaced by fresh medium containing

80 nM of 12-O-tetradecanoylphorbol-13-acetate (TPA) during

five additional days [52] Different neuronal differentiation

protocols are provided in Figure S8).

Figure 7. Model of RNA pathogenic mechanism in HD. Several RNA dependent mechanisms contribute to HD pathogenesis. Dicer activity on
hairpin-like structures in the mutant HTT gene or in double stranded sense and antisense transcripts induces the formation of sCAG or CAG/CTG
siRNA that are incorporated into the RISC complex and trigger abnormal gene silencing. In addition mutant HTT mRNA may induce gene expression
deregulation through sequestration of RNA binding proteins that have affinity for CAG repeats, including the transcriptional regulator MBLN. miRNA
deregulation produced at least by cellular stress and REST transcriptional malfunction may also contribute to gene expression deregulation in HD.
doi:10.1371/journal.pgen.1002481.g007
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Generation of HTT-e1–expressing vectors
Different forms of the exon 1 of the HTT gene (HTT-e1)

differing in the CAG repeat length (23*CAG-, 35*CAG-,

40*CAG-, 80*CAG- or 80*CAA-PROT; and 23*CAG-,

80*CAG-RNA) were synthesized by Geneart. Flanking EcoRI

restriction sites were added during the synthesis that were used to

sub-clone the HTT-e1 variants into the pIRES2-EGFP vector (BD

Biosciences, Clontech). Not-translatable constructs lack the

translation initiation codon (AUG) and the second methionine

(AUG) found in HTT exon1 (Figure 1A).

Transfections
All the transfection experiments were performed using Lipo-

fectamine 2000 (Invitrogen), according to the manufacturer’s

instruction and at a 60% cell confluence. (CAG)7 (59CAGCAG-

CAGCAGCAGCAGCAG-39) and control, scrambled siRNA (59-

GCGACGUUCCUGAAACCAC-39) were purchased from Dhar-

macon and were administered at a final concentration of 50 nM,

unless otherwise indicated. The anti-sCAG small RNA (LNA

modified 59-(CTG)7), and scrambled sequences (LNA modified 59-

GTGTAACACGTCTATACGCCCA-39) were ordered from

Exiqon. Both anti-sCAG and the corresponding scrambled

inhibitor were transfected at a final concentration of 60 nM.

Transfections with sRNA pools were performed using 35 ng of

each sRNA pool per well (quintuplicates, 96wells multiwell). Dicer,

Ago1 and Ago2 knockdown experiments were performed by a

double transfection procedure; consisting in the transfection of the

Scrambled, Ago2 or Dicer siRNA in the first assay (50 nM), and

the co-transfection of the siRNA and HTT construct 48 hours

later at 75 nM and 400 ng, respectively, in MW6 plates. Dicer

siRNA (59- GCUCGAAAUCUUACGCAAAUA-39), Ago1

siRNA (59- CAUCAGGACUGUUGAGUAA -39) and Ago2

siRNA (59-GCACGGAAGUCCAUCUGAA-39) were purchased

from Dharmacon. A siRNA against the 39UTR of Ago2 (siAgo2-

39UTR: 59-GGAAATATGGTTTGCTAAA-39) was used in the

HTT toxicity rescue experiments (Figure 4E). Transfection

efficiency in experiments using siRNA or sRNA pools was

determined at each experimental condition using siGLO trans-

fection indicator (Dharmacon). Transfection conditions were

optimized in order to obtain similar transfection efficiencies

(,90%) in all the cell lines analyzed.

FLAG-Ago2 stable cell lines
SH-SY5Y cells were transfected with a Flag/HA-AGO2

expressing vector (Flag-tagged Ago2 expression vector was kindly

provided by Prof. R. Shiekhattar). The plasmid encodes for a neo-

resistance marker and transfected cells were grown in the presence

of 800 mg/ml of Geneticin (G418, Gibco Laboratories) for 10–14

days. Single clones were selected to generate monoclonal cell lines.

Expression of Flag/HA-AGO2 protein was checked by western

blot and immunofluorescence in several cell clones.

Western blotting
For protein extraction, cells were rapidly rinsed with ice-cold

PBS and solubilized with a lysis buffer described in [53]. Cells

were then scraped off, incubated on ice for 15 min and centrifuged

at 14000 rpm for 15 min. Samples were resolved in 10% SDS-

PAGE gels and transferred to nitrocellulose membranes using the

iBlot Dry Blotting System (Invitrogen). Membranes were blocked

for 1 h with 10% skimmed milk in TBS (Tris-HCl, pH 7.5,

10 mm; NaCl, 100 mm) containing 0.1% Tween-20 (TBS-T).

Membranes were incubated at 4uC and overnight with primary

antibodies (diluted in TBS-T). After washing with TBS-T,

membranes were incubated for 45 min at room temperature with

the appropriate secondary antibodies (diluted in TBS-T), and then

washed again with TBS-T. Detection was performed by ECL

Western blotting detection reagent (Amersham Bioscience).

Chemiluminescence was determined with a LAS-3000 image

analyzer (Fuji PhotoFilm Co., Carrollton, TX, USA). Primary

antibodies were anti-polyQ (MAB1574, 1:1000, Millipore), anti-

GFP (1:2000, Molecular Probes, rabbit), anti-PARP (1:5000, BD

Pharmigen, mouse), anti-cleaved caspase 9 (1:1000, Cell Signaling,

rabbit), anti-Dicer (1:500, Abcam, mouse), anti-Ago2, (1:500,

Abnova, clone 2E12-1C9). Anti-Ago1 antibody (1:1000, rat) was

kindly provided by Dr. G. Meister . Anti-GAPDH (1:4000,

Chemicon, mouse), anti-a-Actin (1:5000, Chemicon, mouse) and

anti-a-Tubulin (1:50000, Sigma, mouse) were used as loading

controls. Secondary antibodies were HRP-conjugated anti-mouse,

anti-rat and anti-rabbit (1:2000, DAKO)

Immunofluorescence
SH-SY5Y cells grown on coverslides were rinsed several times

with PBS and fixed for 20 min at room temperature with 4%

paraformaldehyde in PBS. After rinsing, cells were permeabilized

for 20 min in 0.5% Triton-X-100 in PBS. Non-specific binding

sites were then blocked by incubating for 1 h in PBS containing

0.2% Triton X-100 and 10% FBS. Incubation with primary

mouse anti-PolyQ antibody (1:2000, Millipore, clone 5TF1-1C21)

was carried out overnight at 4uC in PBS containing 0.2% Triton-

X-100 and 1% FBS. After washing, coverslides were incubated

with secondary anti-mouse IgG Alexa 555 IgG (Molecular Probes)

at a dilution of 1:1000 for 1 h at room temperature. After washing,

coverslides were mounted in Vectashield-DAPI solution, and cells

visualized under a Leica microscope (DMR). Images were

captured using a digital camera (Leica DC500).

Cell viability assay
Differentiated SH-SY5Y cells were transfected in 96 well plates

and cell viability was determined 24 hours post-transfection with

the 3-(4,5- dimethythiazol-. 2-yl)-2,5-diphenyl tetrazolium bro-

mide (MTT) assay. MTT was added to cell culture media at

0.5 mg/mL final concentration and incubated for 40 minutes at

37uC. Cells were then lysed with 100 mL of DMSO upon medium

removal and absorbance was measured at 550 nm. In each

experiment, determinations were performed in tetraplicates.

Cell toxicity assays
Lactose dehydrogenase (LDH) released from dying cells was

determined using the LDH assay (Cytotox 96, Promega) according

to the manufacturer’s protocol, at different time-points following

transfection (see figure legends). Absorbance was recorded at

490 nm. LDH determinations were performed in quintuplicate.

Cell death was also determined with the simultaneous staining

of alive and dead cells using fluorescein diacetate (FDA) and

propidium iodide (PI), respectively in a double staining procedure.

Cells were rinsed with PBS 16and then incubated for 45 s at 22–

25uC with 15 mg/ml FDA (Sigma) and 4.6 mg/ml PI (Molecular

Probes, Inc., Eugene, OR, USA) in PBS. The staining solution was

replaced by PBS 16 and the stained cells were immediately

examined under a Leica microscope.

Immunoprecipitations assays and sRNA extraction
Ago2 Immunoprecipitations assays and the extractions of the

Ago2-bounded RNA were carried out as described previously

[54]. Flag-Ago2 immunoprecipitation was performed using ANTI-

FLAG M2 affinity gel (Sigma). ANTI-V5 affinity gel (Sigma) was
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used as a negative control for Ago2 IP. sCAG levels were

determined by polyadenylation and RT-PCR. SH-SY5Y cells

transfected with 100 nM (CAG)7 were used as a positive control.

RNA isolation
Total RNA from cells or brain tissues was extracted using

miRNeasy Mini kit (Qiagen). Small RNA species (,100 nt), were

fractionated by size-exclusion column chromatography using

Microcon Y-10 (Millipore) according to the manufacturer’s

instructions.

RNA polyadenylation
Total RNA was treated with TURBO DNA-free kit (Ambion).

In vitro polyadenylation reactions were carried out using 1 mg of

total RNA or 100 ng of sRNA enriched fraction and poly(A)

polymerase (Ambion) for 1 h at 37uC in the presence of ATP

(1 mM). Samples were then annealed with a polyT-adapter primer

(59-CGAATTCTAGAGCTCGAGGCAGGCGACATGGCTfG-

GCTAGTTAAGCTTGGTACCGAGCTCGGATCCACTAGT-

CCTTTTTTTTTTTTTTTTTTTTTTTTTAC-39) prior to RT

reaction. Specific primers recognizing the adapter and sCAG

allowed the amplification of specific products by RT-PCR.

qRT–PCR
sCAG expression levels in cells transfected with the non-

expanded or expanded HTT-e1 were analyzed by RT-PCR or

densitometry of the PCR amplified products. Total RNA,

polyadenylated total RNA or sRNA was retrotranscribed using

the Superscript III RT kit (Invitrogen).

Equal amounts of cDNA were mixed with SYBR Green PCR

mix (Roche). Five pmol of the forward primer (designed on the

CAG repeat sequence) and reverse primer (based on the adaptor

sequence) were used in each reaction. Amplification was done

under the conditions of 15 sec at 95uC and followed by 55 cycles

consisting in 1 min at 60uC and 2 min at 72uC in a LightCycler

480 Real-Time PCR System (Roche). The entire experiments

were repeated three times on independent RNA preparations.

RNU66 expression was used as a reference small RNA. Values

were also referenced to the GFP levels, which refers to the number

of transfected living cells at a particular time. b-Actin was the

endogenous reference gene for GFP normalization. Data are

presented as the ratio between the normalized expression of sCAG

(sCAG/RNU66) or a particular gene (gene/b-Actin) and the

normalized expression of GFP (GFP/b-Actin).

sRNA qRT-PCRs were performed with the following set of

primers: sCAG Forward: 59-CAGCAGCAGCAGCAGCAG-39,

sCAG Reverse: complementary to the polyT adapter after

polyadenylation (59-CGAATTCTAGAGCTCGAGGCAGG-39);

RNU66 forward: 59-GTAACTGTGGTGATGGAAATGTG-39;

RNU66 reverse: 59- GACTGTACTAGGATAGAAAGAACC-39;

RNU6B forward: 59-CGCTTCGGCAGCACATATAC-39;

RNU6B reverse: 59-TTCACGAATTTGCGTGTCAT-39.

mRNA qRTPCR were performed using the following primer

sets: GFP forward: 59-TGCAGTGCTTCAGCCGCTAC-39;

GFP reverse: 5-TCGCCCTCGAACTTCACCTC-39; DMPK

forward: 59-TGGGCTACTCCTACTCCTG-39; DMPK reverse:

59- AGCTGTTTCATCCTGTGGG-39; ASTN2 forward: 59-

GACATTCTACACGGAGCAGTAC-39; ASTN2 reverse: 59-

GTGAGTGGACAAGACATCTGG-39; ZFR forward: 59- TGG-

GACTCAAAATCAGCTACG-39; ZFR reverse: 59- TGGT-

TCTGTTGATGGAATGGG-39; b-Actin Forward: 59-CTG-

GAACGGTGAAGGTGACA-39; b-Actin Reverse: 59-GGGA-

GAGGACTGGGCCATT-39.

Regular detection of GFP and HTT-e1 expression was

performed using the following set of primers GFP Forward/GFP

Reverse, and HTT forward//pIRES-GFP reverse (59-GTC-

CCTCAAGTCCTTCCAGC-39/59-GAACTTCAGGGTCAGC-

TTCG-39).

Gene expression analysis of ADORA2A and MEIS2 genes were

carried out using Taqman assays (assay ID: Hs00169123_m1* for

ADORA2A and assay No: Hs00542638_m1* for MEIS2). Data

were normalized using MRIP (assay ID: Hs00819388_m1) as an

endogenous reference gene. Amplification was done under the

conditions: 15 sec at 95uC and followed by 55 cycles consisting in

1 min at 60uC and 2 min at 72uC on the ABI PRISM 7000

Detection system (Applied Biosystems). The entire experiments

were repeated four times on independent RNA preparations.

qPCR results were analyzed using the 22delta delta Ct method.

Detection of miRNA precursors and mature forms
The levels of the precursors and mature forms of miR-16 and

miR-29 in normal cells and cells with decreased levels of Dicer

were determined by polyadenylation and RT-PCR in total RNA,

as previously described. The following oligonucleotides were used:

for miR-16-1: 59-TAGCAGCACGTAAATATTGGCG-39; for

miR-29a: 59- TAGCACCATCTGAAATCGGTT-39.

sCAG sequencing
CAG PCR products were run on a 15% polyacrylamide gel and

visualized by SybrSafe staining (Invitrogene). PCR products were

purified and ligated into pGEMT-easy vector. The sequencing

reactions of the vectors were carried out using the Big Dye 3.1

Termination Cycle Sequencing Kit and DNA Sequencer

(ABI3100) from Applied Biosystems.

Northern blot
Total RNA (30 mg) or small RNA (,100 nt long, 4 mg) were

resolved in a 15% acrylamide-7.5 M urea gel and transferred to

Hybond-N+ membranes (Amersham Bioscience) in 0.56 Tris-

buffered EDTA at 200 mA overnight at 4uC. The membranes

were UV cross-linked and heated at 80uC for 1 h. LNA probes

(Exiqon) and oligoribonucleotide probes against (CAG)7 repeats

(59-CTGCTGCTGCTGCTGCTGCTG-39) were labelled with

c-32P-dATP using Optikinase (USB Corp.). LNA probe complemen-

tary to RNU6B was used as loading control (59-CAC-

GAATTTGCGTGTCATCCTT-39, Exiqon) and an oligonucle-

otide probe complementary to GFP (59- GAACTTCAGGG-

TCAGCTTGC) was used to detect the expression of the different

pIRES-HTT-e1-GFP vectors (HTT-e1-IRES-GFP transcripts

with a length of around 1.5 Kb). Oligonucleotide probes

hybridisation and washings were performed at 50uC using PerfectHyb

Plus buffer (Sigma). The membranes were exposed to Fuji Imaging

plates, scanned with a FLA-5000 PhosphorImager (Fuji PhotoFilm Co.)

and quantified with ImageJ software.

Firefly luciferase assay
A series of firefly luciferase-based reporter constructs were used for

quantitative measurement of sCAG-mediated post-transcriptional

gene silencing in genes containing (CUG)7/(CAG)7 stretches.

The putative target sequences were obtained by the annealing

of oligonucleotides with the desired sequence, containing an XbaI

restriction site at their 59 end. The resulting double stranded DNA

fragments were cloned downstream of the firefly luciferase

reporter gene in the pGL4.13 vector (Promega) using XbaI

restriction site.
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The oligonucleotides used were: 59-CTAG(CTG)14-39 and

reverse 59-CTAG(CAG)14 for genes containing (CUG)n repeats;

forward 59-CTAG(CAG)14-39 and reverse 59-CTAG(CTG)14-39

for genes containing (CAG)n repeats; forward 59-CTAGTCC-

GTGCTGAGCCTGCCTGTCGTCTGTG-39 and reverse 59-

CTAGCACAGACGACAGGCAGGCTCAGCACGGA-39 mim-

icking a CUG rich region located in ADORA2A gene; forward 59-

CTAGTGCTAGTATCAGATCTGCTGTGGAATTG-39 and

reverse 59-CTAGCAATTCCACAGCAGATCTGATACTAG-

CA-39for a CTG containing region of MEIS2 gene .

HeLa cells were seeded at 1.36104 cells/well in 96-well plates

and 24 h later they were co-transfected with the following set of

vectors: HTT-e1 constructs (40 ng), Firefly reporter constructs

(24 ng) and Renilla reporter plasmid pGL4.75 (3 ng). The

pGL4.13 vector without 39UTR insertion was used as negative

control for gene silencing. The (CAG)7 mimic was used as a

positive control for silencing effect of CUG enriched stretches.

The activity of Firefly and Renilla luciferases was determined

24 h after transfection using the Dual-GloTM Luciferase Assay

System (Promega). Relative reporter activity was obtained by

normalization to the Renilla luciferase activity. Each experiment

was done in triplicate, and at least three independent experiments

were performed for each construct.

Mice brain samples
Hemizygous male mice transgenic for exon 1 of the human

Huntingtin gene with a greatly expanded CAG repeat (R6/2 mice)

[37] were purchased from The Jackson Laboratory (Bar Harbor,

code B6CBA-Tg(HDexon1)62Gpb/1J; 155–175 CAG repeats).

The colony was maintained by back-crossing R6/2 males with

(CBA6C57BL/6J) F1 females. Mice were sacrificed at 8 weeks of

age, and brain samples were snap-frozen and subsequently stored

at 280uC until use. Those 8 week-old R6/2 mice exhibited

various hallmarks of HD-like disease, such as motor symptoms

(deficits in coordination and activity), neuropathological deficits

(striatal atrophy and huntingtin-aggregate accumulation) and

molecular-pathology alterations (down-regulation of striatal-neu-

ron integrity markers) [38].

Human brain samples
Brain samples corresponding to the frontal cortex (FC) and the

striatum (dorsal caudate, CA) of HD patients and controls were

obtained from the Institute of Neuropathology and the University

of Barcelona Brain Bank. CAG expansions ranged from 41 CAG

repeats to 62 CAG repeats in the HD samples (control samples

harbored less than 23 CAG repeats). The neuropathological

examination in HD cases revealed severe atrophy of the caudate

and putamen, cerebral cortical atrophy. This was accompanied by

marked neuronal loss and astrocytic gliosis. Individual neurons in

the cerebral cortex and striatum exhibited ubiquitin-positive

intranuclear inclusions typical of diseases with CAG triplet

expansions. HD cases were categorized as stage 4 following

Vonsattel classification.

Ethics statement
Animal handling procedures was conducted in accordance with

Directive 86/609/EU of the European Commission.

Brain samples of HD patients and controls were obtained from

the Institute of Neuropathology and the University of Barcelona

Brain Bank, after the informed consent of the patients or their

relatives and the approval of the local ethics committee. Ethical

issues and legislation as defined by the European Union and

national law. All activities were conducted with the approval of

responsible ethical committees. The following general guidelines

apply:- The Charter of Fundamental Rights of the EU; - Directive

2004/23/EC of the European Parliament and of the Council of 31

March 2004 on setting standards of quality and safety for the

donation, procurement, testing, processing, preservation, storage

and distribution of human tissues and cells; - Directive 95/46/EC

of the European Parliament and of the Council of 24 October

1995 on the protection of individuals with regard to the processing

of personal data and on the free movement of such data.

Statistical methods
In each experiment ‘‘n’’ refers to completely independent

experiments. Statistical analyses were performed using the two-

tailed unpaired t-student’s test for single comparisons (p,0,05)

and the analysis of variance (ANOVA) when multiple pair-wise

conditions were compared, where ad-hoc tests were addressed

with the Bonferroni correction. The ANOVA test included an

interaction term in the cases were the aim was to evaluate whether

specific proteins modulate HTT-e1 response. Unless specifically

indicated, p-values withstand Bonferroni correction.

Supporting Information

Figure S1 Immunofluorescent detection of HTT expression.

SH-SY5Y cells were transfected with the indicated HTT-

constructs and expression was evaluated 24 h later. GFP

expression (green) allows the identification of HTT-IRES-GFP

RNA and protein expressing constructs. Polyglutamine antibody

staining (red) labels the cells expressing the HTT protein. Only the

23*CAG-PROT and 80*CAG-PROT constructs express the

protein.

(TIF)

Figure S2 (CAG)7 sRNA are detected in cells expressing

80*CAG HTT. sCAG were detected in cells expressing HTT-

e1-expressing vectors by RNA polyadenylation, polyT-based RT

and PCR (a detailed description is provided in Methods). PCR

products were cloned into pGEMT-easy vector and then

sequenced. A. Histogram showing the cloned 21 nt-long (CAG)7
sRNA. Sequences corresponding to the cloning vector, the polyA

region and the RT-PCR adapter oligonucleotide are indicated. B.

Table shows the type of sequences identified in the different

samples and their frequency. (CAG)7 sRNA were only detected in

cells expressing 80*CAG HTT (RNA or protein). Sixteen different

positive sCAG-cloning colonies were sequenced for each HTT

variant.

(TIF)

Figure S3 Increased sCAG levels can be detected by Northern

blot. Northern blot analysis confirms the increase in sCAG in cells

expressing expanded HTT-e1. A. The expression of the different

HTT-e1 expression vectors can be detected by a-CAG and a-GFP

probes. RNA18S signal was used as loading control. B. CAG-

repeated sRNA of around 21 nt long and longer CAG-rich species

are produced in cells expressing expanded HTT-e1 RNA.

RNU6B sRNA was used as loading control. Thirty mg of total

RNA was used per lane. C. sCAG products were also detected in

sRNA fraction obtained from cells expressing expanded HTT-e1

(4 mg of RNA,100 nt were subjected to electrophoresis).

(TIF)

Figure S4 HTT-e1-IRES-GFP vectors are efficiently expressed

in SH-SY5Y. Differentiated neuroblastoma cells were transfected

with HTT-e1 constructs harbouring 23, 35, 40, 48 or 80 CAG

repeats. Western blots shows polyQ and GFP expression. The

results are representative of 3 independent experiments.

(TIF)
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Figure S5 sCAG levels in individual HD brain samples. Graph

shows relative sCAG levels in control and HD human brain

samples containing different number of CAG repeats. RNU66 was

used as the reference sRNA. RT-PCR assays showed that all the

HD brain samples analyzed displayed increased sCAG levels

compared to control samples. The results are representative of 3

independent experiments performed in triplicate.

(TIF)

Figure S6 sCAG are detected in HD human frontal cortex.

sCAG PCRs from Control and HD frontal cortex were resolved in

polyacrylamide gels. Gel fragments corresponding to a size of

around 18–24 nt were cut and DNA was isolated and cloned into

pGEMT-easy vector. Twelve positive colonies were sequenced for

each sample (3 HD-derived brain samples; 3 samples from control

subjects). A. Histogram with the sequencing results of HD-derived

sample expressing (CAG)7 sRNA. B. Table showing the type of

sequences identified in the different samples and their frequency.

sRNA constituted by 6*CAG repeats were found in both and HD

brains. (CAG)7 sRNA were only found in HD-derived samples.

(TIF)

Figure S7 sCAG generation depends on Dicer expression. A.

Northern blot confirming that the generation of CAG-repeated

sRNAs in cells expressing expanded HTT-e1 is suppressed when

cells are depleted of Dicer. RNA6B was used as a loading control.

B. Dicing efficiency was determined in normal cells and cells

showing low Dicer levels by measuring miRNA maturation. Gels

show precursor and mature forms of miR-16 and miR-29a (very

abundant and low abundant in SH-SY5Y cells respectively). C.

Western blot showing Dicer protein levels in control cells and cells

treated with siRNA against Dicer. RNA was isolated 24 hours

after transfection with the HTT-e1 expressing vectors.

(TIF)

Figure S8 Dicer levels are significantly decreased in the

hippocampus and the cerebellum of R6/2 mice. Protein lysates

were obtained from striatum, cortex, hippocampus and cerebel-

lum of control and R6/2 mice (8 weeks old). Dicer protein levels

were evaluated in four different control mice and five R6/2.

Graphs show the densitometry determination of Dicer levels vs
Tubulin for each specific brain area. Results demonstrate that

Dicer levels are decreased in hippocampus and cerebellum of R6/

2 compared to its levels in control mice. Results represent the

mean arbitrary optical density change 6 SEM (n= 3; *p,0.05).

(TIF)

Figure S9 Experimental design to detect CAG-repeated small

RNAs in Ago2 complexes. SH-SY5Y cells stably expressing mild

levels of the Flag-Ago2 fusion protein were transfected with HTT-

expressing vectors (protein or RNA expressing constructs).

Immunoprecipitation (IP) experiments were performed using an

anti-Flag tag antibody or an anti-V5 tag antibody as negative

control for Ago2 binding. Western blot analysis shows that Ago2

protein was only immunoprecipitated by the use of Flag

antibodies. These immunoprecipitates were used for the detection

of sCAG (Figure 4D).

(TIF)

Figure S10 Ago1 activity contributes to HTT RNA toxicity.

SH-SY5Y cells were transfected with siRNAs specific for Ago1

(siAgo1) or scrambled siRNAs as control. Cells were co-transfected

48 hours later with the combination HTT-e1/siAgo1 or HTT-e1/

control siRNA. A. LDH cytotoxicity assay shows that the

detrimental effect of CAG-expanded HTT RNA is dramatically

reduced when cells are depleted of Ago1 (n = 3; *p,0,05

**p,0,01). Values are referred to the control cells lacking HTT

expression. Values represent mean of the ratio: expanded-HTT

RNA toxicity vs non-expanded-HTT RNA toxicity 6 SEM for

each experimental condition.

(TIF)

Figure S11 Cell-type dependent cytotoxic effect of (CAG)7
siRNAs. (CAG)7 siRNA was transfected into HMEC, UROTSA

and HPDE non-neural human cells. Differentiated SH-SY5Y cells

were used as a post-mitotic neuronal cell model. (CAG)7 siRNA

exert a cell-type dependent toxic effect, preferentially affecting

neuronal viability. Fluorescein diacetate staining (green) labels

living cells. Propidium iodide staining (red) specifically labels dead

cells. Stainings were performed 36 hours after transfection (n= 3,

each experiment performed in triplicate).

(TIF)

Figure S12 Neuronal differentiation protocols used in SH-SY5Y

cells. Schematic description of the different neuronal differentia-

tion protocols used to characterize the toxic effect of (CAG)7

siRNA (Figure 5B). Pictures show the morphological changes

induced after each differentiation condition.

(TIF)

Figure S13 Expanded HTT-e1 RNA silences CUG rich genes.

Total RNA was isolated from cells expressing the different HTT-

e1 expressing vectors 24 hours after transfection. qRT-PCR

revealed that expanded HTT-e1 (protein and RNA) can

suppressed endogenous levels of CUG rich transcripts (DMPK,

ASTN2 and ZFR). The percentage of suppression differs among

the transcripts analyzed. (n = 4; *p,0,05, experiments performed

in triplicates).

(TIF)
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