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A Patient-Adaptable ECG Beat Classifier
Using a Mixture of Experts Approach

Yu Hen Hu,* Senior Member, IEEE, Surekha Palreddy, and Willis J. Tompkins, Fellow, IEEE

Abstract—We present a “mixture-of-experts” (MOE) approach
to develop customized electrocardigram (ECG) beat classifier in
an effort to further improve the performance of ECG processing
and to offer individualized health care. A small customized
classifier is developed based on brief, patient-specific ECG data.
It is then combined with a global classifier, which is tuned to a
large ECG database of many patients, to form a MOE classifier
structure. Tested with MIT/BIH arrhythmia database, we observe
significant performance enhancement using this approach.

Index Terms— ECG beat classification, MIT/BIH database,
mixture of experts, neural network, patient adaptation.

I. INTRODUCTION

COMPUTERIZED electrocardiography is now a well-
established practice, after several years of significant

progress. Many algorithms have been proposed over years for
electrocardiogram (ECG) beat detection and classification. In
a clinical setting, such as an intensive care unit, it is essential
for automated systems to accurately detect and classify elec-
trocardiographic signals on a real-time basis. Since several
arrhythmia are potentially dangerous and life threatening, if
not detected within a few seconds to a few minutes of its
onset, automated electrocardiographic monitoring assumes a
challenging role. Several algorithms have been proposed in
the literature for detection and classification of ECG beats and
reported results, that leave room for improvement. They in-
clude signal processing techniques; such as frequency analysis,
template matching, and other parameter extraction methods.
Artificial neural networks were also employed to exploit their
natural ability in pattern-recognition tasks for successful clas-
sification of ECG beat [2], [3], [6]–[8], [23]–[25], [28]–[31].
One major problem faced by today’s automatic ECG anal-

ysis machine is the wild variations in the morphologies of
ECG waveforms of different patients and patient groups.
An ECG beat classifier which performs well for a given
training database often fails miserably when presented with
a different patient’s ECG waveform. Such an inconsistency
in performance is a major hurdle preventing highly reliable,
fully automated ECG processing systems to be widely used
clinically.
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One obvious approach to alleviate this problem is to use as
much training data as possible to develop the ECG classifier.
This is the approach taken by all the vendors of ECG pro-
cessing devices: A large in-house ECG database is developed
and maintained to test each ECG processing algorithm to be
incorporated into the product. However, such an approach
suffers several pitfalls.
1) No matter how large this database may be, it is not
possible to cover every ECG waveform of all potential
patients. Hence, its performance is inherently limited.

2) The complexity of the classifier grows as the size of the
training database grows. When a classifier is designed
to correctly classify ECG from millions of patients
(if it ever becomes possible), it has to take numerous
exceptions into account. The result is a complicated
classifier which is costly to develop, maintain, and
update.

3) It is practically impossible to make the classifier learn to
correct errors during normal clinical use. Thus, it may be
rendered useless if it fails to recognize a specific type of
ECG beats which occurs frequently in certain patient’s
ECG records.

The answer, we believe, is to allow the classifier to be
“patient-adaptable.” That is, to let the classification algorithm
adaptable to the special characteristics of each patient’s ECG
records. For example, we may include the training algorithm
and the database used to develop the classifier to be delivered
to the users, so that the classification algorithm can be fine-
tuned to each patient. Unfortunately, this is impractical for
several reasons.
• While it is possible to turn over training algorithms and
databases to the users in an academic environment, it
is unlikely that any commercial ECG machine vendor
is willing to risk revealing their proprietary information
to their competitors. Moreover, in-house database often
contains millions of ECG records which could be costly
to distribute.

• Users often do not want to be bothered by implementation
details of an ECG algorithm. Thus, few users will be able
to take advantage of this patient-adaptation feature even
if it is available.

• Even if a user is willing to perform the patient cus-
tomization, he or she still have to provide sufficient
number of patient-specific training data in order to per-
form patient-adaptation. Manually editing ECG record is
a time consuming, labor intensive task. Hence, the size of
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patient-specific training data must be tightly controlled.
In this study, we propose a novel approach to patient-

adaptation while avoiding these difficulties: 1) We do not
require the factory-trained ECG classifier to provide training
algorithms or training databases. Instead, all we need is that
this classifier gives both its classification results, as well as
an estimate of posterior probability of the feature vector as is
drawn from each particular class. Hence, no company propri-
etary information is needed. 2) A patient-specific classifier will
be developed using an automated procedure, without human
supervision. 3) Only a brief manually edited patient ECG
record (2–5 min) is needed to achieve significant performance
improvement.
This proposed approach is based on three popular artificial

neural network (ANN)-related algorithms, namely, the self-
organizing maps (SOM), learning vector quantization (LVQ)
algorithms, along with the mixture-of-experts (MOE) method.
SOM and LVQ together are used to train the patient-specific
classifier, and MOE is a paradigm which facilitates the com-
bination of the two classifiers (original and patient-specific)
to realize patient-adaptation. In MOE, the two classifiers are
modeled as two experts on ECG beat classification. The
original classifier, called the Global expert (GE) in this work,
knows how to classify ECG beats for many other patients
whose ECG records are part of the in-house, large ECG
database. The patient-specific classifier, called the local expert
(LE) in this work, is trained specifically with the ECG record
of the patient. A gating function, based on the feature vector
presented, dynamically weights the classification results of the
GE’s and the LE’s to reach a combined decision. The process
is analogous to two human experts arriving at a consensus
based on their own expertise.
Section II reports the results of literature survey and

Section III discusses data acquisition with preprocessing.
Section IV discusses the proposed algorithms and the
development of experts. Section V reports the results of the
classifier on the database records and discusses the results.
Section VI is a summary of the findings of this paper.

II. PRELIMINARIES

A. ECG Beat Classification Techniques
Automated ECG beat classification was traditionally per-

formed using a decision-tree-like approach, based on various
features extracted from an ECG beat [1], [4], [5], [13], [20],
[22]. The features used include the width and height of QRS
complex, RR interval, QRS complex area, etc. One of the
difficulties is that these features are susceptible to variations of
ECG beat morphology and temporal characteristics. As such,
the classification rate reported in these earlier efforts are rather
moderate.
Artificial neural networks (ANN’s) have been widely ac-

cepted for pattern recognition tasks. Their abilities to learn
from examples and extract the statistical properties of the
examples presented during the training sessions, make them
an ideal choice for an automated process that imitates human
logic. Several efforts have been made to apply ANN’s for

the purpose of ECG beat detection and classification. Previ-
ous reported efforts include [2], [3], [6]–[8], [23]–[25], and
[28]–[31].
Hu et al. [7] reported the development of an adaptive

multilayer perceptron (MLP) for classification of ECG beats.
They have achieved an average recognition accuracy of 90%
in classifying the beats into two groups; normal and abnormal.
In an attempt to classify the beats into 13 groups according to
the MIT Database annotations, they have reported an average
recognition accuracy rate of 65%. An hierarchical system of
the MLP networks which first classify the beat into normal
or abnormal, and then classify it into the specific beat type, is
developed, which improved the recognition accuracy to 84.5%.

B. Self-Organization Map (SOM) and Learning
Vector Quantization (LVQ)
SOM and LVQ are both clustering based algorithms pro-

posed by Kohonen [14], [15]. SOM is an unsupervised on-line
clustering technique. In SOM, each cluster center (prototype
or code word) is represented by the weights of a neuron which
is assigned to a coordinate in the feature map. The SOM
training algorithm forces adjacent neurons in the feature map
to respond to similar feature (input) vectors. In a way, this
feature map is analogous to the spatial organization of sensory
processing areas in the brain. Let be denoted as the
weights (code word) or the th neuron in SOM during the time
instant , the weights of SOM then are updated according to
the following simple formula:

(1)

is the so-called neighborhood kernel, which determine
the size of neighborhood of the th neuron within which all
neighboring neurons will be updated in response to the present
feature vector . Initially, the neighborhood is large. The
size reduces as clustering converges, until no neighboring
neurons will get updated.
LVQ is a supervised, clustering-based classification tech-

nique which classifies a feature vector according to the
label of the cluster prototype (code word) into which is
clustered. Classification error occurs when the feature vectors
within the same cluster (hence, assigned to the same class
label) are actually drawn from different classes. To minimize
classification error, the LVQ algorithm fine tunes the clustering
boundary between clusters of different class labels by modi-
fying the position of the clustering center (prototype or code
word). This method is called “learning vector quantization”
because this clustering based classification method is similar to
the “vector quantization” method used for signal compression
in the areas of communication and signal processing.
According to Kohonen, there are three different LVQ algo-

rithms, called LVQ1, LVQ2, and LVQ3 developed at subse-
quent stages to handle classification problems with different
natures. In this study, the optimized learning-rate LVQ1 and
LVQ3 algorithms were used for the training and fine-tuning of
the code book respectively. In LVQ1, for a given input vector

, a code word is found such that

(2)
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The code word is then updated as follows:

(3)

where if the classification is correct [i.e., and
have the same class label] and , otherwise.

is a time-varying learning rate. Other code words in the code
book remain unchanged. LVQ3 differs from LVQ1 in how
the code words are updated: Assuming that falls within
a window between two adjacent clusters with corresponding
code words and . Suppose that and belong to the
same class, and and belong to different classes, then both
these code words will be updated in LVQ3:

(4a)
(4b)

On the other hand, if both and belong to the same class
as , and fall in a window centered at the cluster
boundary of these two classes, then

(5)

The optimal value of depends on the size of the window,
being smaller for narrower windows. This algorithm is self-
stabilizing, and optimal placement of the does not change
in continual training.
Software packages of both SOM and LVQ are available

in the public domain,1 and the application of these packages
to the ECG beat classification problem is straight forward.
The adaptation parameters in these packages (SOM PAK and
LVQ PAK) were carefully fine tuned while developing the
classifiers. As such, the development of the code book and
eventually decision boundary can be made completely trans-
parent to the user. Moreover, performance obtained using these
package is very competitive compared to other approaches. In
this research work, we first apply SOM to a set of training
feature vectors. The resulting code book (prototypes) then will
be submitted to the LVQ PAK to facilitate fine tuning and
classification.

III. MIXTURE OF EXPERTS (MOE)
This user adaptation problem bears certain resemblance to

the incremental learning problem in that new data are to
be incorporated to improve existing classifier’s performance.
However, the black-box model of the existing classifier pre-
vents us from directly modifying the classifier structure as
incremental learning algorithms do. Instead, we propose a
different method called the MOE, to circumvent this problem.
The MOE approach was proposed by Jacobs et al. [9]–[12],

[16], [26], [27]. The basic notion is that linear combinations
of several statistical estimates can perform better than any
individual estimate. This strategy is not new. It is a well
known fact that a panel of experts often arrive at a better
diagnosis than any single expert, because each expert is able
to contribute from his/her own expertise.
1University of Helsinki, Finland, URL: ftp://cochlea.hut.fi/pub/

The basic idea is to leave the existing black-box classifier
intact. Instead, we use the given small, user-specific training
data set to develop a LE classifier. Then we invoke a modified
MOE approach to combine these two classifiers, hoping to
achieve better performance.
To apply the MOE approach to solve the customization

problem, we employ two experts: a GE and a LE. The GE
represents the ECG beat classifier developed in factory. Thus,
it is trained to classify all types of ECG beats present in the
in-house ECG database. The LE represents a specialized ECG
beat classifier, trained on a small segment of annotated ECG
beats taken from the specific patient. As such, the GE and the
LE are endowed with complementary knowledge bases, and
can work together to reach a better decision than any one can
reach individually.
The expert network is a combination of the GE and LE

classifiers. Let and be the output (row) vectors of
the two respective GE and LE classifiers. Each element of each
vector indicates the degree of proximity of an unknown ECG
beat to a predefined ECG beat class (category). In the MOE
method, the combined th output vector of both the experts
is given by

(6)

where is the input feature vector, , are the
weighting vectors for each expert from a gating network and
are defined by

(7)

where ’s are the weight vectors of the gating network. Note
that .
Theorem 1: Define , and
, , to be the subregion in the feature space where

the classifier makes correct classification of and let
be defined the same way. Assume and

, then

(8)

Proof: We need only to prove that if both and
misclassify a given feature vector , then cannot

give correct classification on . Since the correct classifica-
tion output , the combined output , and individual
classifier output and are all binary vectors of the
same dimension, if both classifiers misclassify a given feature
vector which belongs to class , we must have, for the th
elements of these binary vectors

where “ ” is the “exclusive-OR” operator in Boolean algebra.
Since from (7), , we conclude , if

, and , if .
Hence, . In other words, must also
misclassify the same feature vector regardless the choice
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of and . This is to say, if , and if
, then .

The implication of Theorem 1 is that the maximum per-
formance enhancement of a MOE approach occurs when

(empty set). An example is to
designate each classifier to be responsible for classifying
a particular class. The assumption that is
essential in this theorem. If (interval between
zero and one), it is possible to find a counter example. Let

, , and
. Then . If

, then which yields correct
classification.
On the other hand, whether takes binary values or

not, if both classifiers make correct classification, so will the
combined classifier.
Theorem 2: With the same definitions as in Theorem 1, and

(9)

Proof: Assume [class , and ,
. Then

(10)

Thus, the output is correctly classified.
From Theorem 2, it is clear that if both classifiers #1 and #2

correctly classify a pattern , then the combined classifier will
also correctly classify the same pattern. Hence, this pattern can
be excluded from the user-adaptation training set as it will not
affect the result.
Adaptation Algorithm: Based on the result indicated in

Theorems 1 and 2, the design objective of the MOE network in
(3) is to devise a training algorithm to estimate the parameter
vectors . Given that and are fixed
classifiers, this problem can be solved by a gradient procedure
as follows: Let us assume be a set
of training data used for searching the optimal gating functions

and , such that the square error at the output
is minimized.

A gradient search algorithm can be devised as follows:

(11)

The initial values of and are set to be the centroids of
the regions and , respectively, for in the
user-specific training data set. The gradient of with respect
to can be calculated as

(12)

(13)

where . In (13), we
assumed the transfer function is a differentiable threshold
function, and is applied to the vector, element by element.
Finally, with (13), we have as shown in (14) at the bottom of
the page. Hence, for , we have

(15)

Note that in above derivation, the error is accumulated
over the entire epoch ( feature vectors). The summation
over may be removed if we use on-line update of ’s
for each sample. This yields the following expression for

:

diag
(16)

Clearly, we have . This is not surprising
with two parameter vectors arriving at a decision hyperplane

.
Until now, we have assumed that the user-specific ECG

beat classifier is readily available. However, in reality
it needs to be trained with the user-specific training data set.
Also, the combined classifier needs to be trained by
the same data set in order to determine the gating network
parameters. Therefore, if is trained to 100% accuracy

(14)
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on the user-specific data set, then the gating network of choice
may be and . In light of the results
of Theorems 1 and 2, we devised the following strategy to
alleviate this problem: First, we construct the user-specific
training data set to contain only those feature vectors which
the original classifier misclassified. We further partition this
training data set into two subsets: one for the training of the
user-specific classifier , and the other for estimating

and .

IV. EXPERIMENT
The purpose of this experiment is to demonstrate the useful-

ness of the proposed user-adaptation procedure. In particular,
we will show that an ECG beat classifier trained on general
patient records does not perform well when presented with
patient records which contain rare beat types. Moreover, we
show that the performance of the MOE classifier is able to gain
significant performance enhancement with a small amount of
annotated patient specific training data.

A. Data Preparation
In this study, we concentrate on the classification of ven-

tricular ectopic beats (VEB’s). The 48 records (tapes) from
MIT/BIH ECG arrhythmia database [17], [19] are used for the
development and evaluation of the classifier. The availability
of annotated MIT/BIH database has enabled the evaluation of
performance of the proposed beat classification algorithm. The
American Association of Medical Instrumentation (AAMI)-
recommended practice [18] has provided a protocol for a
reproducible test with realistic clinical requirements, empha-
sizing tape-by-tape presentation of results that estimate an
algorithm’s ability to detect events of clinical significance.
Accompanying each tape in the MIT/BIH database is an

annotation file in which each ECG beat has been identified
by expert cardiologist annotators. These labels are referred to
as “truth” annotations and are used in training (developing)
the classifiers and also to evaluate the performance of the
classifiers (experts) in testing phase. According to the AAMI-
recommended practice, records containing the paced beats
(four records) can be excluded from the reporting require-
ments. Since this study is to evaluate the performance of a
classifier that can identify a premature ventricular contraction
(PVC), certain records in the database with no PVC’s (11
records) were excluded from the study, leaving 33 records of
interest. These excluded records are listed in Table I. Data
from channel 1, down-sampled to 180 samples/s were used in
this study. The selected files consist of 13 records (numbered
from 100–124, inclusive, with some numbers missing) and
20 records (numbered from 200–234, inclusive, with some
numbers missing). The first group is intended to serve as a
representative sample of a variety of waveforms and artifacts
which an arrhythmia detector might encounter in routine
clinical use. Records in the second group include complex
ventricular, junctional, and supraventricular arrhythmias and
conduction abnormalities. Several of these records are ex-
pected to present significant difficulty to arrhythmia detectors
because of the features of the rhythm, QRS morphology

TABLE I
RECORDS OF MIT/BIH DATABASE THAT WERE EXCLUDED FROM THE STUDY

TABLE II
FOUR CATEGORIES OF INTEREST INTO WHICH THE
ECG BEATS OF THIS STUDY ARE CLASSIFIED

variation, and signal quality. These records were reported to
have gained considerable notoriety among database users [18].
In this experiment, we use the first group of files as the

training data to develop a GE classifier which is able to
classify typical ECG beats. The second group of 20 records
is used to simulate the ECG records of 20 patients, which
are to be classified by the GE classifier. Since these records
consist of less-frequently seen beats, it is expected that the
GE classifier will not perform well. If this GE classifier were
a commercial device, it will be deemed not-applicable (due to
low performance) to many of these 20 test records. However,
with the MOE approach, we will adapt this GE classifier with
a LE classifier to gain significant performance enhancement
at low cost.
The beats in the MIT/BIH database are of several different

types. In this study, we are interested in identifying four
different categories, as indicated in Table II. Each of the
four categories included beats of several types as shown in
Table III. The AAMI convention was used to combine the
beats into four classes of interest.

B. Training and Testing Procedure
In this study, a GE classifier was developed with SOM and

LVQ algorithms using the data from the records of the first
group (100–124). Before testing the records, a LE classifier
was developed for each of the records in the second group
using the first 2.5 min of data. The rest of the record is
then tested using the mixture of global and LE’s as explained
before. Since each record in the MIT/BIH database is of
length 30 min, the 2.5 min segment account for 1/12th of total
available patient specific data and contains approximately 150
ECG beats. In practice, the attending cardiologist or any expert
in ECG beat annotation will have to annotate a brief segment
of patient-specific ECG in order to take advantage of the
MOE approach. We believe that this is a reasonably small cost
compared to the potential gain in performance enhancement.
In future, we will explore a more effective method to further
reduce the amount of required annotated patient-specific data.
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Fig. 1. Record by record comparison of sensitivity of three methods: GE, LE, and MOE.

TABLE III
BEATS OF MIT/BIH DATABASE CLUBBED INTO FOUR

CATEGORIES BASED ON AAMI-RECOMMENDED PRACTICE

The GE and LE classifiers were developed using the cluster-
ing algorithm implemented in SOM PAK, and the fine-tuning
algorithm implemented in LVQ PAK. The MOE algorithm
was implemented in MATLAB. The SOM’s developed using
all the data available in the training files had many of the
nodes tuned to the normal beats providing a greater detail
to the normal beats than to the abnormal ones. This lead
to a successful recognition of most normal ECG beats and
suboptimal recognition accuracies of abnormal beats. This bias
was introduced due to the amount of data that falls into the
category of normals was about ten times more than the data for
other rhythms. Since the detail of the map is dependent upon
the amount of data falling into that category, it is essential
to provide equal amounts of data for each class. Therefore,
normal beats were clustered (using SOM) and the prototype
vectors developed were added to the dataset of beats from

other categories forming sensitized data. The sensitized data
was then used for developing the GE.
1) Preprocessing: The objective of this paper is to classify

the QRS beats into one of the four different categories. The
QRS beats are obtained as 29 point templates. The position
of annotation labels is used to identify the peak of the QRS
waveform and 14 points on either side of the peak were picked
up to form the template.
The 29-dimensional template is then reduced to a nine-

dimensional vector using principal-component analysis, also
known as the Karhunen–Loeve transformation. It is designed
such that the data set may be represented by a reduced number
of “effective” features and yet retain most of the intrinsic
information content of the data. We may reduce the number of
features needed for effective data representation by discarding
those linear combinations that have small variances and retain
only those terms that have large variances. The data vector
is then approximated with the largest eigenvalues of the

correlation matrix , introducing an approximating error.
Temporal parameters such as the instantaneous RR interval,

average RR interval, and the width of the QRS complex were
also extracted. The instantaneous RR interval is calculated as
the difference between the QRS peak of the present beat and
the previous beat. The average RR interval is calculated as the
average RR interval over the previous ten beats. The width of
the QRS complex is calculated according to the Pan–Hamilton
algorithm [21].
The information of each beat is stored as a 13-element

vector, with the first nine elements representing the trans-
formed morphological template, and the next three elements
representing the temporal parameters. This leads to a 12-
dimensional feature vector. The thirteenth element is the
“label” of the beat from the annotation file, after suitable
translation as described in Table III.
Several preprocessing steps were performed on the raw data

to study their effects upon the performance of the classifiers.
Specifically, subtracting the mean value from each template
showed a remarkable improvement in the performance of the
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TABLE IV
IDENTIFICATION OF TP, FP, TN, AND FN IN THIS STUDY.
N(n): NORMAL BEATS, V(v): PREMATURE VENTRICULAR

CONTRACTIONS, F(f): FUSION BEATS, Q(q): UNCLASSIFIABLE BEATS

LVQ classifier. Even though the morphology of the beats
belonging to the same category is similar, a baseline change
can represent the data differently in the signal space. To avoid
this problem, the mean value of the templates is subtracted.
Templates were also scaled linearly between 1 and 1 before
the expert classifiers are developed. Temporal information
of the beats such as instantaneous RR interval, average RR
interval over the past ten beats, and the width of QRS complex
showed improvement in the classification of PVC beats.
2) Training of the Global and Local Expert Classifiers: For
the GE classifier, the sensitized data from 13 MIT/BIH data-
base tapes (#100–124) is used to develop a SOM of size
15 10 neurons. This is accomplished using SOM PAK. The
weights of each neuron form a code word in the code book
of 150 code words. Each code word, or equivalently the
associated neuron, then is labeled using annotated data. The
label of the code word is assigned based on the label of
annotated feature vectors assigned to that cluster.
Another classifier of 150 code words, based on LVQ al-

gorithm, is developed using LVQ PAK. The classification
performance of the classifier developed using LVQ is superior
for classes 1 and 3, whereas, the performance of the classifier
developed using SOM is superior for classes 2 and 4. There-
fore, the code books generated by LVQ and SOM were edited
manually to select and combine those code words which yield
superior performance. The resulting code book constitutes the
GE classifier.
To enable the “soft combination” of the classifier output,

it is desired that the outputs of each classifier be an estimate
of the a posterior probability of the feature vector belonging
to that class. To facilitate this requirement, we assume that
the posterior probability is a mixture of Gaussian distribution
with each code word in the class being the mean of a
Gaussian distribution with unity variance. This is a reasonable
assumption since each code word is obtained using the SOM
clustering algorithm based on the L norm distance measure.
Therefore, for large amount of samples, the posterior proba-
bility distribution of each class will converge to a Gaussian
distribution asymptotically. For small samples such as those
used for training a LE, a Gaussian distribution assumption
seems to be an adequate approximation. Next the distance
denoted by between a feature vector

and the nearest code word of class , is computed.
The class output of this GE classifier then is computed
as which is proportional to the Gaussian density
function .

TABLE V
COMPARISON OF PERFORMANCE BETWEEN THE GE, LE, AND MOE

CLASSIFIERS. ALL ENTRIES ARE IN PERCENT (%). FOR THOSE RECORDS
WHERE FP TP , POSITIVE PREDICTIVITY IS ASSIGNED TO
NAN (NOT A NUMBER) BECAUSE ITS DENOMINATOR IS ZERO

The LE classifier is developed in exactly the same manner
as the global classifier, except that it uses only the first two
and half minutes in the tape, and is constructed separately for
each particular “patient tape” (tape #200–234) in the MIT/BIH
database. We choose the first 2.5 min for training LE’s and
the next 2.5 min of data to training the gating network of
the MOE classifier. This practice is conformed to the AAMI-
recommended procedure which allows to use of the first 5 min
of data in each tape to fine tune the classifier. During testing
with the combined MOE classifiers, only the last 25 min in
each tape are used. Hence the testing data are never part of
any training data through the entire process.
3) Mixture of Experts (MOE) Classifier: A gating network

provides the scaling factors ( ’s) for each class of both
experts. The output of the gating network is a 2 4 matrix,
with each row forming a scaling factor vector for each expert.
The weights of the gating network are simply determined as
the centroids of the regions as indicated by the code-book
vectors of the corresponding expert.
The output of the classifier is calculated as given by

(6). Each input vector is classified into the class which has
maximum output in the output vector . Through extensive
experimentation, we further modified the computation of the
gating network output so that [i.e., ],
if regardless of what was calculated from the
gating network. This is intuitively convincing because it yields
a decision for the LE when the LE classifier is certain about
its diagnosis. We found that this modification improves the
accuracy of the combined classifier and also improves the
sensitivity.
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TABLE VI
BEAT-BY-BEAT, RECORD-BY-RECORD TESTING RESULTS OF THE EXPERIMENT

C. Results
The classifier was tested with the selected 20 records of the

second group of the MIT database. The GE was left intact and
is used as is for testing the 25 min of data from each 30-min
testing record with first 5 min excluded as they are used to
develop the LE and the “gating network.” The performance of
the MOE classifier was compared to that of the GE and LE
for each of the 20 records.
All detection statistics are founded on the mutually exclu-

sive categories of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Since we are
interested in estimating the performance of the classifiers
based on the recognition of VEB’s (rhythm 2), the true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) are defined appropriately as listed in
Table IV.
Three statistics: sensitivity, specificity, and positive pre-

dictivity are used to compare the results. The respective
definitions are as follows: Sensitivity: [Se TP/(TP FN)] is
the fraction of real events that are correctly detected among all
real events; Specificity [Spec TN/(TN FP)] is the fraction
of nonevents that has been correctly rejected; and Positive
Predictivity: [PP TP/(TP FP)] is the fraction of real
events in all detected events. Another statistic false positive
rate [FPR FP/(TN FP)] is the fraction of all nonevents
that are not rejected. Since FPR 1 Spec, it is not listed
here. Finally, the classification rate (TN TP)/(TN TP

FN FP). These three statistics, together with the percentage
classification rates, are reported for each individual testing file
as required by the AAMI-recommended practice [18]. The
results are summarized in Table V (percentage) and Table VI
(actual number of beats). A graph comparing the sensitivities
of each record for the three methods are shown in Fig. 1.

D. Discussion
1) From Tables V and VI, we observe that the MOE
approach is capable of significantly enhancing the per-
formance of an ECG beat classifier over the global
classifier. Moreover, we find that even with only 5
min of patient specific training data, the LE classifiers
fare very well in all categories compared to both GE
and ME classifiers. These observations confirmed our
claim in this paper that patient-specific training data
will significantly enhance the performance of a general
purpose ECG classifier.

2) Comparing the LE and ME, we found that LE out-
performed ME in terms of classification rate, mainly due
to higher specificity (ability to correctly classify normal
beats), but with lower sensitivity (ability to correctly
classify PVC beats as PVC). Especially for those records
where the first 5-min LE training data does not contain
any PVC beats. Hence, although a LE classifier performs
well, the availability of a global classifier does help to
further enhance its performance.
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3) In some cases, the improvement in classification rate
is moderate; in others, significant improvements are
observed. For example, in records 203, 209, 215, 223,
and 233, the classification error rates of the ME classifier
are all reduced by more than threefold below those of
the GE. A closer examination of these ECG records
indicates that patient-specific beat types are observed
during the initial 5-min ECG records. For example, in
record 215, the GE performs poorly because of the slight
variation in morphology of the normal beats present
in this record. However, the LE is able to pick up
those patient-specific beats, and therefore, provide sig-
nificantly enhanced performance (from 3.65% to 98.4%).

4) A potential drawback of this proposed method is the
need to develop a LE classifier for each individual
patient, even with only 5 min of patient’s ECG record.
Since this must be performed by a physician or a ECG
specialist, potentially it would be very costly. We are
currently looking into unsupervised learning method,
hoping to reduce the number of beats a human expert
need to examine in order to develop such a LE. It should
be pointed out that in cases where patients’ ECG records
have been annotated previously by a human expert, the
development of a LE would be quite easy and cost
effective.

V. CONCLUSION
In this paper, we developed a novel approach to demonstrate

the feasibility of having a patient-adaptable ECG beat classifi-
cation algorithm. We outlined the basic requirements of such
a system, namely accuracy, cost-effectiveness and protection
of the device manufactures intellectual property rights. We
presented a SOM/LVQ-based approach to illustrate that these
requirements can be met. The potential benefit of patient
adaptation is immense and is worth pursuing further. To the
best of our knowledge, the application of the MOE approach
to the patient-adaptation problem has never been done before.
We believe it can be easily adapted to other automated patient-
monitoring algorithms and eventually support decentralized
remote patient-monitoring systems.
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