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Abstract—Recent trends in clinical and telemedicine applica-
tions highly demand automation in electrocardiogram (ECG)
signal processing and heart beat classification. A patient-adaptive
cardiac profiling scheme using repetition-detection concept is pro-
posed in this paper. We first employ an efficient wavelet-based
beat-detection mechanism to extract precise fiducial ECG points.
Then, we implement a novel local ECG beat classifier to profile
each patient’s normal cardiac behavior. ECG morphologies vary
from person to person and even for each person, it can vary over
time depending on the person’s physical condition and/or environ-
ment. Having such profile is essential for various diagnosis (e.g.,
arrhythmia) purposes. One application of such profiling scheme
is to automatically raise an early warning flag for the abnormal
cardiac behavior of any individual. Our extensive experimental
results on the MIT-BIH arrhythmia database show that our tech-
nique can detect the beats with 99.59% accuracy and can identify
abnormalities with a high classification accuracy of 97.42%.

Index Terms—Beat classification, cardiac profile, electrocardio-
gram (ECG) signal processing, hash functions, packet processing,
repetition, wavelet.

I. INTRODUCTION

A. Background

A
UTOMATIC assessment of arrhythmia for patients has

been a long time research. The cause of heart arrhythmias

are due to the variations in the heart rate or irregularities and are

characterized by the Electrocardiogram (ECG also known as

EKG, abbreviated from the German Elektrokardiogramm) beats

or patterns [1], [2]. The ECG signal is a representation of the

bioelectrical activity of the heart representing the cyclical con-

tractions and relaxations of the human heart muscles. To acquire

the signal, ECG devices with varying number of electrodes (3–

12) can be used. Multilead systems exceeding 12 and up to 120

electrodes are also available [3]. Accurate detection of the ECG

beats is the key requirement for detecting all types of arrhythmia.

During the recording process, noise heavily affects the sig-

nal. In addition, the ECG signals collected from different people

are heterogeneous, generally reflected by the variations in the
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Fig. 1. Two pulses of a sample ECG waveform and the fiducial points P, Q,
R, S, and T labeled.

amplitude of the beats. Hence, computationally intensive pre-

processing is required for beat detection and feature extraction.

The most important features include the information lying in

the P, Q, R, S, and T waves of the ECG signal [1] (see Fig. 1).

ECG beats should be classified based on these features in order

to detect different types of arrhythmia.

In ambulatory ECG, all kinds of noise may occur simultane-

ously and unpredictably. Different kinds of noise include base-

line wandering, electromyogram (EMG) noise, motion artifact,

power-line interference, and electrode pop or contact noise [1],

[4], [5]. ECG preprocessing generally takes care of denoising

the ECG signal. The baseline wandering and the power-line in-

terference (hum noise) are the most substantial noise and can

strongly affect the ECG signal analysis. Baseline wandering (or

trend) usually comes from respiration and lies between 0.15 and

0.3 Hz. Other than these two noise elements, the remaining is

wideband and usually complex stochastic processes, which also

distort the ECG signal and affect the analysis. The power-line

interference is a narrow-band noise centered at 60 Hz (or 50 Hz

in Europe and some other countries) with a bandwidth of less

than 1 Hz [4]. Usually, the ECG signal acquisition hardware can

remove the power-line interference, but the baseline wandering

and other wideband noise cannot be easily suppressed by hard-

ware equipment without elaborate circuitry. However, software

schemes can be used for ECG signal processing and suppression

of these noise sources.

Several works have been done in the area of automatic ECG

beat detection. However, many of them are not suitable when

high accuracy is required. Many commercial tools are available

for automatic beat detection, but their performance is not satis-

factory. In our earlier work, we identified the possible enhance-

ments in other previous algorithms with the help of Wavelet

Transforms [6] to reduce the complexity and to increase the

SNR of the ECG signal before detection [7]. To achieve this

goal, we used LabVIEW graphical programming language. The

1089-7771/$26.00 © 2010 IEEE
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software application could take the ECG signal, denoise it, and

perform the beat detection efficiently. Possible enhancements

include reducing the number of fiducial marks and reducing the

number of thresholds that could, to a large extent, reduce the

complexity.

After the preprocessing and beat detection, effective beat clas-

sification is required for correct analysis of different types of

arrhythmia. The general trend is to develop automated systems

to classify cardiac beats. This can significantly help simplify

the diagnosis of heart diseases. For example, heart-rate variabil-

ity or diagnosis of certain arrhythmia may take up to several

hours when done by visual inspection. Even then, some vital

information may be missed in between due to the tedious man-

ual procedure. Therefore, computer-based beat classification is

essential and becoming the norm in clinical applications [2].

So far, several techniques such as maximum likelihood, (arti-

ficial) neural networks [8], and support vector machines [9], [10]

have been introduced for the ECG beat classification. These ma-

chine learning techniques map new data instances based on the

information extracted from the annotated training data in the

learning phase. Most techniques provide a global classifier that

may not be always accurate for patient-specific cardiac vari-

ations. Automated arrhythmia-diagnosis systems that can pro-

vide high-classification accuracy rates for inter and intra-patient

variation cases are still an active area of research.

B. Main Contribution

An efficient technique for classifying ECG beats is presented

in this paper. A novel repetition-based detection technique has

been adopted to classify, or more effectively, profile a patient’s

cardiac behavior. The key novelty of our approach is twofold.

We first use an efficient method to accurately extract the QRS

complexes of an ECG signal. Precise feature extraction is re-

quired for effective beat classification as well as other various

electrocardiograph applications. We adopt a technique that uses

wavelet analysis with adaptive thresholding for ECG prepro-

cessing and feature extraction.

Second, we introduce a novel technique for profiling a pa-

tient’s normal ECG. The main idea behind our approach is

to consider ECG waveforms as data-packet streams and ap-

ply packet-processing techniques, namely, repetition-detection

approaches [11], [12] to derive certain ECG patterns specific to a

patient. Our approach is similar to the concept used in hardware-

based string matching and repetition-finding techniques used in

worm detection in Internet networking [12]. Counter units and

hashing functions are the concepts used for the processing. We

derive an adaptive ECG profile for every patient, since ECG

morphologies pretty much vary from person to person, as well

as condition to condition for the same person. Our technique

clearly identifies a normal region for a person and can, thus,

identify abnormal beats that fall outside this normal region. Our

technique is a local beat classifier that can be designed on top

of a global classifier for performance enhancement. To the best

of our knowledge, this type of ECG behavior profiling using

packet-processing concepts (e.g., worm detection algorithm)

has not been addressed in the literature. This paper has been

integrated within a telemedicine server (PC) to enable remote

high-speed cardiac processing and diagnosis [13].

C. Paper Organization

The rest of this paper is organized as follows. In Section II,

we briefly review prior work related to ECG beat detection and

classification. Our method for extracting most critical ECG fidu-

ciary points is described in Section III. We propose our technique

for classifying ECG beats in Section IV. Experimental results

are summarized in Section V with a brief discussion on the

key features of our classification technique. Finally, concluding

remarks are in Section VI.

II. PRIOR WORK

A. Denoising and Beat Detection

Jiapu Pan and Willis J. Tompkins of the University of

Wisconsin were perhaps the first to develop a real-time QRS

detection algorithm on a Z-80 microprocessor [1].They per-

formed denoising of the ECG signal using a bandpass filter

which was built using cascaded high-pass and low-pass fil-

ters. Pan and Tompkins detected the fiducial points by find-

ing the highest squared slope during high spectral energy of

ECG waves. Based on our observations, this technique re-

sults in many more number of fiducial points than the actual

QRS complexes. They considered two adaptive thresholds and

chose the highest among the two thresholds extracted from the

ECG signal and the integration of the ECG signal. A search-

back algorithm was also applied if no QRS complex candidates

were found within a certain time interval. They demonstrated

a very good performance of 99.325% when tested against the

MIT-BIH open-source arrhythmia database [14]. Note that, how-

ever, their technique required larger amount of processing as will

be shown in Section III.

As for preprocessing of the ECG signal, noise cancellation

requires different strategies for different noise sources. Thakor

and Zhu [15] performed the noise reduction using an adaptive

filter with constant or unity reference input, which was used to

cancel baseline wander. However, this filter is not reliable for

applications that require diagnostic ECG analysis.

Nonlinear filtering is a common approach to detect QRS com-

plexes [1] in considerably less time and can be easily imple-

mented. However, the main drawback of these algorithms is the

frequency variation in QRS complexes, which adversely affects

their performance. These methods can result in higher false pos-

itives and false negatives because the frequency band of QRS

complexes generally overlaps with the frequency band of noise.

The authors in [6], [16], [17], and [18] employed the Wavelet

Transform method for denoising of the ECG signal. In general,

this technique decomposes the signal into various components

that appear at different scales. It also uses a linear operation,

which makes it suitable to preserve the important phase infor-

mation of the signal. Dinh et al. [19] proposed to use the cubic-

spline wavelet and interpolation for accurate QRS detection.

They concluded that wavelet functions that support symme-

try and compactness achieve the highest accuracy on the ECG
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readings in MIT-BIH arrhythmia database. Though the wavelet

transform approach does not discriminate between the noise and

signal coefficients of the wavelet decomposition at low SNRs,

it is still an attractive solution for nonstationary signals as it

maintains the signal behavior.

B. Beat Classification

In addition to the automated ECG signal processing and beat

detection, computer-based ECG beat classification is highly in

demand as manual evaluation of the beats could be very time

consuming. Methods such as pattern recognition, maximum

likelihood, (artificial) neural network, and support vector ma-

chines have been widely used for classifying ECG beats [9],

[10]. Machine-learning techniques learn from the samples of

training data and map new data instances based on the informa-

tion extracted from the annotated training data samples [8].

1) Support Vector Machines: Support vector machines

(SVM) have been around for quite some time and have grabbed

much attention for ECG beat classification [9], [10], [20]. In this

technique, training datasets with known classes are given to the

SVM program. Based on the training data, the SVM determines

hyperplanes in the feature space for each class. The distances

between the features of each instance and hyperplanes (classes)

are computed and the hyperplane holding the minimum dis-

tance indicates that the instance is of that particular class. Each

instance of data in SVM contains important features of the heart

beat. For example, the instances of an SVM may contain QRS

duration, RR interval, amplitude of P, Q, R, S, and T points.

In other words, each instance is a vector of certain features of

a beat, often called feature vector. The SVM methods provide

good classification results using less training datasets and small

feature vector sizes.

In beat classification using the SVM method, various ECG

features may have information about different classes (types) of

arrhythmia. Mohebbi and Moghadam [20] used the information

of the ST segment in each beat of the ECG wave as elements of

the feature vectors. Elevation of ST segment is proven to have in-

formation about myocardial ischemia episodes that may lead to

certain heart attacks [20]. In another approach, transforms such

as discrete Fourier transform, discrete cosine transform, discrete

wavelet transform, and adaptive autoregressive coefficients are

used in constructing the feature vector [21].

Ghongade and Ghatol [22] proposed using six different fea-

tures in SVM classification method: mean R-peak value, mean

power spectral density, area under QRS complex, energy of the

signal, Q–S distance, and autocorrelation value. The authors

claimed that this reduced feature set provides optimum results

for characterizing four classes of heart beats [22].

Park et al. [23] first used higher-order statistics and Hermite-

basis functions to extract ECG morphological features. The au-

thors then used SVM to classify the beats into multiple classes.

Their multiclass beat classification was done hierarchically,

based on feature similarities between different classes.

2) Heuristic-Based Approaches: Apart from SVM, other

classification techniques have been also studied. Christov et al.

provided a thorough comparison of time–frequency ECG fea-

Fig. 2. Block diagram of our cardiac signal processing design.

tures for beat classification [24]. De Chazal et al. classified the

beats by analyzing the RR intervals and ECG morphology fea-

tures along with heart beat segmentation information [2]. They

combined two linear-discriminant classifiers to make the final

decision.

3) Artificial Neural Networks and Local Classifiers:

Haseena et al. [25] use a hybrid of fuzzy clustering and arti-

ficial neural networks to discriminate between different classes

of beats. The artificial neural networks along with the mixture

of experts (MOE) approach introduced in [8] is a technique

that uses a local classifier in addition to a global classifier in

order to classify ECG beats. This technique is quite effective

since a crisp global classifier that clearly defines a normal re-

gion for ECG features in a beat does not exist. Rather, a local

classifier more or less particular to each individual is required

to accurately classify the beats. Ubeyli [26] used a modified

mixture of experts approach in which they gain a higher clas-

sification accuracy compared to the MOE and many artificial

neural-network schemes. Pathological cardiac events identified

using the method introduced in [27] is also a patient-adaptive

classifier. This method analyzes the deviation of the RR interval

from the mean value and the deviation of QRS patterns from the

sustained rhythm. Our profiling scheme also falls in the same

local-classifier category, which can be used on top of a global

classifier.

III. ECG-SIGNAL PROCESSING

Denoising and detection of the QRS complexes in an ECG

signal provide information about various cardiac abnormali-

ties. It supplies evidence for the diagnosis of cardiac diseases.

For this very important reason, it has earned a great respect in

medical community. Unfortunately, the presence of noise and

time-varying morphology makes the detection difficult. Fig. 2

shows the flow of our cardiac-signal processing.

A. Preprocessing

For ECG-signal processing, we use LabVIEW and related

toolkits [28]. LabVIEW has wavelet analysis tools that are
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highly efficient for ECG denoising and feature extraction [29].

The wavelet type we used for discrete wavelet analysis is

Symmlet 5 (sym5), which resembles ECG signal morphologies

more than any other wavelet type. Moreover, Symmlet types

highly support near-symmetry properties and provide high ac-

curacy results on ECG signals [19]. Hence, sym5 wavelet is by

far a good and rationale selection.

The LabVIEW Advanced Signal Processing Toolkit (ASPT)

provides the WA Detrend Virtual Instrument (VI) which can be

used to remove the low-frequency baseline wandering (or trend)

of a signal. In the WA Detrend VI, we also suggest using the

sym5 wavelet as it resembles the QRS complex of ECG more

than the other type of wavelets. An internal parameter called

trend level is required for baseline removal [29]. The trend level

is calculated as follows:

LEVELTrend =

⌈

log2 2t

log2 N

⌉

(1)

where t is the observation duration and N is the number of

sampling points in observation time t. In this case, the high-

pass cutoff frequency is 0.8 Hz (below 1 Hz [5]).

After we suppress baseline wandering, the ECG signal be-

comes more stationary and explicit than the raw ECG signal.

The remaining noise elements are complex stochastic processes

with wideband nature, and cannot be efficiently suppressed or

removed by the conventional digital-filtering approach [17]. To

suppress the wideband noise, we chose to use the Wavelet De-

noise VI module from the LabVIEW [29]. This module first

decomposes the ECG signal into several subbands by applying

the wavelet transform, and then modifies each wavelet coeffi-

cient by applying a threshold or shrinkage function, and finally

reconstructs the denoised signal. In our design, we used undeci-

mated wavelet transform (UWT) sym5 with single level and soft

thresholding for the wavelet denoising VI block setup. UWT

results in the approximation wavelet coefficients and the detail

coefficients at all decomposition levels. As UWT has the shift-

invariant property, it is highly efficient in robust-feature extrac-

tion and pattern-recognition applications. In addition, peak de-

tection using UWT-based methods are more robust and less sen-

sitive to noise, since UWT-based methods find zero-crossings

in the multiscale UWT coefficients. These settings perform ef-

ficient denoising on the original ECG signal and smoothen the

signal without suppressing ECG features such as the P and T

waves. For effective feature extraction, we apply a wavelet de-

noise VI with UWT sym5 and multiple levels on the detrended

signal to make only the QRS complexes of the signal more

distinct.

B. Feature Extraction

The technique we deployed for ECG feature extraction is a

hybrid approach of Pan and Tompkin’s adaptive thresholding

[1] combined with wavelet peak and valley detection [29], by

which we achieved significant improvement compared to Pan

and Tompkin’s technique.

After detrending the signal and applying the wavelet denois-

ing VI, the resulting signal would result in a zero DC offset.

TABLE I
COMPARISON OF OUR AND PAN–TOMPKIN’S ALGORITHMS

Fig. 3. Comparison of Pan–Tompkin’s two thresholds.

We mark peaks that are above zero and valleys that are below

zero by the help of WA Multiscale Peak/Valley Detection VI in

LabVIEW. This particular VI uses the multiresolution wavelet

analysis to detect peaks or valleys of a signal. By determining

local maximums above a predefined threshold or local minimum

below the threshold, the peaks or valleys can be extracted in this

VI. Then, we apply an approach similar to Pan and Tompkin’s

method, but with some modifications (summarized in Table I),

to dynamically set a threshold for beat detection. The peaks and

valleys, detected from the peak/valley detector VI, now become

candidates for signal peaks in Pan–Tompkin’s algorithm [1].

In our implementation, only one set of threshold extracted

from the denoised ECG can be applied, because the threshold

calculated from integration waveform was found to be always

lower than the other threshold, as seen in Fig. 3. Therefore, no

integrator is required in our technique. This significantly lowers

the amount of processing compared to Pan–Tompkin’s.

Let us consider Peak as the array of peaks that LabVIEW

peak-detector VI has found. The equations for adaptive thresh-

olding are as follows:


















PEAK = Maximum (Peak)

NPK = Minimum (Peak)

SPK = 0.125 PEAK + 0.875 SPK

THR = NPK + 0.25 (SPK − NPK).

(2)

A signal peak that is larger than the threshold THR is con-

sidered as a QRS complex, where the R point is detected. Each

time a beat (R point) is found, we intentionally move the start-

ing point of the next peak computation to a point that is 360 ms

apart from the previous R point detected, as R-R intervals cannot

physiologically be less than this timeframe [1].

Similar to Pan–Tomkins approach, a search-back algorithm

is required if a beat is not found within a certain time interval.
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We maintain only one R-to-R average (instead of two) for the

search-back algorithm, that being the average of the eight most

recent R-R intervals found. If n is the index of the current beat,

R-to-R average is computed as follows:

RRAvg =



























1

n − 1

n−2
∑

i=0

RR(n−i) , 2 ≤ n ≤ 7

1

8

7
∑

i=0

RR(n−i) , n ≥ 8.

(3)

If no beat has been detected within 116% of the current

R-to-R average, the search-back algorithm is applied. This is

a percentage that has been found empirically [1]. In the search-

back algorithm, we lower the threshold and start looking for a

QRS complex from where the last R point is detected. Since our

denoising technique only keeps the QRS complex of the signal

and suppresses the P and T waves, a very low threshold can

be used in this search-back stage. The new threshold we have

applied in the search-back algorithm is as follows:

THRnew =
THRold

8
. (4)

If a signal peak (SPK) exceeds this new threshold, we consider

it as a beat (R point). The new SPK and threshold (THR) should

then be updated accordingly.

C. Fine Tuning

A slope-detection technique has been integrated within our

algorithm to rule out the possibility of misdetecting T waves

as R beats. In some individuals (e.g., record 116 of the MIT-

BIH arrhythmia database [14]), T waves are as high as (or even

higher than) R waves. This may lead to misdetecting the beat if

a peak-detection algorithm is used. In such cases, the slope is

the key for beat detection. In general, R waves generate higher

slopes compared to the P and T waves. Thus, when a peak is

detected, the slope should be compared to the average slope of

peaks, and removed from the list of beats if it is smaller than the

average slope:

SlopeAvg =

∑# of peaks
i=1 y(Peaki) − y(Peaki − 1)

# of peaks
. (5)

If ((y(Peaki) − y(Peaki − 1)) < SlopeAvg ), then

F = F − {Peaki}. (6)

In the above formulations, y(Peaki) and y(Peaki − 1) are the

amplitudes of the ith peak and one sample before the ith peak,

respectively, and F refers to the set of peaks detected from the

wavelet-peak detector in the LabVIEW.

To deal with the rare cases of records with inverted waves or

records dissimilar to sym5 wavelet, an effective approach is to

square the entire signal. This would produce positive amplitudes

for the R wave and would ensure that the squared R wave is

relatively larger than P, Q, S, and T. Then, our beat-detection

approach can be applied to the squared signal to find the beats.

So, beforehand, a short timeframe (e.g., 10 s) of each record

should be analyzed to identify inverted wave records. After

detrending and denoising the short record, absolute values can

be given to our beat-detection approach. If the peaks were found

at the locations where the original amplitude was negative, the

signal can be declared as inverted, and the squared approach

should be employed.

To find the Q and S points of the ECG waveform, we apply

this underlying concept that a Q point is the closest valley right

before R point, and an S point is the closest valley right after

a detected R point. As mentioned earlier, the valley locations

are found using the WA peak/valley detector with zero as the

threshold. Since the signal has been detrended to zero-baseline

wandering, this would locate all valleys that are below zero.

When an R point is found, we search through the valley location

array, and mark the maximum and minimum locations before

and after that R point as Q and S points, respectively.

Table I summarizes the key differences between our design

and Pan–Tompkins algorithm. Adaptive thresholding and em-

ploying the earlier search-back algorithm along with slope de-

tection guarantee that our approach can take care of inter and

intrapatient heart-rate variability or other dynamic variations

over time due to change of the body position, breathing, elec-

trode contact, etc., as reflected in the results of Section V.

IV. PROFILING ECG WAVEFORM

A. Concept and Methodology

The main idea in ECG profiling is based on the underlying

concept of pattern matching used in Internet-packet processing.

We treat ECG signals as data packets and apply similar methods

used in packet processing such as identifying chunks of data

packets that match certain (malicious) strings.

In the case of ECG packets, there is no global pattern (with

fixed waveform dimensions) for a normal ECG waveform, mak-

ing the problem more complicated. The reason is that ECG is a

physiological phenomenon particular to each individual, which

also depends on physical condition and environment of the per-

son. Therefore, we need a patient-adaptive profiling scheme,

similar to repetition-based pattern detection schemes, to derive

a normal ECG pattern for an individual.

In general, string matching in networking applications is per-

formed by comparing packet data bytes to a set of fixed signa-

tures. In this process, data-packet chunks are analyzed to check

whether any portion(s) of the packet stream matches those sig-

natures. When predefined fixed signatures are not available for

comparison, repetition-based pattern detection techniques can

be used. The overall idea in repetition-based pattern detection is

to identify strings that are frequently repeated at certain number

of times [12]. In this technique, the input stream with total size

of |S| bytes is consistently broken into strings of L bytes. The

boundaries of these strings with distance b are chosen consis-

tently so that when a long string is repeated, the boundaries

within that string are repeated at the same relative locations. To

achieve this, the boundaries are decided based on the hash value

of a certain sliding window of W -bytes. A boundary (border)

is identified when the hash value is a fixed l = log2L bit prime

number. The data bits between two consecutive boundaries are

examined for frequent occurrence. To achieve high-performance
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Fig. 4. Distribution of counter contents for 70 MB of internet packets with
abnormalities [12].

detection, without having to implement numerous counters, the

shared counter technique is used. In this technique, multiple

counters are used in which small storage units are designed to

function in parallel. In the design, a multilevel hashing is used

in two phases. The data bits between two consecutive bound-

aries are used to first generate a phase I hash. This hash value

is then used in a second-phase hash to produce m independent

hash values that index into m arrays. Assuming the width of

each memory array to be n, each m hash memory would have

2n locations in depth. Each array location that is indexed, is in-

cremented. Effectively, m shared counters per signature during

monitoring are used instead of one, adding to the accuracy of

the conventional counting approach. If, say, k out of m coun-

ters exceed a certain threshold THR value, the signature is sent

to other processing units as a worm suspect for further inves-

tigation. More accurate per signature counting is performed to

confirm the suspicion afterwards.

In our prior work [12], we approximated the distribution of the

number of counters with content x to be a normal (bell-shaped

curve) distribution:

FX (x) =
1

σ
√

2π
e−

(x −µ ) 2

2 σ 2 (7)

where µ = NP = |S|/2nL and σ =
√

µ. In these formulations,

the number of times our system enters phase II is N = |S|/L,

and P = 1/2n is the probability that phase I string would hash

to one of the 2n memory locations.

Based on the contents of the counters, a bell-shaped profiling

curve would be provided, where anomalies would lie on the

tail(s) of the curve [12].

In the design of our ECG waveform profiling system, similar

concept as described earlier is used. We analyze the data in each

heart beat and search for repetitions to extract an ECG pattern

for any individual. Similar to our packet-processing technique

where abnormalities are reflected as a long distorted tail with

additional humps on the normal distribution curve scaled with a

factor of the number of counters 2n (see Fig. 4), abnormal ECG

beats of the ECG profiling curve will be seen where humps exist

on the tail of the bell-shaped curve.

B. Algorithmic Fine Tuning

Essentially, our behavioral analysis/profiling system is based

on repetitions of some sort. The nature of these repeated pa-

rameters is application-specific and relevant to the features of

each application. Thus, our system should be fine-tuned for each

application to provide the profiling curve.

In our ECG profiling system, the data chunks chosen for fre-

quent occurrence analysis is the time and amplitude information

that lie in each QRS complex timeframe plus the time differ-

ence of the current and previous R points. To be consistent on

the length of these data chunks, we chose a fixed timeframe of

150 ms centered at the R point, which empirically corresponds

to the largest QRS complex [1]. Since multiple metrics are used

here to quantify certain features of a heart beat, a (hash) func-

tion such as the summation of these quantities can be used to

compact each instance (useful information between the borders

of analysis) in a single string of data. The hash result would be

the signature of phase 1. In phase 2, multiple other (hash) func-

tions can be applied to the phase 1 signature (e.g., mathematical

functions such as mod, etc.) and multiple counters can be used

to identify frequent occurrence of these hash results in parallel.

We have chosen summation as our primary hash function, since

as we will see further in the design, a linear function is used

to maintain the range properties. Proper normalization is also

required to result in an integer hash value. Essentially, when an

s point is detected in the signal, the time and amplitude of all

samples corresponding to 150 ms of the ECG signal centered at

the R point, and the current RR distance are all summed up to

form one string (hash value). This string is then further analyzed

for frequent occurrence.

Similar to the second phase of the repetition-based pattern-

matching detection technique [12], each hash value is also an

index to a presumable memory/counter location. That is, the

counter that the hash value points to is incremented. However,

since ECG is a physiological signal, each heart beat pattern

would not exactly repeat with the same pattern as it had ap-

peared in the previous beat(s). Therefore, hash values would

never reproduce the exact same result, and thus, hash-memory

contents would never be incremented if solely the aforemen-

tioned technique is used in our ECG profiling system. This is

unlike Internet patterns where we search for repeated strings

that exactly resemble one another in byte representation. To

deal with this issue, we use a valid range where hash values

would represent more or less a similar pattern, and increment

counters that fall within that range. Pan and Tompkins defined

an empirical range of 92–116% of the average of RR intervals,

and claim that the beats that fall within this range indicate a

normal range that do not require a search-back algorithm [1].

Based on this fact, we chose 25, the difference between 92

and 116 as the number of memory locations we index and in-

crement their contents. Essentially, for each hash generation,

the content of 25 locations, 12 locations above, and 12 lo-

cations beneath the actual hash index would be incremented
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Fig. 5. Principles of our ECG profiling system.

Fig. 5 shows the principles of our methodology after feature

extraction.

C. Parametric Settings

In our design, we have used one primary hash function (sum-

mation with normalization) and report the results. As discussed

in repetition-based pattern detection techniques, multiple hash

functions can be used in parallel to form the shared-counter ap-

proach. Other linear hash functions that can be interpreted into

ranges properly can also be used. The shared-counter approach

yields better results in terms of false positives (FP) and false

negatives (FN) [12].

Our parametric settings for ECG profiling are summarized

here. Note carefully that to show the true face of this applica-

tion, we expressed all parameters in actual time measurements

(second and millisecond). These metrics can be normalized to

integer values by multiplying them with sampling frequency

(fs = 360 samples/s in our experiment).

1) L ≈ RRinterval: which is often in the range of 0.7–1.2 s

representing the time gap expected between two consecu-

tive heart beats.

2) W = 150 ms: the size of the sliding window around

QRS region. Considering the fact that we use 2 bytes

for amplitudes and time index, W will be equivalent to

2 × 0.150 s · samples/s ≈ 108 bytes.

3) l = logL = 9: the size of the prime number for boundary

check is 9 bits.

4) b = RRinterval: which indicates that the borders (bound-

aries) of processing are one heart beat apart.

5) m = 1: showing only one memory unit in phase II.

6) n = 10: address bits of the memory arrays in phase II with

d ≈ 16 bits wide.

7) k = 1: indicating our policy in this particular experimen-

tation to evaluate the system’s performance using only

one memory unit and one hash function (summation with

normalized values) in the second phase.

8) THR: is the threshold value for counters. Since we chose

the hash function to be the average content of counters for

the best performance, the THR will be any value fallen

out of normal range. In other words, the abnormal heart

beats are those that do not fit in the bell-shaped normal

behavior of counter values.

The features that are used in our profiling scheme provide

classification results for different types of arrhythmia versus

the normal ECG behavior. Repetition-detection analyses for

features such as the R-R interval and QRS duration provide

classification results for the ventricular or atrial-premature beat

classes. In other words, anomalies on the profiling curve indi-

cate the presence of such premature beats. On the other hand, if

the information lying in the ST segment of the signal is analyzed

for frequent occurrence, abnormalities indicate the presence of

myocardial ischemia episodes. Essentially, different ECG fea-

tures or a combination of features, can collectively classify the

beats into normal versus abnormal beats, where the abnormality

type (class) depends on the ECG features used for profiling.

V. EXPERIMENTAL RESULTS

A. Denoising and Feature-Extraction Simulation

We have implemented our design in LabVIEW 8.5 graphical

programming environment [28] and tested various ECG wave-

forms. Fig. 6 shows a raw ECG signal captured with a sampling

frequency of 500 Hz. After applying our denoising and beat

detection technique, Fig. 7 shows the ECG signal that has been

denoised and the Q, R, and S points marked for each beat.

B. Performance Evaluation—Beat Detection

Our algorithm, when evaluated against MIT-BIH arrhythmia

database [14], achieved an overall beat detection accuracy of

99.59% for the entire 30-min timeframe of the readings. Table II

depicts the performance of our algorithm when implemented in

LabVIEW.

False positives (FP) and false negatives (FN) have been re-

flected in the table as erroneously detected beats and missed

beats, respectively. The overall error is calculated as follows:

Error =
FP + FN

Total # of Beats
. (8)

To determine the detection rate DER (accuracy), the true

positive value TP (the number of correctly identified beats) is
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Fig. 6. Raw ECG signal.

Fig. 7. ECG signal after wavelet denoising and QRS complex extraction.

used [31]:

DER =
TP

Total # of Beats
. (9)

Sensitivity (Se) and Specificity (Sp) are the most impor-

tant parameters, used in literature, to assess the efficiency of

any beat-detection algorithm [30]–[32]. They are defined as

follows:1

Se =
TP

TP + FN
(10)

Sp =
TP

TP + FP
. (11)

Our approach is able to detect beats with high accuracy even

when considering inter and intrapatient variability. The key nov-

elty is that it employs an adaptive thresholding scheme that dy-

namically adjusts the threshold for peak detection. In addition,

a search-back algorithm is involved in the design that takes into

consideration the history of the last eight previously detected

beats, and lowers the threshold to search back for a beat that

was not found in a nominal range using the previous threshold.

1) Handling Rare Cases: Our algorithm had originally per-

formed poorly on those readings (e.g., datasets 108 and 200) that

had inverted waves and did not look like the sym5 wavelet [7].

To deal with the rare cases of records with inverted waves or

records dissimilar to sym5 wavelet, we have devised an effec-

tive heuristic by squaring entire signal and then applying our

beat-detection approach to find the beats. This technique has

been quite efficient, as we have achieved high beat-detection

accuracy on records 108 and 200.

The performance of a few QRS detection algorithms that used

digital filtering and wavelet analysis are compared in Table III.

Our algorithm performs quite well just like other well-known

1Note that in some papers [8], [34], slightly different definitions were used.
For example, positive prediction was defined as: P+ = TP/(TP + FP) and speci-
ficity was defined as: Sp = TN/(TN + FP).

approaches. Nevertheless, we achieved 99.62% accuracy for the

first 23 readings (datasets 100–124 in Table II) that resemble

normal ECG patterns, while Pan–Tomkins achieved 99.17%

accuracy for the same datasets [1].

C. Performance Evaluation—Beat Classification

We have applied our patient-adaptive profiling scheme on the

entire 30-min timeframe of each record in the open-source MIT-

BIH arrhythmia database [14]. In this experiment, we have used

one hash function (summation with normalized values) in the

first and second phases.

In general, abnormal ECG beats are reflected as distortions

and humps on the tail of the bell-shaped curve. Highly distorted

bell curve indicates the presence of too many irregular beats.

Fig. 8 shows the distribution of the counter contents for

datasets 103, 100, 200, 112, 105, and 232, respectively, when

considering a 1-min (first-minute) timeframe of profiling anal-

ysis. As can be seen, a bell-shaped curve represents the normal

distribution of the content of the counters. The curve clearly

depicts a normal region of the ECG beats. Any nonzero counter

content that falls outside the normal region would indicate the

existence of abnormal beats. Datasets 103 and 112 do not con-

tain any abnormal beats, as the curves reflect this fact. Datasets

100 and 105 contain very few abnormal beats, which is reflected

on the curves as very few counter contents outside the normal

region. The abnormalities are of ventricular or atrial arrhythmia

type. Datasets 200 and 232 contain too many abnormal beats, as

a normal region can be hardly defined on the curves. All these

results match the MIT-BIH arrhythmia database annotations for

beat classification.

To numerically verify our results, we computed the percent-

age of area under the curve for the abnormal region and com-

pared it with the percentage of abnormal beats within the same

analysis timeframe of the MIT-BIH database. The area under
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TABLE II
PERFORMANCE EVALUATION OF OUR QRS DETECTOR ON MIT-BIH

ARRHYTHMIA DATABASE (30 MIN LONG EACH)

the curve for abnormal regions would be:

A =

b
∑

x=a

y(x) (12)

where a and b are the points (often on the tail of the curve) that

fall out of the normal (bell-shaped) region, and y(x) refers to

the content of counter with index x. Table IV compares the per-

formance of our scheme with the MIT-BIH arrhythmia database

beat annotations (normal versus abnormal). The average of the

results of the datasets is reported on row Avg, and the results

for the entire 30 min of all 48 datasets are shown in the last row

resulting in an overall classification accuracy of 97.42%. The

results of 30 one-min timeframes of analysis have been used for

TABLE III
COMPARISON OF BEAT DETECTION APPROACHES ON MIT-BIH

ARRHYTHMIA DATABASE

TABLE IV
PERFORMANCE EVALUATION OF OUR ECG PROFILING SCHEME

ON MIT-BIH ARRHYTHMIA DATABASE

training. Then, the entire 30-min profiling result was analyzed

for each record.

Table V provides a performance comparison for a few pub-

lished works. Our profiling scheme has achieved a comparable

performance.

1) Training and Fine Tuning: Counter index in Fig. 8 is ac-

tually the hash result of the ECG features (RR interval, QRS

duration, QRS amplitudes, etc.), which also points to a memory

location. This is a value for quantifying ECG features. Each

memory location is also a counter; i.e., whenever a hashed ECG

feature value is produced, the content of that location is in-

cremented by one. The y-axis corresponds to the content of

memory with index x. For example, point (4387,30) in Fig. 8(a)

corresponds to the hash (memory) value of 4387 for the ECG

features of particular beat. This memory location contains 30

beats. This figure does not show the time sequence of the beats.

In other words, our approach does not demonstrate which beats

are irregular in terms of time sequencing, rather it graphically
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Fig. 8. Distribution of counter contents for MIT-BIH arrhythmia database readings. (a) Dataset 103. (b) Dataset 100. (c) Dataset 200. (d) Dataset 112. (e) Dataset
105. (f) Dataset 232.

TABLE V
COMPARISON OF BEAT CLASSIFICATION APPROACHES

ON MIT-BIH ARRHYTHMIA DATABASE

Fig. 9. ECG profiling curve for a 15-min timeframe of record 100 in MIT-BIH
arrhythmia database.

Fig. 10. Multiple profiling curves for different patients (or different physical
conditions). Each condition has a specific normal range where the normal region
of one condition may lie outside the normal region of another.

represents the presence of abnormal beats on the distorted tail

of the curve. To pinpoint the irregular beats more accurately,

our profiling scheme should be applied to shorter timeframes

of analysis. In addition, longer runs of the profiling scheme

may result in a huge normal (bell-shaped) area on the curve

(see Fig. 9), making the abnormalities less visible. Moreover,

just like other machine-learning/classification techniques, train-

ing our profiling system with samples of different arrhythmia

types along with samples of normal beats allows our system to

differentiate between different types of arrhythmia. The training
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Fig. 11. ECG profiling curves for European ST-T database readings. (a) Dataset e0103. (b) Dataset e0105.

data must include a large number of mostly abnormal beats. Oth-

erwise, if the system is trained with only abnormal beats, our

system cannot identify the beats as abnormal, because the ab-

normal behavior would become the norm (pattern). Other local

classification techniques follow the same rule. This is why a

global classifier is still required to distinguish normal versus

abnormal beats at a higher level. In this case, the abnormal area

should be set to 100% instead of zero. Our profiling scheme can

then be used as a local classifier, particular to any individual and

zooming on short time intervals to classify the beats.

Note that different physical conditions of any individual can

produce different profiling figures. In other words, the normal

region for one condition may lie outside the normal region of

another for the same patient (see Fig. 10). Our technique is an

intelligent local classifier which is capable of identifying the

presence of abnormal beats in an ECG profile, irrespective of

the patient’s physical condition.

2) Significance of the Proposed Method:

1) The significance of our study lies within the efficiency

of the packetized data processing and the accuracy required

in the ECG profiling technique. Since we consider the ECG

record as a stream of packets, only one feature is sufficient

for classification. This feature is a hash function applied to

the samples to represent the information in only one string of

data. The only information required from the ECG record is

the R point. Our entire profiling technique is performed using

this single feature. Note that feature extraction is a challeng-

ing and time-consuming task, especially for ECG signal where

hardware (e.g., amplification and analog-to-digital conversion)

and software (e.g., denoising, averaging, etc.) may require long

processing time and may add to inaccuracy of data [10], [24].

Table V also compares the number of features required for a

few recent techniques. Most approaches rely on extracting sev-

eral features, adding to the complexity and overall latency of

the beat classification procedure. These features generally in-

clude ECG morphology features, heart beat interval features

(P, Q, R, S, and T), frequency-based features, higher order cu-

mulant features, hermite polynomials, time descriptors, wavelet

coefficients, etc. Our technique relies more on the data stream

corresponding to ECG beats than any particular feature. More

specifically, our method has resulted in high accuracy in the

range of other well-known approaches with only one feature.

TABLE VI
PERFORMANCE EVALUATION OF OUR ECG PROFILING

SCHEME ON EUROPEAN ST-T DATABASE

2) Another significance of our study is that this type of pack-

etized data processing could be effectively applied to other bio-

metrics such as electroencephalogram (EEG) to detect the exis-

tence of abnormalities. The reason is that our type of repetition

profiling is relatively feature-independent, and rather looks into

the biometric signal as one single string of data. Hence, it can be

employed and tuned by any irregularity/abnormality detection

application.

3) Finally, as the third advantage of our approach, since our

profiling architecture requires simple logic, e.g., counters, it

could be easily implemented on customized hardware for clin-

ical and/or wearable applications to raise an early warning flag

for the existence of any irregularities.

In another experiment, we used the readings in the European

ST-T database [35] to profile ST segment elevation abnormali-

ties. This results in the myocardial ischemia arrhythmia types.

The time and amplitude of 11 points lying 16 ms apart on the ST

segment were extracted as the feature vector. The ST segment

starts at the J point (which is the junction between the QRS

complex and ST segment), and ends after a predefined interval

of 160 ms [20]. According to [36], J is identified as a point in

a sliding window of 20 ms, which has a signal slope equal or

less than 2.5 mV · s−1 and is located within 20–120 ms after

the R wave. The summation of these 11-point features has been

used for the hashed string in both phases, which has then been

analyzed for frequent occurrence. Fig. 11 shows the profiling

curve for one-min timeframe of e0103 and e0105 readings in

European ST-T database [35]. ST-segment elevations are re-

flected as the humps on the tail of the curve. Table VI shows

the performance evaluation of our scheme compared to the

European ST-T database beat annotations. The average of the
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results of the two datasets is reported on row Avg. Note that

the last row in Tables IV and VI is not the sum of columns.

Instead, those are the statistics for all 48 datasets in MIT-BIH

and all first 30 records in European ST-T databases, respectively.

VI. CONCLUSION

We introduced a technique for profiling the normal ECG

waveform for any individual by first detecting the beats ac-

curately. Our beat detection scheme was a hybrid of Pan and

Tompkin’s algorithm and wavelet analysis approach. We then

classified the detected features of the beats by means of

repetition-based packet-processing techniques. The outcome of

our work is a profiling curve specific to any individual, repre-

senting a graphical view of the existence of abnormal beats. Our

experimentation shows that a negligible classification error of

2.58% was observed when tested against the MIT-BIH arrhyth-

mia database. This is a novel technique that can be used for

automatic ECG beat classification in early warning monitoring

systems.
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