
A Pattern-Based Approach to Business Process
Modeling and Implementation in Web Services

Steen Brahe1 and Behzad Bordbar2

1 Danske Bank and IT University of Copenhagen, Denmark
stbr@danskebank.dk

2 School of Computer Science, University of Birmingham, UK
b.bordbar@cs.bham.ac.uk

Abstract. There are often three groups of experts involved in the design and
implementation of business processes in a service oriented enterprise; business
analysts, solution architects and system developers. They collaborate with each
other to transform a high-level design created by a business analyst to a final exe-
cutable workflow, based on a service composition language such as the Business
Process Execution Language (BPEL). In this paper, we present a new approach to
support and semi-automate this transformation process, thus producing applica-
tions of higher quality in shorter time. The idea is to capture existing knowledge
in the enterprise, which is required for transforming models from one abstraction
level to another, as reusable, parameterized patterns. These patterns are used for
tool based model transformations of the business processes. To support our ap-
proach, we shall make use of Domain Specific Modeling Languages (DSMLs)
designed for each enterprise to capture models of a business process at different
levels of abstraction, each suitable for the use of one of the groups of experts.
The presented approach bridges the gap between business and IT by providing
customizable language-, tool- and transformation support for the different groups
of experts within the enterprise and is illustrated by an example.

1 Introduction

Information technology is undergoing a rapid change of role from being a mere provider
of support for businesses, to an active role in driving the revenue and profit [1]. There
is an ever-increasing pressure on modern enterprises to adapt to the changes in their
environment by evolving to respond to any opportunity or threat [2]. To address such
challenges, Service Oriented Architecture (SOA) has received considerable attention
as it provides the foundation for implementing business processes via composition of
(existing) services.

Using SOA and service composition requires a collaborative effort of different groups
of experts; business analysts model the process at a high conceptual level, solution ar-
chitects map such conceptual designs to architectural models, and system developers
implement architectural models in a service composition language such as Business
Process Execution Language (BPEL) [3]. However, there is a gap between business
and IT, due to different terminology, levels of granularity, varied models, approaches,
tools and method that each employ [2].

D. Georgakopoulos et al. (Eds.): ICSOC 2006 Ws, LNCS 4652, pp. 166–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Pattern-Based Approach to Business Process Modeling 167

In this paper we present a new approach to close the gaps between different model
representations of a business process by using tool-based transformations from one
model to another. The main idea of the approach is to capture knowledge required for
the transformations as reusable, parameterized patterns, which can be used to conduct
the transformations via software tools. To achieve this, we combine Model Driven De-
velopment (MDD) techniques [4] and Domain Specific Modeling Languages (DSMLs)
[5,6] fitted specifically for the enterprise. DSMLs are used to capture models of the busi-
ness process at different abstraction levels for the three groups of experts. This enables
creation of precise, machine-readable models, which are also easier to communicate.
MDD techniques are used for automatic transformations of models captured in domain
specific languages. Hence, the presented approach aims to assist the experts belonging
to each of the three groups to create precise models of the business process at their ab-
straction level and to support automatic propagation of changes in the model created by
the analyst to the model created by the architect and further to the model created by the
developer

The paper is organized as follows. Section 2 provides a brief introduction on DSML,
MDD and service composition. Section 3 presents the outline of our approach. Section
4 illustrates the approach with the help of an example of a mortgage approval process in
an imaginary bank. Section 5 evaluates the approach. Section 6 introduces a prototype
implementation and section 7 contains the conclusion.

2 Preliminaries

This section describes concepts and notions used in the rest of the paper. It introduces
the use of Domain Specific Modeling Languages, Model Driven Development, and ser-
vice composition as an implementation to support business processes.

2.1 Domain Specific Modeling Language

A general purpose process modeling language such as the Business Process Modeling
Notation (BPMN) [7] or UML activity diagrams [8] are not designed to support en-
terprises in creating models using their own vocabulary and terminology. In contrast,
a DSML created specific for an enterprise allows the experts to create models using
locally known domain concepts and to provide domain specific information to model
precisely. In this paper we shall make use of domain specific modeling languages, which
are based on UML activity diagrams and extended for a particular domain by a UML
profile [8]. A profile is constructed by using the extensibility elements: stereotypes,
tagged values, and constraints [8], which are machine readable modeling construct used
by UML tools. For example, in an activity diagram we may wish to specify, if a task is
carried out by a software system or a human agent. To do so, a profile containing the
stereotypes <<Automatic>> and <<HumanActivity>> can be applied to the activity
diagram. Such stereotypes clarify if a task is carried out by software or by a human be-
ing. A stereotype is applied to a task to indicate the task type. Using these stereotypes
or specialized task types extends activity diagrams into a new (here, rather simplistic)
language.

168 S. Brahe and B. Bordbar

Through out the paper we use the term task for the single actions or activities that
make up a business process. We use the term task type to classify various tasks. For
example, HumanActivity is a task type, which embodies tasks such as posting a letter
or assessing a risk related to a mortgage by a human actor. A domain specific process
modeling language consists of a number of task types that can be used for modeling.

2.2 Model Driven Development

In the Model Driven Development (MDD) paradigm, models are treated as primary
software artefacts, from which the implementation is created with the help of software
tools [4]. Adopting MDD in a software development process is expected to speed up
development time and improves the quality of the delivered system.

The Model Driven Architecture initiative (MDA) [9] implements the MDD approach
around a set of technologies and standards like MOF, UML and XMI. Central to the
MDA is the idea of model transformations. Defining a transformation from one kind of
model, the source model, to another kind of model, the target model, one is able to reuse
that transformation for all source models of the same type. MDA provides mechanisms
to define DSMLs and a conceptual framework for defining transformations between
different DSMLs. Models are created by using constructs from meta-models. Meta-
models are models, which formally defines the syntax of which models can be created.
A meta-model defined for a specific domain can be seen as a Domain Specific Modeling
Language. Using MDA technologies, a meta-model is defined either by using MOF, a
meta modeling language, also called a meta-meta-model [9] or by using the UML pro-
filing mechanism [8]. A transformation is a set of rules that specify mapping between
the source and the target language. Several methods exist for defining model trans-
formations ranging from complex frameworks utilizing languages as ATL and QVT
to simple Java based frameworks as SiTra. For simplicity, we describe transformation
rules in English.

2.3 Service Composition

Enterprises that adopt a Service Oriented Architecture often require combining ser-
vices to support their business processes. As a result, service composition languages,
such BPEL, are designed to allow combining and coordinate service invocations. BPEL
is an XML based-language for describing business processes and business interaction
protocols.

Research into the application of MDD techniques to the web service domain has
recently received considerable attention. A popular area of research is model transfor-
mations from platform independent languages to Web service languages, among others,
Class Diagrams to WSDL [10] and Activity diagrams to BPEL [11].

3 A Pattern Based Approach to Model Transformations

This section illustrates the outline of our method for bridging the gaps between Business
and IT using DSMLs and MDD techniques as depicted in Fig. 1.

A Pattern-Based Approach to Business Process Modeling 169

Code
Code

Generation tools

Executable model

(Developer)

Additional

Information

Automated

Transformation

Parameterised

Patterns

System model

(System analyst)

Additional

Information

Automated

Transformation

Parameterised

Patterns

Business model

(Business analyst)

Language and transformation workbench

DSML for Business analyst DSML for System analyst DSML for Developer

DSML for the enterprise

uses uses uses

Fig. 1. A pattern based approach for modeling collaboration

The analyst creates a business model of the process. The architect transforms this
model to an architectural model by applying a predefined and automatic transformation
to the business model. The transformation uses parameterized patterns to create the ar-
chitectural model. These patterns represent knowledge previously kept by the architect
of how to map business models to architectural models in the enterprise. The patterns
are parameterized, hence, the architect is asked to include values of Additional Param-
eters required by the transformation. Additional Parameters are information that are
required in the architectural model, and which is not represented in the business model.
Following the creation of the architectural model by the architect, a developer trans-
forms it to an executable model in a similar fashion. The architect and the developer
do not change generated models; instead the information they must provide to the final
implementation is given as values of additional parameters during transformation. The
transformation workbench incorporates this information into the generated models au-
tomatically. We shall now describe the approach and the use of parameterized patterns
in further details.

3.1 Parametrized Patterns

Derived from Alexander’s work on architectural patterns, and now commonplace in
software engineering [12], patterns have been embraced by the workflow and business
process community [13,14]. A pattern describes a recurring problem that occurs in a
given context, and based on a set of guiding principles, suggests a solution. In our ap-
proach, a pattern is a common architectural, or implementation solution to reoccurring
tasks of same type. For instance, a business analyst may for simplicity model a single
task in a process, but describe that it should be executed a number of times. The archi-
tectural pattern for the task is an iteration over a service invocation. Each time such a
task is modeled by the analyst, the architect creates the same kind of solution. We use
patterns to capture and describe such common solutions to tasks of the same type.

The patterns described in this paper are domain, or enterprise, specific, i.e. they are
specific to each individual enterprise. They make use of attributes and parameters re-
lated to the models. Hence, we shall use the phrase parameterized patterns [15] to
distinguish such patterns from high level patterns described in [12]. In our approach,

170 S. Brahe and B. Bordbar

a parameterized pattern includes three pieces of information; a pattern template, addi-
tional parameters and transformation rules. Pattern templates capture the overall struc-
ture of a task type in the source language represented at a lower level of abstraction and
is defined in the target language. Additional parameters specify information required
for fitting and customizing the pattern template for a specific task. Transformation rules
use values of the additional parameters and attribute values of the task to change and fit
the pattern template into the target model.

3.2 Automated Transformation with the Help of Parameterized Patterns

Fig. 2 depicts an outline of our approach for conducting model transformation between
different DSMLs using the information captured as design patterns. This results in re-
finement of a model to a lower level of abstraction as depicted in Fig. 1.

targetLs Lt

E1

E2

T1

T2

T

InstanceOf

...

Task types at

the source

S1

S2

...

Created structure

at the destination

...

Transformation

Pattern Templates

PT1, PT2, ...

Value of Additional Parameters

VoAP1, VoAP2, … added
ms mt

InstanceOf

source

Additional Parameters

AP1, AP2, ...

Fig. 2. Model transformation between DSMLs with the help of patterns

Let us consider a source DSML Ls and a target DSML language Lt. For example,
in transformation from the Business model to the System model, see Fig. 1, Ls and Lt

are DSMLs for business analysts and system analysts, respectively. Suppose that Ls

consists of a number of domain specific task types E1, E2, . . . The aim is to transform
a source model ms defined in the language Ls to a target model mt defined in the
language Lt. To achieve this, a transformation T , which contains transformation rules
for mapping tasks from Ls to tasks of Lt, is used. The transformation T consists of
a number of sub transformations Tj , responsible for the transformation of one task
type Ej in the source model to a structure Sj in the target language Lt. The global
transformation T orchestrates and coordinates which sub transformations should be
executed at the different tasks contained in the source model ms, collects all generated
structures by the sub transformations and connects the generated structures together to
the target model mt.

A sub transformation Tj captures and represents a parameterized pattern, and hence
it represents domain specific knowledge of how to represent a task type at a lower
level of abstraction in the target language Lt. This makes the sub transformations the

A Pattern-Based Approach to Business Process Modeling 171

most essential part of the transformation. The sub transformation Tj is defined by the
following elements:

1. Pattern template PTj . A model template defined in the target language Lt. The
model template represents the structure of the source task Ej transformed to Lt.

2. Additional Parameters APj . When transforming a source task Ej to a lower ab-
straction level (Lt), additional information may be required to enrich and customize
the pattern template so the structure Sj defined in the Lt can be generated.

3. Transformation rules. Rules that specify how the pattern template PTj is cus-
tomized into the structure Sj . The rules make use of Values of Additional Parameter
(V oAPj) and values of attributes at the source task Ej .

4 Example: Process Modeling in Estate Bank

In this section we shall illustrate the above approach with the help of an example of an
imaginary enterprise called Estate Bank. In contrast to a real business process, which
can be quite complex, we use a simplified process as the purpose of the example is to
illustrate our approach. Fig. 3 models a mortgage approval process inside Estate Bank.
When a customer requests for a mortgage at the bank, a risk analysis (AssessRisk) task
is executed. Based on the risk, either the loans for the mortgage is created (CreateLoans)
or the request is rejected (Reject).

AssessRisk

CreateLoans

Reject

High risk?

[No]

[yes]

Fig. 3. A mortgage approval process in Estate Bank

A business analyst defines the above model of the mortgage approval process. The
team of system architects and, subsequently, the team of developers must create an exe-
cutable system from such a model. Due to space limitation we shall only define a subset
of the modeling languages and transformations. Firstly, we describe subsets of the dif-
ferent languages used by the three groups of experts. Then, we shall define the essential
sub-transformations for a selected number of task types from the different languages.
Finally, we illustrate the transformation of the CreateLoans task in the mortgage pro-
cess from the business level to the architect level and further to the development level
by using the different sub transformations.

4.1 A DSML for Business Analysts

Consider a domain specific language LB containing three task types named HumanAc-
tivity (EB

1), Automatic (EB
2) and Bundle (EB

3). A task of type HumanActivity, as the
name suggest, is a task which is handled by a human actor. For example, the AssessRisk

172 S. Brahe and B. Bordbar

task used in Fig. 3 can be carried out by an employee at the bank, and hence the task is a
HumanActivity. An Automatic task is a task, which is executed by a computer program.
For example, the Reject task in the mortgage process is an Automatic task type as a
computer program in Estate Bank automatically is able to send a rejection letter or an
email. A Bundle task is one which is executed a number of times. For example, in the
mortgage process, creating a number of different loans with different interest rate based
on the customer request can be considered a bundle . These task types are high-level
enough to be used by the business analyst for creating business process models. For a
full-blown realistic example in a real enterprise, several additional types are required.
However, the three task types are sufficient to explain our approach.

4.2 A DSML for Solution Architects

The solution architect refines models created by the business analyst. As a result, the
DSML, called LA, used by the solution architect requires more information than the
DSML used by the business analyst. Here, we shall exemplify refinement of the task
type Bundle from the previous sections. Two of the task types used by the solution archi-
tects are Loop (EA

1) and Service (EA
2), which are used in refining the task type Bundle

from the analyst language. A task of type Loop indicates that an iteration should be
executed over a sequence of other tasks. The architect may use a Loop to indicate that a
certain service must be called a number of times, e.g. creation of several loans but with
different interest rates. A task of type Service indicates calling a specific service avail-
able for the use of Estate Bank, for instance creation of a loan with a specific interest
rate. Such services are identified by their name and version. The architect determines
which service to be executed and specifies the name and version for the service task.

4.3 A DSML for Developers

The developer uses a language similar to BPEL and WSDL. Considering these lan-
guages express the system in lower level of abstraction, the DSML, called LD, for the
developer requires more information than the one for the solution architect. The lan-
guage is not specific to Estate Bank as it is similar to the BPEL language. We present
three exemplary task types: Assign (ED

1), Invoke (ED
2) and Loop (ED

3). A task of type
Assign maps data between variables and is used to initialize input data to service invo-
cations. A task of type Invoke, similar to BPEL’s invoke, is described by a WSDL doc-
ument. A task of type Loop iterates over a sequence and can be compared with a “for”
or “while” loop in traditional programming languages. Models created in the DSML
for the developers can be compiled directly to BPEL code without any additional pa-
rameters required. The models must be defined completely, i.e. the models must be rich
enough to be “executable”.

Table 2 depicts the task type Bundle, of the DSML for the business analyst and its
refinement by the architects and developers. Whenever a business analyst models a task
as a Bundle type (EB

3), for example the task CreateLoans in the mortgage process Fig.
3, she/he must specify values of the required attributes of the task as listed in Table
1. Firstly, the description attribute clarifies the purpose of the Bundle. Secondly, the
iterations attribute, if the number is known at modeling time, specifies the number of
times the Bundle should execute.

A Pattern-Based Approach to Business Process Modeling 173

Table 1. Task types and their attributes

DSML Task type Attributes Description

Business LB Bundle EB
5 description A description of what is bundled

iterations The number of iterations if it is known

Architect LA Loop EA
1 iterations The number of iterations

knownAtBuildTime Number of iterations is known at build
time?

Service EA
2 name The name of the service to invoke

version The version of the service to invoke

Developer LD Assign ED
1 data mappings Mapping of data between variables

Invoke ED
1 wsdl Document describing the service to call

As illustrated in Table 2, the architectural pattern PT BA
3 for modeling the equivalent

to a Bundle at the architectural level is a loop task type, and inside the loop, a service
task type is present. The pattern expresses the common solution to reoccurring model
elements of type Bundle. The loop task type requires values for two attributes :

-knownAtBuildTime: Boolean. True, if the iteration numbers is known at build time
-number:= the number of times the iteration should run.
Both these attributes can be extracted from the attributes of the Bundle task, so no

additional information is required here. The service task type also requires data for two
attributes:

Service name:= The name of the service which the bundle invokes multiple times.
Service version:= The version of the service to be invoked.

Table 2. Sub transformation for Bundle task type from business to architectural level

Pattern template Add. params Rules
PT BA

3 AP BA
3

<<Loop>>

setupLoop
<<Service>>

loop
-Service name
-Service version

Set name and version at
Service attributes

These attributes cannot be extracted from the Bundle task type at the business level,
as they are information about the architecture of services in Estate Bank, so they must
be provided as additional parameters APBA

3 during the transformation. The business
analyst has only provided a description of the purpose of the task of type Bundle. The
architect uses his/her knowledge of Estate Banks services to describe which service and
what version to call and specify the attribute values of the Service task. A sub transfor-
mation T BA

3 can be defined for transformation of the Bundle task type at the business
level to the architectural level. Table 2 shows the pattern template, a textual descrip-
tion of the transformation rules and the required additional transformation parameters.

174 S. Brahe and B. Bordbar

The Bundle sub transformation generates a model structure SA
3 defined in the architect

language. This structure contains two tasks, one of type Loop, and one of type Service.
The structure can be transformed to the development level by use of two different sub
transformations, one sub transformation T AD

1 for the Loop task type and one (T AD
2) for

the Service task type.
Table 3 illustrates that a Loop task at the architectural level is transformed to an As-

sign task and a Loop task at the development level. The Service task at the architectural
level is transformed to a sequence of an Assign task followed by an Invoke task at the
development level. The two assign nodes at the development level both need additional
parameters for determining how to map data for variables to the loop node and the in-
voke task respectively. This information can be provided at modeling time, however
since the focus of the paper is on the control flow part of the models, we will not deal
with this aspect here.

The Loop node requires a conditional statement (logic) to determine when is should
terminate. This is similar to the conditional statements, for example in “if” and “while”
clauses, in conventional programming languages. The Invoke node need to know the
WSDL document defining the service to invoke. The logic and the document have to be
provided for the transformations as values of additional parameters, V oAPj .

Table 3. Sub transformation of Service and Loop task type from architect to developer level

Task type Pattern template Add. params Rules
PT AD

j AP AD
j

Service serviceToCall
<<Invoke>>

setupData
<<Assign>>

-WSDL file
Change the invoke
node to use WSDL

Loop

<<Loop>>

setupLoop
<<Assign>> loop

-logic
Set iteration num-
ber at loop

The described parameterized patterns allow the CreateLoans task, if modeled as a
Bundle type, to be transformed into code with only limited work done by the architect
and the developer. They only have to provide specific information during the transfor-
mations. The architect has to provide the service name and version of the service that in
the IT systems fulfils the requirements specified by the business analyst. The developer
has to provide a WSDL document based on the service name and version and logic for
when the loop should terminate. Based on these additional transformation parameters,
the described sub transformations in Table 2 and Table 3 handle the rest of the work of
transforming the business model to an implementation. This is illustrated in Fig. 4.

Similarly, the other tasks, AssessRisk and Reject, of the mortgage process can be
transformed by other subtransformations to an implementation. Fig. 5 illustrates the
complete mortgage process transformed to the developers DSML where also the As-
sessRisk and the Reject task has been transformed. The different Assign tasks, map1,

A Pattern-Based Approach to Business Process Modeling 175

map2, map3 and map4, are used for mapping data for service invocations; for the As-
sessRisk service which is handled by a human actor, for initializing the while loop
for creating the different loans requested by the customer, for the CreateLoan ser-
vice which create one loan and for the Reject service which sends a rejection to the
customer.

Analyst

Architect

Developer

B
u

si
n

es
s

2
A

rc
h

it
ec

t

A
rc

h
it

ec
t

2
D

ev
el

o
p

er

CreateLoans
<<Bundle>>

C
o

m
p

ile
 B

P
E

L

<<Loop>>

initiateLoop
<<Assign>>

CreateLoans

mapCreateLoan CREATELOAN
<<Assign>> <<Invoke>>

<<Loop>>
CreateLoans

<<Service>>

-name=CREATELOAN
-version=02

CREATELOAN

-wsdl=createloan.wsdl

Val of Add. Parameters

name=CREATELOAN
version=02

Val of Add. Parameters

wsdl=createloan.wsdl

<process name="MortgageApproval">
 <sequence>
 <receive partner="...">
 ...
 </receive>
 </sequence>
</process>

Fig. 4. Transformation of the CreateLoans task from analyst to architect to developer to code

map1 AssessRisk

Rejectmap2

map3
map4 CreateLoan

CreateLoans<<loop>>

<<assign>>

<<assign>>

<<assign>>

<<assign>> <<invoke>>

<<invoke>>

<<invoke>>

Fig. 5. Mortgage Approval process transformed to developer DSML

5 Discussion

As the example illustrates, the analyst and the architect are able to create precise,
machine-readable models in well known domain specific concepts by using languages
fitted specially for their needs. By using the suggested approach, i.e. having defined sub
transformations for the specific domain concepts, tools can now collect the required in-
formation for the concrete tasks in a source models, automatically transform the source
model to the target domain and finally generate the implementation code. The model

176 S. Brahe and B. Bordbar

can be transformed to an implementation, where only required additional transforma-
tion parameters have to be provided by the architect and the developer. The developer
and the architect are not required to remember or know all details about the patterns and
which additional parameters are required. For example, the tool can provide assistance
in form of wizards.

Following the gathering of information, the transformation of the task to the lower
abstraction level is carried out automatically. As a consequence, the challenge of model-
ing and implementing business processes, then becomes one of identifying and defining
domain specific concepts, DSMLs and transformations between different DSMLs. An
outcome and a possible limitation of the approach is that it is not possible to introduce
manual corrections to generated models. It is a subject to further research how manual
changes applied to generated models can survive repeatable transformations. Due to
space limitation, this paper only focuses on control flow part of the business process.
Modeling the flow of messages is equally important. For example in the mortgage ex-
ample it should be modeled which information that is provided to the process and what
information the different tasks require. Our approach can be similarly used to model
and transform the message flow of a business process.

6 Tool Implementation of the Approach

Our earlier paper [16] describes the tools ADModeler and ADSpecializer, which en-
able the creation and use of DSMLs based on UML activity diagrams and profiles. We
are currently finalizing an extension of the above workbench by a new module called
ADTransformer, a transformation engine feasible for transforming models based on
different profiles for UML activity diagrams. ADTransformer implements the concepts
of sub transformations, parameterized patters, patterns templates, transformation rules
and additional parameters. Using the three tools together one is able to define and utilize
DSMLs, and define and use transformations between different DSMLs.

7 Conclusion

This paper presents an approach for bridging the gap between business and IT by fa-
cilitating better interaction between experts involved in business process modeling and
implementation. The main idea is to capture domain knowledge related to different
groups of experts as domain specific modeling languages and reusable, parameterized
transformation patterns. Using an example, the paper demonstrates that domain specific
modeling combined with customizable model transformations can simplify the process
of modeling and implementing business processes. Using our tool-based approach will
result in shorter time to market from business process idea to implementation, higher
quality of the resulting code based on automated transformations, an assurance for what
is conceptually modeled is actually also implemented, and better interaction between
different groups of experts.

A Pattern-Based Approach to Business Process Modeling 177

References

1. Wagner, H.-T., Beimborn, D., Franke, J., Weitzel, T.: IT Business Alignment and IT Usage
in Operational Processes: A Retail Banking Case. In: HICSS’06. Proceedings of the 39th
Annual Hawaii International Conference on System Sciences, vol. 8, pp. 172–194 (2006)

2. Arsanjani, A.: Empowering the business analyst for on demand computing. IBM Systems
Journal 44, 67–80 (2005)

3. BEA, IBM, Microsoft, SAP, A., Systems, S.: Business Process Execution Language for Web
Services (BPEL4WS). Version 1.1 (2003),
http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

4. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:
Technology, Engineering, Management. Wiley, Chichester (2006)

5. Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastructure for
domain-specific modeling languages. In: EMSOFT ’05. Proceedings of the 5th ACM in-
ternational conference on Embedded software, pp. 35–43. ACM Press, New York (2005)

6. van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliogra-
phy. ACM SIGPLAN Notices 35, 26–36 (2000)

7. White, S.: Business Process Modeling Notation, Version 1.0, final adopted version (2006),
Avaiblable at http://www.bpmn.org/Documents/OMG-02-01.pdf

8. UML2.0: UML 2.0 Superstructure Specification, Final Adopted Specification (2004), avail-
able at http://www.omg.org/docs/formal/05-07-04.pdf

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture–Practice
and Promise. The Addison-Wesley Object Technology Series. Addison-Wesley, Reading
(2003)

10. Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Services
to Implementation Platforms. Technical report, LINA, University of Nantes (2004)

11. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services. In:
Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai, China, pp.
667–678 (2004)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

13. Eriksson, H., Penker, M.: Business Modeling with UML. Business Patterns at Work. John
Wiley & Sons, Chichester (2000)

14. van der Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14, 5–51 (2003)

15. MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S., Tan, K.: Generative design
patterns. In: IEEE International Conference on Automated Software Engineering, pp. 23–34.
IEEE Computer Society Press, Los Alamitos (2002)

16. Brahe, S., Østerbye, K.: Business Process Modeling: Defining Domain Specific Modeling
Languages by use of UML Profiles. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 241–255. Springer, Heidelberg (2006)

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.bpmn.org/Documents/OMG -02-01.pdf
http://www.omg.org/docs/formal/05-07-04.pdf

	A Pattern-Based Approach to Business Process Modeling and Implementation in Web Services
	Introduction
	Preliminaries
	Domain Specific Modeling Language
	Model Driven Development
	Service Composition

	A Pattern Based Approach to Model Transformations
	Parametrized Patterns
	Automated Transformation with the Help of Parameterized Patterns

	Example: Process Modeling in Estate Bank
	A DSML for Business Analysts
	A DSML for Solution Architects
	A DSML for Developers

	Discussion
	Tool Implementation of the Approach
	Conclusion

