
A Pattern-Based Approach to Development of Service Mediators for Protocol
Mediation

Xitong Li1, Yushun Fan1, Jian Wang2, Li Wang2, Feng Jiang1
 1Department of Automation 2IBM China Research Lab

 Tsinghua University b
 Beijing, 100084, P.R. China Beijing, 100094, P.R. China

{lxt04, jiangf00}@mails.tsinghua.edu.cn {wangwj,wanglcrl}@cn.ibm.com
fanyus@tsinghua.edu.cn b

Abstract

Service composition is one of the key objectives for
adopting Service Oriented Architecture. Today, web
services, however, are not always perfectly compatible
and composition mismatches are common problems.
Service mediation, generally classified into signature
and protocol ones, thus becomes one key working area
in SOA. While the former has received considerable
attention, protocol mediation is still open and current
approaches provide only partial solutions. In this
paper, a pattern-based approach is proposed for
developers to semi-automatically generate mediators
and glue partially compatible services together. Based
on the investigation on workflow patterns and message
exchanging sequences in service interactions, several
basic mediator patterns are developed and can be used
to modularly construct advanced mediators that can
resolve all possible protocol mismatches, especially
such mismatches about complicated control logics.
Moreover, the architecture for the service mediation
system is designed and implemented to prove the
feasibility of our approach.

1. Introduction

Service composition is one of the key objectives of
Service Oriented Architecture (SOA) which provides a
loosely-coupled environment and enables flexible
assembly of pre-produced services. Today, web
services, however, are not always perfectly compatible
and can not be straightly composed together. Thus
composition mismatches are common problems.

An effective solution to this challenge is service
mediation which is recognized as the act of retrofitting
existing services by intercepting, storing, transforming,
and (re-) routing messages going into and out of these

services [1]. Recently, service mediation has become
the status of a definite working area in the field of
SOA and attracted much attention [2]. Generally,
service mediation can be classified into signature and
protocol ones. Signature mediation, where the focus is
on message types, has received considerable attention
[3]. In comparison, protocol mediation, where the
focus is on resolving mismatches occurring at the
message exchanging sequences, is still open. Current
approaches provide only partial solutions and need
further research, since mediators developed by these
approaches have no control logics and can not
compensate complicated protocol mismatches.

In our previous work, we have presented a
comprehensive identification of all possible
composition mismatches. Particularly, we have
proposed six basic mismatch patterns and pointed out
that all possible protocol mismatches can be composed
by these basic patterns [4]. In this paper, we develop
several basic mediator patterns to address these basic
mismatches and present a mechanism about the
composition of the mediator patterns. Moreover, the
structures and control logics of the mediator patterns
can be configured as parameters when developers use
them to construct advanced mediators. By using these
basic mediators as patterns, service mediators can be
modularly constructed and contain control logics. The
most advantage of our approach lies in the capability
of resolving all possible protocol mismatches,
especially mismatches of complicated control logics.

1.1. Motivating Example

A motivating example comes from a composition

scenario of a search client (SC) and a search engine
(SE). SC sends its login information followed by the
search request. After that, SC waits for receiving

Seventh Working IEEE/IFIP Conference on Software Architecture

0-7695-3092-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WICSA.2008.13

137

acknowledgement as well as the information of
searched items from SE. On the other hand, after
receiving search request, SE starts to search in several
distributed databases one by one. Once SE finishes a
partial database and obtains some searched items, it
sends information of these items immediately. If all
databases have been searched, SE sends a completing
notification to its client and the search work is finished.
For the sake of clear representation, we abstract the
specific definitions of the protocols of the two services,
such as BPEL code. And their message exchanging
sequences are illustrated in Figure 1.

Figure 1. A motivating example of service
composition with protocol mismatches

It is easy to see that the two services, SE and SC,
provide complementary functionality. However, they
do not fit each other exactly, due to protocol
mismatches identified as follows:

i) SE expects a whole message of search request
containing login information, while SC sends login
information and search request separately.

ii) SE does not send any acknowledgement after
receiving search request, but SC waits for it.

iii) SE sends searched items one by one according
to the results of partial databases, while SC expects to
receive a whole message of all searched items.

The first and second mismatches in the motivating
example have been identified in the existing work [5].
As far as we’ve known, however, no approach
addresses the third mismatch which is considered as
iteration mismatch in this paper.

1.2. Protocol Mismatch Patterns

Protocol mismatches refer to mismatches occurring
at the message exchanging sequences of the services to
be composed together. The existing work has

identified this kind of mismatches [5]. However, few
paper claims its identification is complete in any sense.
To achieve a complete identification, we have
proposed six basic mismatch patterns, which are
derived from basic workflow patterns and message
exchanging sequences. We have illustrated that the six
basic mismatch patterns can be viewed as basic
constructs of all possible protocol mismatches in our
previous work [4]. Particularly, protocol mismatches in
the motivating example can be composed by the basic
mismatch patterns, which is not illustrated due to the
space limitation. In this paper, we adopt the
irreplaceability perspective to represent protocol
mismatches, which is based on the scenario that the
required interface can not be exactly replaced by the
provided interface. Basic mismatch patterns are
presented as follows:

(1) Mismatches of extra messages: the provided
interface has some extra messages that the required
interface does not expect to send/receive.

(2) Mismatches of missing messages: the provided
interface does not have some messages that the
required interface expects to send/receive.

(3) Mismatches of splitting messages: the provided
interface has some messages that the required interface
expects to split to send/receive.

(4) Mismatches of merging messages: the provided
interface has some messages that the required interface
expects to merge to send/receive.

(5) Mismatches of extra conditions: the provided
interface has some extra conditions imposed on the
control flow of its protocol while the required interface
expects no conditions constraining its control flow.

(6) Mismatches of missing conditions: the provided
interface has no conditions imposed on the control
flow of its protocol while the required interface
expects to have some conditions constraining its
control flow.

1.3. Contributions and Structures

The main contributions that we have achieved in the
paper are:

1) We have proposed a pattern-based solution
approach for developers to resolve all possible
protocol mismatches and glue partially compatible
services together. The approach can semi-
automatically produce pseudo-codes for developers to
generate executable codes, like BPEL code. Since we
abstract the specific definitions of the protocols, the
approach is not limited to BPEL-based services and
can be used with other definition languages.

2) We have presented several basic mediator
patterns which are derived from the protocol mismatch

138

patterns identified in our previous work. The well-
defined basic mediator patterns can be configured and
composed by developers, according to the specific
protocol mismatches. Based on a deep investigation on
typical workflow patterns and message exchanging
sequences in service interactions, the basic mediator
patterns presented in the paper are considered to be
sufficient to construct mediators for resolving all
possible protocol mismatches.

3) We have designed the architecture to implement
the service mediation system (SMS) which is an
ongoing development and integrated with IBM WID
(WebSphere Integration Developer). The development
of SMS can be used to prove the feasibility and
effectiveness of our solution approach.

The rest of the paper is structured as follows. The
solution approach is presented in Section 2. Next, basic
mediator patterns and their configurability and
compositionability are proposed in Section 3. In
Section 4, a service mediator to resolve mismatches in
the motivating example is presented and the
architecture of prototype system for service mediation
is developed. Related work and comparisons with ours
are presented in Section 5. Finally, conclusions and the
future work are drawn up in Section 6.

2. Solution Approach

In this section, we present a solution approach to
address protocol mediation, as shown in Figure 2.
Since protocols of services are usually specified in
WS-BPEL which has been approved as an OASIS
Standard for web services [6], we focus on addressing
the mediation of BPEL-based services. But the
approach can be easily applied to other definition
languages. Given two interacting services, several
procedures should be performed to produce deployable
service mediators for resolving the protocol
mismatches and compatibly gluing the two services
together, if the correct mediator exists.

(1) Service model transformation
 For the purpose of mismatch identification, BPEL-

based services are transformed to formal models. In the
paper, we adopt Colored Petri Nets (CPNs) as an
underlying formulism to represent the protocols of
services and mediators. The formulism of CPNs can
not only depict the internal logics and message
exchanging sequences, but also provides rich analysis
capability to support solid verification of correctness
for protocol mediation. Existing papers have presented
approaches to the transformation from BPEL-based
service models to CPN models [7].

Figure 2. Solution approach to protocol mediation

(2) Mediator generation
There are four sub-steps to achieve mediator

generation. Firstly, in terms of basic mismatch patterns,
developers analyze the models of two interacting
services and identify all possible protocol mismatches.
Secondly, with basic protocol mismatches, developers
select corresponding mediator patterns which are
proposed in the next section. Thirdly, the structures
and control logics of the mediator patterns need to be
configured as parameters by developers, according to
the identified mismatches. Finally, the configured
mediator patterns are composed to construct a
composite mediator that can resolve all identified
protocol mismatches. It should be pointed out that a
composite mediator can be treated as an advanced
pattern for further use. Both mediator patterns and
composite mediators are represented as CPN models.
Since the former three sub-steps need developers’
intervention, the procedure is considered as semi-
automatic mediator generation, which can be used to
resolve all possible protocol mismatches and is one of
the main contributions of this paper.

 (3) Mediation verification
The mediator generated in the above procedure is

only conceptual and should be placed between the two
interacting services. The composition model of the two
services and the mediator need to be formally verified.
If any deadlock exists, we consider that the mediation
has failed. Otherwise, the mediation is successful. In
the existing work [8] [9], some verifying approaches to
service composition and compatibility have been
proposed based on the Petri net formulism.

(4) Transformation to deployable mediators

139

Only successful mediation will be performed in this
procedure. The conceptual mediator is transformed to
deployable/executable service mediators, like BPEL-
based mediators, which are pattern-specific codes and
need developers’ refinement.

Note that the focus of this paper is the development
of basic mediator patterns and how to use these
patterns to construct service mediators for protocol
mediation. A deeper research of the third and fourth
procedures of the solution approach is beyond the
scope of this paper and subject of future work.

3. Mediator Patterns for Protocol
Mediation

To a certain extent, the dependencies of message

exchanging sequences between two interacting
services are similar to control flows of their internal
logics. Thus, we can use modeling modules for control
flows to depict the dependencies of the message
exchanging sequences. In the field of workflows, four
basic workflow patterns have been presented in [10]
[11], namely sequence, parallel, exclusive choice and
iteration. And advanced workflow constructs are
supposed to be composed by using basic workflow
patterns. Derived from basic workflow patterns and
message exchanging sequences, six basic mediator
patterns are proposed in this section. It should be
pointed out that the six basic mediators can be treated
as basic patterns to modularly construct service
mediators which can be used to resolve all possible
protocol mismatches. Therefore, the basic patterns
identified herein are considered to be sufficient. And a
composite mediator can be stored as a mediator pattern
for further use. Moreover, the configurability and
compositionability of the mediator patterns are
presented to flexibly construct advanced mediators.

Both basic and composite mediators presented in
this paper are conceptual patterns which can provide
pseudo-code to develop executable codes for
mediation, like BPEL code. The intended benefit of
this work is to help developers produce service
mediators through an engineering methodology and
semi-automatically generate mediation codes by using
these patterns. Although mediator patterns depicted in
this section are based on CPN models, the protocols of
services and mediators are represented for developers
by using an intuitional and graphics-based notation,
like Business Process Modeling Notation (BPMN) [12].

3.1. Basic Mediator Patterns

(1) Simple Storer pattern

Description: A service with the capability of simply
receiving and storing messages of certain specific type.

Illustration: The Simple Storer pattern can be used
to resolve mismatches of extra sending messages and
missing receiving messages. The two scenarios of
using Simple Storer pattern are respectively illustrated
in Figure 3(a) and Figure 3(b). And the structures of
Simple Storer pattern are circled with dashed ellipses.
In the figures of this paper, the white transitions depict
those actions without sending/receiving any message
and the symbol “MT” stands for a certain message type
for short.

(a) Extra sending message scenario

(b) Missing receiving message scenario

Figure 3. Scenarios of using Simple Storer pattern
(2) Simple Constructor pattern
Description: A service with the capability of simply

constructing and sending messages of certain specific
type. It should be pointed out that how to construct a
message of certain type from a collection of incoming
messages is a non-trivial task and some evidences can
be used to address the issue [13].

Illustration: The Simple Constructor pattern can be
used to resolve mismatches of extra receiving
messages and missing sending messages. The two
scenarios of using Simple Constructor pattern are
respectively illustrated in Figure 4(a) and Figure 4(b).
And the structures of Simple Constructor pattern are
circled with dashed ellipses.

(a) Extra receiving message scenario

140

(b) Missing sending message scenario

Figure 4. Scenarios of using Simple Constructor
pattern

(3) Splitter pattern
Description: A service with the capability of

receiving a single message of certain type and splitting
it to two or more partial messages. The specific
structure of Splitter pattern is variable according to the
sequence of partial messages which may be sequential,
parallel or mixed structure. If splitting to two partial
messages, the structure of Splitter pattern can be two
types, as shown in Figure 5(a) and Figure 5(b).

Illustration: The Splitter pattern can be used to
resolve mismatches of splitting sending messages and
merging receiving messages. The two scenarios of
using Splitter pattern with sequential structure are
respectively illustrated in Figure 6(a) and Figure 6(b).
And the structures of Splitter pattern are circled with
dashed ellipses.

(a) Splitter pattern with sequential structure

(b) Splitter pattern with parallel structure

Figure 5. Two types of structures of Splitter pattern
with two partial messages

(a) Splitting sending message scenario

(b) Merging receiving message scenario

Figure 6. Scenarios of using Splitter pattern
(4) Merger pattern
Description: A service with the capability of

receiving two or more partial messages and merging
them to a single one. Similar to Splitter pattern, the
specific structure of Merger pattern is variable
according to the sequence of merged messages which
may be sequential, parallel or mixed structure. If
merging two messages, the structure of Merger pattern
can be two types, as shown in Figure 7(a) and Figure
7(b).

Illustration: The Merger pattern can be used to
resolve mismatches of splitting receiving messages and
merging sending messages. The two scenarios of using
Merger pattern with sequential structure are
respectively illustrated in Figure 8(a) and Figure 8(b).
And the structures of Merger pattern are circled with
dashed ellipses.

(a) Merger pattern with sequential structure

141

(b) Merger pattern with parallel structure

Figure 7. Two types of structures of Merger pattern
with two merged messages

(a) Splitting receiving message scenario

(b) Merging sending message scenario

Figure 8. Scenarios of using Merger pattern
(5) Storing Controller pattern
Description: A service with the capability of storing

and conditionally sending some messages of certain
type in terms of specific logic.

Illustration: The Storing Controller pattern can be
used to resolve mismatches of extra condition of
receiving messages and missing condition of sending
messages. The two scenarios of using Storing
Controller pattern are respectively illustrated in Figure
9(a) and Figure 9(b). And the structures of Storing
Controller pattern are circled with dashed ellipses.

(a) Extra condition of receiving message scenario

(b) Missing condition of sending message scenario

Figure 9. Scenarios of using Storing Controller
pattern

(6) Constructing Controller pattern
Description: A service with the capability of

conditionally constructing and sending some messages
of certain type in terms of specific logic.

Illustration: The Constructing Controller pattern can
be used to resolve mismatches of extra condition of
sending messages and missing condition of receiving
messages. The two scenarios of using Constructing
Controller pattern are respectively illustrated in Figure
10(a) and Figure 10(b). And the structures of
Constructing Controller pattern are circled with dashed
ellipses.

(a) Extra condition of sending message scenario

(b) Missing condition of receiving message scenario

Figure 10. Scenarios of using Constructing
Controller pattern

142

3.2. Configurability of Mediator Patterns

As mentioned above, the specific structures of the
Splitter and Merger patterns may be variable according
to the sequences of partial messages. Also, the
condition constraints of control logics of the Storing
Controller and Constructing Controller patterns are not
pre-established. Thus, we device specific interfaces for
the basic mediator patterns to configure their structures
and control logics.

Before using the Splitter and Merger patterns,
developers should specify how many partial messages
involved as well as the sequence of these messages,
that is, sequential, parallel or mixed structure. After
configuration, the specific structures of the Splitter and
Merger patterns can be identified and concretized.

When resolving extra or missing condition
mismatches, developers should specify the condition
constraints of the Storing Controller and Constructing
Controller patterns, according to the condition of the
provided or required interfaces of services to be
composed. The condition constraints are eventually
transformed to such BPEL elements as <switch>,
<pick>, <while> or <repeatUntil>.

3.3. Compositionability of Mediator Patterns

Basic protocol mismatches can be resolved by the
abovementioned basic mediator patterns. In practical
environments, however, protocol mismatches are more
complicated and should be addressed by advanced
mediators with control logics that are composed by
these basic mediators. Then a composite mediator can
be considered as a new pattern and be used in the
future. Each mediator presented in this paper has two
special places that are an initial place and an end place.
Informally, the composition of two mediators is
performed by merging the end place of one mediator
with the initial place of the other as well as the
common parts of the two mediators. To illustrate the
composition of mediators, herein take a mediator with
iteration structure, namely Merging Repeater, for
example, as shown in Figure 11. It’s easy to see that
Merging Repeater can iteratively receive messages of
the type MT1 until the completing condition x occurs.

Merging Repeater pattern can be used as a mediator
to resolve protocol mismatches with iteration structure.
Figure 12 presents such scenario that the provided
interface iteratively sends some message of the type
MT1 under certain condition x and sends a notification
when that condition x doesn’t hold. The message type
of the notification is also MT1, but its specific value is
different with that sent under condition x. However,

the required interface only expects to send a whole
message of the type MT. Note that this scenario
depicts the third protocol mismatch in the motivating
example (see Section 1.1). Figure 12 shows that the
mismatch with iteration structure can be compensated
by using Merging Repeater pattern. Moreover, we
believe all possible protocol mismatches can be
resolved by the advanced mediators that are composed
by mediator patterns presented in this paper.

Figure 11. Merging Repeater pattern composed by

two Storing Controller patterns

Figure 12. Scenario of using Merging Repeater

pattern

143

4. Prototype System

To prove the feasibility of our approach, the
protocol mismatches in the motivating example are
resolved by using a composite mediator that is
constructed by the mediator patterns. And also, a
prototype system has been designed and being
developed, which is known as Service Mediation
System (SMS).

4.1. A Service Mediator to Resolve Mismatches
in the Motivating Example

There are three protocol mismatches in the
motivating example (see Section 1.1) and three
mediator patterns can be respectively used to address
these mismatches as follows:

i) A Merger can be used to receive the login
information and search request from SC, and then it
sends SE a whole message of search request with login
information.

ii) A Simple Constructor can be used to construct
the acknowledgement of specific type and send SC the
acknowledgement that SC expects to receive.

iii) A Merging Repeater can be used to iteratively
receive the search results from SE until the notification
of no more items arrives. And then, the Merger
Repeater merges all the search results together and
sends SC a whole message of searched results.

As shown in Figure 13, a composite mediator
composed by the above three mediator patterns sits
between the two interacting services, SE and SC, and
compensates their protocol mismatches. The three
mediator patterns are circled with dashed ellipses.
Since the protocols of SE, SC and mediators are
modeled by CPNs formalism, it is easy to verify that
SE and SC can successfully interact through the
composite mediator and no deadlock exists.

Figure 13. A composite mediator for protocol

mediation of SE and SC

4.2. Architecture of Service Mediation System

The solution approach presented in this paper is
developed inside IBM WID (Websphere Integration
Developer) which is an Eclipse-based IDE for
development of composite applications based on
Service Component Architecture (SCA) [14]. The
architecture for the Service Mediation System (SMS),
as shown in Figure 14, currently supports mediation of
BPEL-based services. There are four main components
in SMS which are introduced as follows.

Figure 14. Architecture of SMS

(1) BPEL2CPN Transformer
Web services to be composed together are

implemented with BPEL and wrapped as SCA
components. The BPEL2CPN Transformer is
responsible to transform BPEL-based service models
to CPN models. Recently, current tools have provided
similar functionalities, such as BPEL2PNML [15].

(2) Mediation Workspace
The Mediation Workspace is the core component of

our mediation system and provides a convenient
workspace for developers to manipulate services and
mediators. Although mediator patterns are depicted by
using CPN models as an underlying formalism in
Section 3, the protocols of services and mediators are
graphically represented in the Mediation Workspace
by means of an intuitional notation, like Business
Process Modeling Notation (BPMN) [12]. The
Mediation Workspace provides a GUI to illustrate the
protocols of the two services to be composed. With the
mismatch patterns presented in Section 1.2, developers
identify all possible protocol mismatches between the
services. We have pre-established the basic mediator
patterns developed in this paper in a certain base, that
is, Mediator Patterns Base (MPB). The basic mediator
patterns are well-defined and can be used as modular

144

constructs to develop advanced mediators. And
composite mediators can also be stored as patterns in
MPB for further use. MPB provides the functionality
of flexible extension for mediator patterns. With the
identified mismatches, developers select specific
mediator patterns from MPB and configure the
selected patterns if needed. After that, developers
compose the selected mediator patterns to produce a
composite mediator. The composite mediator is also
based on the underlying CPN models, which is
automatically constructed by the Mediation Workspace.
Existing tools have provided functionalities that
transform service models between BPNN, BPEL and
CPNs [15], which can be integrated in our Mediation
Workspace.

(3) Mediator Verifier
Since mismatches are identified by developers

informally, the service mediator produced in the
Mediation Workspace may not successfully
compensate all protocol mismatches and deadlocks
may exist. To make sure the mediation successful,
services and the produced mediator are composed
together to be a composite CPN model. The Mediator
Verifier checks whether any deadlock may occur. If
any deadlock exists, we consider that the mediation has
failed. Otherwise, the mediation is successful.

(4) CPN2BPEL Transformer
Only successful mediator will be performed to the

CPN2BPEL. Note that the BPEL-based mediator
obtained as output of the CPN2BPEL is only pattern-
specific BPEL code. Developers should refine the
pseudo-code and generate executable codes.

5. Related Work and Comparisons

Recently there have been a significant number of
research works on service mediation, which attempts
to address various kinds of composition mismatches
[16]. Signature mediation has received considerable
attention [3] [17], while protocol mediation is still
open. Several formal approaches have been developed
to conquer this challenge, such as Automata [18],
Process Algebra [19] and Petri nets [9], etc. In [20], an
architecture-based approach that can detect and semi-
automatically resolve integration mismatches is
proposed. And a framework for selecting software
components and connectors (mediators) ensuring their
interoperability is developed in [21]. The very recent
work presented in [13] identifies a few ordering
mismatches and provides a semi-automated support to
resolve these mismatches. The existing approaches,
however, provide only partial solutions and few of
them can sufficiently address all possible mismatches.

Particularly, mediators developed by these approaches
have no control logics and can not resolve complicated
protocol mismatches, like mismatches of extra
condition, missing condition, or iteration structure, etc.

It has been recognized that patterns can be used to
resolve composition mismatches and address protocol
mediation [5] [16]. The work in [5] identifies five
mismatch patterns and provides templates of BPEL
code for developer to build mediators, but these
patterns are insufficient. Although two more protocol
mismatches derived from repetition structure, namely
Collapse and Burst, are introduced in [1], no approach
is proposed to address the two types of mismatches. In
[16], the taxonomy of composition mismatches is
presented and several patterns are proposed that can be
used to eliminate these mismatches. The taxonomy,
however, does not sufficiently address protocol
mismatches and the compositionability of these
patterns is not considered.

6. Conclusions and Future Work

Our ultimate objective is to develop a systematic
engineering solution to (semi-) automatically generate
service mediators in order to resolve all possible
composition mismatches. To achieve it, we have
proposed a pattern-based approach for developers to
resolve all possible protocol mismatches and glue
partially compatible services together. We have
presented basic mismatch patterns which can help
developers identify the differences between protocols
of two services. Based on the identified mismatch
patterns, we have devised six basic mediator patterns
to resolve these mismatches. The mediator patterns can
be flexibly configured by developers, according to the
identified mismatches. Moreover, we have addressed
the mechanism about the composition of the mediator
patterns and pointed out that the patterns can be used
to modularly construct advanced mediators. The most
advantage of the pattern-based approach proposed in
this paper lies in that it can be used to successfully
resolve all possible protocol mismatches, especially
such mismatches about complicated control logics. To
the best of our knowledge, however, few papers in the
existing literature present some mediators developed in
this paper, like Storing Controller, Constructing
Controller or Merging Repeater, or discuss the
compositionability of these mediators. Moreover, we
have designed the architecture of the Service
Mediation System (SMS).

 In the future, we plan to focus on the formal
approach to verification of the correctness of service
mediation. And a systematic solution is expected to be

145

investigated. In addition, further effort will be made to
implement the prototype system integrated with the
existing IBM WebSphere products.

Acknowledgements

Our work was granted by National Natural Science
Foundation of China (No. 60674080), and National
High-Tech R&D (863) Plan of China (No.
2006AA04Z151 and No. 2006AA04Z166). In addition,
the work was supported by IBM-Tsinghua joint project
“Mediator-aided Service Composition” co-sponsored
by IBM China Research Lab and National CIMS
Engineering Research Center, Tsinghua University.

References

[1] M. Dumas, M. Spork, and K. Wang, “Adapt or Perish:
Algebra and Visual Notation for Service Interface
Adaptation”, Proc. of the 4th Intl. Conf. on Business Process
Management (BPM 2006), pp. 65-80.
[2] C. Canal, P. Poizat, and Gwen Salaun, “Adaptation of
Component Behaviour using Synchronous Vectors”,
www.lami.univ-evry.fr/~poizat/documents/publications/RR-
CPS05.pdf.
[3] A.M. Zaremski, and J.M. Wing, “Signature Matching: A
Tool for Using Software Libraries”, ACM Transactions on
Software Engineering and Methodology, (1995) 4(2), pp.
146-170.
[4] X.T. Li, Y.S. Fan, and F. Jiang, “A Classification of
Service Composition Mismatches to Support Service
Mediation”, Proc. of the 6th Intl. Conf. on Grid and
Cooperative Computing (GCC 2007), pp. 315-321.
[5] B. Benatallah, F. Casati, and D. Grigori, et al.,
“Developing Adapters for Web Services Integration”, Proc.
of the 17th Intl. Conf. on Advanced Information System
Engineering, (CAiSE 2005), pp. 415-429.
[6] WS-BPEL, OASIS Web Service Business Process
Execution Language, in: www.oasis-
open.org/committees/wsbpel/.
[7] C. Ouyang, E. Verbeek, and W.M.P. van der Aalst, et al.,
“Formal Semantics and Analysis of Control Flow in WS-
BPEL”, Science of Computer Programming, (2007) 67(2-3),
pp. 162-198.

[8] A. Martens, “On Compatibility of Web Services”, Petri
Net Newsletter, (2003) 65, pp. 12-20.
[9] W. Tan, F.Y. Rao, and Y.S. Fan, et al., “Compatibility
Analysis and Mediation-aided Composition for BPEL
Services”, Proc. of the 12th Intl. Conf. on Database Systems
for Advanced Applications (DASFAA 2007), pp. 1062-1065.
[10] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski, and A.P. Barros, “Workflow Patterns”,
Journal of Distributed and Parallel Databases (2003) 14(1),
pp. 5-51.
[11] W.M.P. van der Aalst, “The Application of Petri Nets to
Workflow Management”, Journal of Circuits, Systems and
Computers, (1998) 8(1), pp. 21-66.
[12] BPMN, OMG/Business Process Modeling Notation, in:
http://www.bpmn.org/.
[13] H.R. Motahari Nezhad, A. Martens, and F. Curbera, et
al., “Semi-Automated Adaptation of Service Interactions”,
Proc. of the 16th Intl. World Wide Web Conerence (WWW
2007), pp. 993-1002.
[14] SCA, Service Component Architecture specifications. In:
www.ibm.com/developerworks/library/speci_cation/ws-sca/.
[15] BABEL - Tools, in:
http://www.bpm.fit.qut.edu.au/projects/babel/tools/.
[16] S. Becker, A. Brogi, and I. Gorton, et al., “Towards an
Engineering Approach to Component Adaptation”, Proc. of
Architecting Systems with Trustworthy Components, LNCS,
Vol. 3938, Berlin, (2006), pp. 193-215.
[17] X. Xie, W. Zhang, “A Checking Mechanism of
Software Component Adaptation”, Proc. of the 5th Intl. Conf.
on Grid and Cooperative Computing, (GCC 2006), pp. 347-
354.
[18] D. Yellin, R. Strom, “Protocol Specifications and
Component Adaptors”, ACM Transactions on Programming
Languages and Systems 19 (1997), pp. 292-333.
[19] A. Bracciali, A. Brogi, and C. Canal, “A Formal
Approach to Component Adaptation”, Journal of Systems
and Software (2005) 74(1), pp. 45-54.
[20] M. Tivoli, and D. Garlan, “Adaptor Synthesis for
Protocol-Enhanced Component Based Architectures”, Proc.
of the 5th Working IEEE/IFIP Conf. on Software
Architecture, (WICSA 2005), pp. 276-277.
[21] J. Bhuta, C.A. Mattmann, and N. Medvidovic, et al., “A
Framework for the Assessment and Selection of Software
Components and Connectors in COTS-Based Architectures”,
Proc. of the 6th Working IEEE/IFIP Conf. on Software
Architecture, (WICSA 2007), pp. 44-53.

146

