
Research Article

A Pattern-Based Development Approach for Interaction Flow
Modeling Language

Roberto Rodriguez-Echeverria ,1 Juan C. Preciado ,1 Álvaro Rubio-Largo ,2

José M. Conejero ,1 and Álvaro E. Prieto 1

1Quercus Software Engineering Group, University of Extremadura, Cáceres 10003, Spain
2Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal

Correspondence should be addressed to Álvaro Rubio-Largo; arl@unex.es

Received 30 September 2018; Revised 24 January 2019; Accepted 17 March 2019; Published 14 April 2019

Academic Editor: Michele Risi

Copyright © 2019 Roberto Rodriguez-Echeverria et al. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Development and deployment technologies for data-intensive web applications have considerably evolved in the last years. Domain-
specific frameworks or model-driven web engineering approaches are examples of these technologies. -ey have made possible to
face implicit problems of these systems such as quick evolving business rules or severe time-to-market requirements. Both ap-
proaches propose the automation of redundant development tasks as the key factor for their success. -e implementation of CRUD
operations is a clear example of repetitive and recurrent task that may be automated. However, although web application frameworks
have provided mechanisms to automate the implementation of CRUD operations, model-driven web engineering approaches have
generally ignored them, so automation has not been properly faced yet. -is paper presents a pattern-based development approach
for the Interaction FlowModeling Language as a way to finally automate repetitive specification tasks. Our approach is illustrated by
defining and applying IFML patterns for CRUDoperations. Additionally, a supporting tool, which enables automation, is shown.-e
suitability of our approach and the utility of its tool have been evaluated by its application into several real projects developed by a
software company specialized in model-driven web application development. -e results obtained present evidence of a significant
productivity improvement obtained by the automation of the IFML specification of CRUD operations.

1. Introduction

Model-driven web engineering (MDWE) [1] approaches
provide methodologies and tools for the design and de-
velopment of most kinds of web applications. -ey address
different concerns by using separate models (navigation,
presentation, data, etc.) and are usually supported by model
compilers that automatically produce most of the applica-
tion’s web pages and logic code. -e benefits of using
MDWE are clear from different points of view such as team
productivity, software quality, or adaptation to ever evolving
technologies [2, 3].

Among the different MDWE approaches, it is worth
mentioning IFML (Interaction Flow Modeling Language)
[4], an OMG standard for the development of data-intensive
applications that has become a reference in industrial de-
velopments [5, 6]. Its main development tool, WebRatio,

allows the edition and validation of IFML models. But even
more important, it also provides code generators to auto-
matically derive the final application code for a particular
technological platform, reducing the time-to-market and the
development effort for these web applications.

Concerning the development effort, one of the most
redundant tasks in data-intensive web application devel-
opment is the implementation of CRUD operations. As
Martin Fowler argued, “disappointing as it is, many of the
use cases in an enterprise application are fairly boring
“CRUD” (create, read, update, delete) use cases on domain
objects” [7].

However, and surprisingly, while several develop-
ment frameworks such as Ruby on Rails [8], Django [9],
MonoRail [10], or Catalyst [11], just to cite a few, have
adopted solutions to optimize the implementation of CRUD
operations, no MDWE approach (i.e., IFML/WebRatio) has

Hindawi
Scientific Programming
Volume 2019, Article ID 7904353, 15 pages
https://doi.org/10.1155/2019/7904353

mailto:arl@unex.es
http://orcid.org/0000-0002-6545-0913
http://orcid.org/0000-0002-2582-9742
http://orcid.org/0000-0003-2999-4304
http://orcid.org/0000-0003-2640-679X
http://orcid.org/0000-0002-2312-4589
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7904353

proposed an automatic approach to perform these tasks yet,
even though there are works claiming a significant pro-
ductivity gain (more than 90%) when these tasks are au-
tomated by model-driven techniques [12, 13].

-is paper presents a pattern-based development ap-
proach for the Interaction Flow Modeling Language. A
collection of IFML patterns specifying a possible repre-
sentation of CRUD operations are proposed. Moreover, a
WebRatio plug-in, developed for the automatic instantiation
of IFML patterns, is presented as a supporting tool. Fur-
thermore, an industrial case study is presented to validate
our approach and to assess the utility of the supporting tool
developed. For such validation, we have relied on the col-
laboration with an industrial partner specialized in the
professional development of data-intensive web applications
using WebRatio.

-is work provides a relevant extension of previous
publications [14, 15]. -is work has been conceived from a
methodological point of view by concentrating on the in-
troduction of a pattern-based development approach for
IFML. Furthermore, we present the definition and instanti-
ation of IFML patterns for CRUD operations. Conversely,
previous works were mainly focused on the supporting tool
development and description. In [14], we focused on pre-
senting a first version of the tool and assessing its utility.
While in [15], a new version of the tool was published (code
available), featuring pattern customization, a renovated user
interface, and pattern-level editing operations.

-e rest of the paper is organized as follows: Section 2
presents the motivation and the related work, highlighting
both studies about optimization in MDWE and proposals
for automatic generation of CRUD operations. Section 3
provides a brief introduction to IFML. A web application is
presented in Section 4 as an illustrative example. Section 5
presents the core concepts of our approach: pattern defi-
nition and instantiation. -e tool for automating pattern
application is exposed in Section 6. Section 7 presents the
main results obtained after applying the approach in an
industrial case study for validation. Finally, Section 8
summarizes the main contributions of this work and gives
an overview of the future research lines.

2. Motivation and Related Works

-e optimization of development effort in the domain of
web engineering has been addressed by several previous
works. In [16], an assessment of the variation in productivity
due to the use of a MDWE approach instead of a code-
centric development process was introduced. -ey observed
an important productivity gain by using their model-driven
approach. In [17], the authors also compared the use of an
MDWE approach (OOH4RIA [18]) in web information
systems development to a code-centric one in the .NET
platform. In particular, they focused on maintainability
characteristics of these systems. -is work was an extension
of the work presented in [19], where authors performed a
similar study but focusing on WebML [20, 21], as MDWE
approach, and PHP, as code-centric alternative. In both
works, the authors observed that the utilization of an

MDWE approach highly improved maintainability com-
pared to a code-centric implementation process; for ex-
ample, OOH4RIA improved the actual efficiency of the
changeability tasks 317 times and also improved its effec-
tiveness by up to 27%. Nevertheless, although all these works
reveal a clear optimization of the development effort, they do
not specifically address CRUD operations, which is the main
objective of other works such as [12, 13].

In [12], the authors presented a model transformation
approach that automatically generates the code imple-
menting the CRUD operations for a web system taking as
input class diagrams based on a specific UML profile. In [16],
the authors also evaluated the productivity improvements
obtained by a model-driven approach that automatically
generates the CRUD operations source code for a web in-
formation system. -is approach also takes as input the
UML class diagrams for the system. By using the approach,
the authors observed an important development of time
reduction (up to 90.98%). -ey also surveyed developers
about the difficulties found compared to the manual coding
approach and obtained better results for the model-driven
one. However, in [12, 13], the proposed approaches, first,
lack of a particular language to specify the navigational
concern of web applications and, second, cannot be easily
applied in professional environments using MDWE tools, as
WebRatio.

Finally, the automatic generation of CRUD operations
has been the focus of different works at different levels of
abstraction: at code level (e.g., grocery CRUD for PHP [22])
or at framework level (Ruby on Rails [8], Django [9],
MonoRail [10], or Catalyst [11]). -ese frameworks provide
specific tools to automate the implementation of CRUD
operations, like software scaffolding toolkits, which allow
generating the structural parts of the applications expressed
in some simplistic specification language (normally XML or
YAML). Once the code is generated, it has to be manually
refined by developers, discarding the initial specifications.
As main limitation, such approaches force a specific tech-
nological platform and architecture. -ey posses the ad-
vantages of automatic code generation to speed-up the initial
stages of the development. However, these proposals are
defined at a lower level of abstraction than model-driven
approaches. Hence they cannot leverage on MD main
benefits, such as the independence of specific platforms and,
in general, the optimization of development efforts outlined
at the beginning of this section.

To the best of our knowledge, and although the ad-
vantages seem considerable, no MDWE approach has
addressed those issues by effectively automating redundant
and repetitive development tasks. -is is the rationale for
this work.

3. IFML Overview

IFML is a modeling language standardized by the OMG
(object management group) to represent an application
front-end independently of the implementation technol-
ogy or target devices. Basically, it defines a set of visual
elements to represent the user interaction and the front-end

2 Scientific Programming

behaviour. WebRatio has led the standardization of this
language, and WebML has been used as its foundation. -e
language was adopted as a standard by the OMG in March
2013 (changing its name to IFML). And in March 2014,
OMG Architecture Board formally adopted the specification
of IFML 1.0 [4]. Among other improvements, it is worth
noting that the binding with the business and content
models has been generalized to allow the usage of non-UML
models.

IFML defines the following core elements: View Con-
tainer, View Component, Binding, Parameter, Event, Ac-
tion, Navigation Flow, and Data Flow. Figure 1 presents
their visual concrete syntax.

-e main element is the View Container that specifies an
interface view and its composition. -is element may rep-
resent, for instance, a window in a desktop application or a
web page in a web application. View Container elements can
be nested or contain View Component elements to define
richer front-ends. Nested View Containers usually represent
panels or tabs in the interface, which could be shown si-
multaneously or mutually excluded ([XOR] tag). View
Components represent front-end elements to display con-
tent or data input. For example, a web form, a listing of
objects, or a detail view of a data object are all View
Components. Additionally, Data Binding elements link the
displayed content to its corresponding data entity of the
domain model, which is represented by a class diagram, an
entity relationship diagram, or an ontology. Moreover,
parameters allow the definition of filters over the displayed
content.

Event elements represent the dynamic front-end behav-
iour, e.g., the events triggered by the user or the system itself.
For example, a user may trigger an event when clicking a
menu item. -ey are commonly associated with View
Containers and Components. Furthermore, they may be
specialized to represent customized events, e.g., multiselection
in a list of elements or form submission.

Action elements represent the business logic from an
abstract point of view.-ey may reference behaviour models
(UML activity diagrams, UML sequence diagrams, BPMN
diagrams, etc.) describing the actual business logic to be
performed. In addition, Actions may trigger a different kind
of events, called ActionEvents, as the result of business logic
computation termination or the occurrence of exceptions.
Moreover, Actions may reside on the server or on the client
side.

Interaction Flow elements represent a front-end state
change. -ey can be of two different types: navigation flow
and data flow. -e former represents an input-output de-
pendency between two different IFML elements, specifying
their execution sequence, normally triggered by an event.
Additionally, they may transport data, as parameter binding
groups from one IFML element (source) to the other
(target). Data flow represents data passing between view
components or actions as a consequence of a previous user
interaction.

IFML was designed to be easily extended so that different
domains could define its own concepts as extensions of the
IFML core elements. -is is the case of WebRatio, which

provides a richer set of concepts by extending IFML ele-
ments. In this work, we have used the following WebRatio-
specific elements (Figure 2).

3.1. View Component Extensions. (1) Selectors, they fetch
data from a database according to a condition and may
output these data to other elements; and (2) Messages, they
display feedback information to the user.

3.2. Navigation Flow Extensions. (1) OK/KO flows, they
define the control flow based on the result of an operation
execution: success is represented by an OK flow, while fail is
depicted by a KO flow.

3.3. Action Extensions. (1) Create, (2) Modify, (3) Delete, (4)
Connect, (5) Disconnect, and (6) IsNotNull. -ey define
common data operations. Moreover, WebRatio provides an
additional element extension, called Action Definition, to
define operation chains. -ey define input and output ports
(squares in the figure) to pass data in and out.

4. Illustrative Example

In order to illustrate this approach, we use a previous case
study named the Conference Review System (CRS) (https://
www.eweb.unex.es/eweb/migraria). CRS is a web applica-
tion implemented by two different developer teams of our
software laboratory.-e first team implemented it using Java
Enteprise Edition Platform, while the second team built it by
means of WebRatio. -is system is based on the case study
proposed in the First International Workshop on Web-
Oriented Software Technology (http://users.dsic.upv.es/
∼west/iwwost01/).

Figure 3 presents four screenshots of this web applica-
tion for illustrative purposes: Figure 3(a) is showing a
submission (paper) list in the PC member area; Figure 3(b)
presents a web form to create a new submission (Paper); and
Figures 3(c) and 3(d) implement the master-detail view
pattern for submissions (papers) in the author area.

Additionally, Figure 4 displays a partial IFML specifi-
cation of the previous web pages. Using a MDWE approach
usually implies to work, at least, with two different models:
the interaction model (e.g., IFML) and the domain model
(e.g., entity relationship diagram). Figure 4(a) shows a
simplified IFML specification for the master-detail view
represented by web pages 3(c) (master) and 3(d) (detail).
Basically, this IFML model contains two different view
containers, one for each page. -e first one displays a list
containing all the submissions of a particular author by
means of a list view component bound to the Paper entity.
-e second one contains three view components, one for
each entity to display (1) a detailed view component dis-
playing the properties of the selected paper, bound to the
Paper entity; (2) a list view component listing the coauthors
of that paper, bound to the Author entity; and (3) another
list view component listing the available reviews for that
paper, bound to the Review entity. Moreover, a navigation

Scientific Programming 3

https://www.eweb.unex.es/eweb/migraria
https://www.eweb.unex.es/eweb/migraria
http://users.dsic.upv.es/~west/iwwost01/
http://users.dsic.upv.es/~west/iwwost01/

View Container <<View
Component>>

Event
Action

Navigation Flow

Data Flow
Parameter

Binding

Figure 1: IFML main elements.

<<Selector>>
Condition

<<Message>>
Feedback message

OK Flow Create Modify Delete

IsNotNull

Action
definition

Connect Disconnect
KO Flow

Figure 2: IFML extensions by WebRatio (partial).

(a) (b)

(c) (d)

Figure 3: Screenshots of the CRS example.

[L] Author paper list

<<List>>
Paper list

<<Details>>
Paper details

<<List>>
Coauthor list

<<List>>
Review list

<<DataBinding>> Paper <<DataBinding>> PaperId <<DataBinding>> Author <<DataBinding>> Review

Paper details

√

(a)

Subject
Paper

id: decimal
id: integer

title: string

abs: text

Track

id: decimal

name: string

discription: string
name: string

N N 1 N

(b)

Figure 4: IFML model specifying a master-detail view for papers submitted by an author (a), and an excerpt of the domain model for
example (b).

4 Scientific Programming

flow, triggered by the selected user event, transports the id of
the paper from one view container to the other, so target
view components can be properly populated with the cor-
responding data. Note that Author and Review entities are
not shown in Figure 4(b) for the sake of brevity. In addition,
an excerpt of the domain model for this system is presented
in Figure 4(b), which contains a simplified version of the
following entities.

4.1. Paper. It represents the submissions in the system and
holds one relationship with each of the other two entities.

4.2. Track. It represents the tracks of a conference and holds
a onetomany relationship with Paper.

4.3. Subject. It represents the submission topics of a con-
ference and holds a manytomany relationship with Paper.

5. IFML Pattern-Based Approach

As commonly stated, design patterns must represent well-
known solutions to recurrent problems. In this case, the
CRUD patterns presented in this work stem from the vast
experience of our industrial partner on the development of
web applications using WebRatio for more than 10 years.
Nevertheless, our approach fosters the definition and in-
stantiation of new patterns in order to maintain a richer
pattern repository for a given domain.

Pattern-based development comprises two main stages:
(1) pattern definition, when engineers specify in detail the
elements and structure of a new pattern and include it in the
company repository, and (2) pattern instantiation or ap-
plication, when developers select the right pattern from the
repository and instantiate it into the web application
specification. Following this, we present how patterns are
defined in our approach and also how they are applied in the
context of the illustrative example.

5.1. Pattern Definition. In order to define IFML patterns, we
follow the approach proposed for object-oriented design
patterns, which basically show relationships and interactions
between classes or objects, without specifying the final ap-
plication classes or objects that are involved. -erefore, IFML
patterns are structured IFML model snippets, sharing a
common purpose or mission. For example, a Create pattern
entails a collection of interconnected IFML elements repre-
senting the view containers, view components, events, in-
teraction flows, and actions involved in the input of new data
by users. Eventually, some of those IFML elements will be
parametrized when instantiated to define a final element in
the IFML model of the web application under development.

-e primary parameter for patterns considered in this
work is the target data entity (domain model), which rep-
resents the data model entity over which the data operation
will be performed. Moreover, this entity likely posses at-
tributes and relationships with other entities, which may act
as additional parameters in other elements of the pattern.

For example, they may be used for data displaying in view
containers, data filtering, and data binding specified in
navigation flows, among other things. Regarding the latter,
the target entity relationships may play a fundamental role in
the instantiation of a pattern because additional IFML el-
ements may be needed to represent them. As a result, the
pattern definition must enable the specification of optional
IFML elements, whose instantiation will be triggered by the
presence of a particular relationship.

In summary, a pattern is a structure of IFML elements,
which will be instantiated by the target data entity. Such
entity attributes, and relationships will act as additional
parameters for the pattern.

5.1.1. IFML CRUD Patterns. In this section, CRUD patterns
are specified for IFML following the coding style guides of
our industrial partner. Note that they are specified from a
generic point of view to keep them independent of the app
scenario.

Figure 5 presents the Create pattern. In this case, its main
elements are: (1) the Create page as the main view container
of the pattern; (2) a view component defining a web form for
users to input data, which will contain a field for every entity
attribute (instantiation of parameters); (3) an event triggered
by users to execute the proper action chain by means of a
navigation flow, which contains a data binding group
passing the form fields to the action chain; (4) a Create
action chain, whose main element is a Create action
eventually serializing data into the database; (5) OK and KO
navigation flows outgoing from the create action to the (6)
message view component, which displays feedback in-
formation to users regarding the result of the performed data
operation. -e sequence of execution in IFML is basically
defined by the navigation flows (create, OK and KO flows in
the figure). When the user triggers the creation event, all
the data operations are executed following the sequence
defined by the navigation flows until reaching the message
view component, which represents the end of the in-
teraction flow for this pattern. So far, we have just pre-
sented the mandatory elements of the Create pattern;
however, there are also optional elements that need to be
dynamically considered when data entity relationships are
taken into account. -ose optional elements are high-
lighted in red in Figure 5 to be easily identifiable. For each
relationship, no matter its cardinality, a selector compo-
nent and its corresponding selection field inside the form
are needed. -ey represent the data population of a se-
lection field according to the entity related to the target data
entity by means of the selected relationship. For example, a
data entity representing the values of available shipping
countries for an online store. Furthermore, for each
manytomany relationship, first, a multiselection field is
included in the form instead of a selection field, and second,
a Connect action in the business logic must be executed to
properly serialize it into the database.

Figure 6 shows the Update pattern, which presents a
structure pretty similar to the previous pattern. -erefore,
we are just commenting the differences here. Basically, as

Scientific Programming 5

mandatory IFML elements, it includes the following ad-
ditional elements: (1) a list view component, which will list
all the objects available of the target data entity and will act
as the starting point of the data operation; (2) an update
event, triggered by the user when clicking on a particular
object of the list; (3) a navigation flow propagating
the object id to a (4) selector view component, which will
fetch the data of the corresponding object from the da-
tabase; and (5) a transport flow passing the object data to
the web form (view component) to properly populate all
the related fields. Additionally, the object id is passed
within the data binding group of the navigation flow
between the form and the Update action chain. Further-
more, optional elements are specified as before when re-
lationships are considered.

Figure 7(a) presents the Read pattern. For the sake of
brevity and simplicity, we just introduce a simple case of
this pattern implementing a master-detail view, without
optional elements associated to the presence of relation-
ships mainly because there are no important differences
between both versions of the pattern. -e main elements of
this pattern are (1) the Read page as the main view con-
tainer of the pattern; (2) a view component (master) de-
fining a list with all the objects available of the target data
entity and acting as the starting point of the read operation;
and (3) a navigation flow propagating the object id to a (4)

view component (detail), which will fetch the data of the
corresponding object from the database to display them to
the user.

Finally, Figure 7(b) presents the Delete pattern. Again, in
this case, there is no need to consider relationships, so no
optional elements are specified. Note that the deletion of
related objects is commonly defined at data level by means of
foreign keys and cascade deletion. -e main elements of this
pattern are (1) the Delete page as the main view container of
the pattern; (2) a view component listing all the objects
available of the target data entity and acting as the starting
point of the deletion; (3) a navigation flow propagating the
object id to a (4) Delete action, which will eventually execute
the deletion statement in the database; and (5) OK and KO
flows outgoing from the Delete action to the (6) message
view component, which displays feedback information to
users regarding the result of the data operation.

5.2. Pattern Instantiation. In our approach, the process of
instantiating a pattern entails the following steps: (1)
selecting the particular pattern from the repository; (2)
identifying the target data entity from the domain model
(the data operation will be defined over this entity); (3)
indicating the entity attributes to include in the pattern; and
finally (5) selecting the entity relationships to consider.

[L] Update

<<List>>
Object list

<<Selector>>
Object

<<Selector>>
ManytoMany

<<Selector>>
Relation

<<Message>>
Feedback message

Form
fields

Update

Reconnect

ok

ok

ko

ko

<<Form>>
Object

Entity fields

(Multi) selection F

√

Figure 6: Update pattern.

[L] Create

<<Selector>>
Relation

<<Form>>
New object

Form
fields Create

ok

ok

ko

ko

Connect

Entity fields

(Multi) selection F

<<Message>>
Feedback message

Figure 5: Create pattern.

6 Scientific Programming

Different relationship cardinality may involve some
differences among the instantiations of a particular pattern
by enabling the instantiation of its optional elements. As a
result, we need to consider the following instantiation al-
ternatives for every IFML pattern defined: (1) no relation-
ship, just the target data entity; (2) a onetomany relationship,
the target data entity holds a 1-N relationship with another
data entity and it must be considered when instantiating the
pattern; and (3) a manytomany relationship, the target data
entity holds aN-N relationship with another data entity, and
it must be considered when instantiating the pattern. In a
complex scenario, pattern instantiations have to deal with
target data entities holding multiple relationships that must
be included.

According to the previous relationship choices, Table 1
shows the instantiation alternatives (cases) for the CRUD
patterns considered in this work. An additional pattern
(AllInOne), representing an optimal specification of all the
CRUD operations on a particular data entity, is included in
the table but not explained in this work for the sake of
brevity.

5.2.1. Pattern Instantiation Example. For illustrative pur-
poses, we have decided to exemplify the instantiation of the
Create pattern over the data entity Paper from the Con-
ference Review System. We model the web page shown in
Figure 3(b), which represents precisely this data operation. A
new submission (Paper) requires to consider data re-
lationships with Track and Subject entities because each new
submission must indicate a target track and, at least, one
conference topic. As a result, this example is considering two
relationships with different cardinality (onetomany and
manytomany) when instantiating the pattern. So two dif-
ferent instantiation cases are exemplified at the same time:
C-1N and C-nM, according to Table 1.

After pattern instantiation, the final IFML snippet,
shown in Figure 8, is automatically included into the
model of the application. Concretely, the figure shows all
the mandatory elements, which are properly instantiated
with the corresponding data entity. -ose elements are (1)
the Create Paper page as main view container; (2) the form
view component containing fields for each Paper attribute
(title and abstract); (3) the submit event and its navigation
flow associated with the form fields as a data binding
group; (4) the Create action, taking as input the output of

the form and instantiated with the data entity Paper; and
finally (5) the OK/KO flows departing from the action and
ending into the message view component. Note that the
view containers and components accurately represent the
HTML elements identifiable in the web form of
Figure 3(b). Now we focus on the optional elements of the
pattern. Two selector view components are instantiated
inside the page, one for each relationship considered:
paperTrack and paperSubject. -ose selectors are bound to
their corresponding data entity and provide the form with
the necessary data to populate the additional selection
fields with the tracks available and the subjects considered.
Finally, an additional action, connect, needs to be in-
stantiated to properly store the subjects selected in the web
form for the new paper. -e presence of this new action
makes necessary to deviate the OK flow departing from the
create action because the successful execution sequence
must include that connect action. Furthermore, a data flow
is defined between the input port of the action chain and
the new action to transport the data from the web form to
the connect action.

Table 2 shows the number of IFML elements, grouped
by type, necessary for the instantiation of this CRUD
pattern in this particular case (just C-nM). An IFML
modeler needs to use 15 different IFML elements to specify
a create operation over a data entity and the involved
interactions. Furthermore, IFML elements have been
classified into three main groups: flows, units, and bind-
ings. -ese groups have been defined based on the expected
effort made by a developer to specify elements of a concrete
group assisted by using the WebRatio tool. In other words,
the elements that require a similar effort in their specifi-
cation are classified into the same group. -ey will also be
considered in the validation of the approach. It should be
noticed that OKLink and KOLink flows are never con-
sidered as binding holders because they just imply a single
message passing.

According to the previous classification, Table 3 sum-
marizes the number of IFML elements needed for the in-
stantiation of a Create pattern over a target entity with a
manytomany relationship.

5.2.2. IFML Elements Generated for Each Instantiation.
-e other IFML patterns for CRUD operations can be in-
stantiated following a similar process. Although concrete

[L] Read

<<List>>
Object list

<<Details>>
Object

<<DataBinding>> Entity

<<DataBinding>> Entity

√

(a)

[L] Delete

Object
id Delete

ko ok

<<Message>>
Feedback message

<<List>>
Object list

√

(b)

Figure 7: (a) Read pattern and (b) Delete pattern.

Scientific Programming 7

details of their application are not discussed in this work,
Table 4 presents a summary of the total number of IFML
elements generated for the application of each CRUD
pattern in every instantiation case considered. As a main
conclusion, a developer has to use, connect, and configure
more than 18 IFML elements in average to specify a CRUD
operation over a data entity of the domain model. Note that
Read and Delete patterns are not considering relationships
herein, so their numbers are the same in the three different
instantiation cases contemplated. -ose values correspond
to the no-relation case.

6. Tool Support

Along this work, we have developed two different versions of
the tool supporting the pattern-based IFML specification of
CRUD operations. -is tool is named AutoCRUD, and its
last version was published in [15], including its source code,
user, and developer manuals. In this section, for the sake of
completeness, we briefly illustrate the main use case of our
tool.

AutoCRUDmainly plays the role of a scaffolding tool for
WebRatio by providing engineers with a pattern repository
of the most frequently used IFML snippets for their projects
(pattern definition). -is tool is open to extension; hence, its
pattern repository may be conveniently customized by every
development team to specifically tailor it to its own ne-
cessities and styles.

Once IFML patterns are defined and stored into the
repository, our pattern-based development approach may
be easily applied by instantiating patterns on concrete
target data entities, further parametrized by their attributes
and relationships. Figure 9 illustrates both the instantiation
of a particular pattern (left side) and the generation of its
final IFML specification in the project under development
(right side).

Regarding the instantiation step, a particular wizard
dialogue (left side) provides engineers with all the available
patterns to apply (select pattern drop-down list), together
with all the data entities of the domain model (select entity
drop-down list). Moreover, relationship and attribute lists
are dynamically updated according to the selected data
entity. -erefore, engineers have in a single place all the
data needed to perform a proper pattern instantiation in a
matter of seconds. Additionally, this dialogue has a button
to access the registry functionality, which maintains a
detailed account of all the IFML elements created by the
tool.

Regarding the IFML generation step, Figure 9 (right
side) presents the generation of the IFML specification for
the pattern defining all the CRUD operations for a data
entity at the same time (AllInOne). In this case, the dialogue
in the middle allows engineers to select between two dif-
ferent operation modes: (1) step-by-step mode, which in-
teractively generates IFML elements one by one (useful for
educational purposes), or (2) fast forward mode, which
generates the whole final IFML snippet in just one step
(useful for production).

7. Industrial Validation

With the intention of assessing the utility of our approach,
this section shows the results of its application to different
projects developed by our industrial partner, Homeria
SL [23]. -e main goal of this evaluation is to analyze
the impact of including our pattern-based approach
and its supporting tool into the company development
process in terms of their potential reduction in production
costs.

Homeria is an official partner of WebRatio (http://
www.webratio.com/site/content/es/partners) with a large
team of developers certified in web application

[L] Create Paper

<<Selector>>
paper Track

<<Selector>>
paperSubject <<Message>>

Feedback message
<<DataBinding>> Subject

<<Form>>
Create Paper

<<Create>>

Connect

<<DB>> Paper

ok

ok

ko

ko

<<DB>> paperSubject

Form
fields

Field: Title

Field: Abstract

Sel. Field: Track

MultiSel. F.: Subject

<<DataBinding>> Track

Figure 8: Create pattern instantiation with two relationships: a onetomany (Track) and a manytomany (Subject).

Table 1: CRUD patterns’ instantiation cases.

(C)reate (R)ead (U)pdate (D)elete AllInOne

No relation C-no R-no U-no D-no AllInOne-no
Onetomany C-1N R-1N U-1N D-1N AllInOne-1N
Manytomany C-nM R-nM U-nM D-nM AllInOne-nM

8 Scientific Programming

http://www.webratio.com/site/content/es/partners
http://www.webratio.com/site/content/es/partners

T
a

b
l
e
2:

IF
M
L
el
em

en
ts

fo
r
th
e
C
-n
M

ca
se
.

F
lo
w
s

U
n
it
s

B
in
d
in
gs

T
o
ta
l

N
av
ig
at
io
n

fl
o
w

D
at
a

fl
o
w

O
K
L
in
k

K
O
L
in
k

P
ag
e

In
d
ex

D
at
a

F
o
rm

Se
le
ct
o
r

M
es
sa
ge

C
o
n
te
n
t

C
re
at
e

M
o
d
if
y

D
el
et
e

C
o
n
n
ec
t

D
is
co
n
n
ec
t

Is
N
o
tN

u
ll

B
in
d
in
g

C
-

n
M

1
2

2
2

1
1

1
1

1
1

3
15

Scientific Programming 9

construction with WebRatio, IFML, and data-driven
methodologies. In the last 9 years, this company, which
relies on an important client portfolio, has carried out
more than 100 projects.

In this analysis, we have considered the development
time as the production cost unit. -erefore, shorter devel-
opment times mean lower production costs. In order to
obtain relevant base time measurements, the next procedure
has been followed:

(i) A group of developers was selected for the analysis.
Concretely, 10 members were chosen from those
with higher experience in WebRatio development.
Hence, all the developers had a similar experience in
developing data-intensive web applications with
such technology.

(ii) -at group of developers was responsible for cre-
ating all the CRUD operations in the projects they
were working at the moment of performing this
study. -ey specified a variety of CRUD operations
over different data entities in dissimilar situations.
-erefore, all the possibilities considered in our
approach were covered.

(iii) We measured the time spent on defining the whole
collection of IFML elements needed to specify each
CRUD operation. For this purpose, the time taken
by each developer to specify each operation was
recorded in a shared timesheet. Finally, the average
time for each operation was calculated.

As aforementioned, regarding similar development
times, IFML elements were classified into three main groups:
flows, units, and bindings.-e average development time for
the different groups were obtained, which are shown in
Table 5. -ey constitute a reference for the measurements
performed during the study. -is table also presents the
standard deviation in each case. Note that insignificant
deviations are obtained for the manual measurements,
mainly due to the homogeneous expertise of the selected
developers. -ese values are not significant compared to the
average time assessed. Note that, although these values could
vary in terms of developers’ expertise, this study could be
replicated in other companies just by adapting the devel-
opment base time values according to the expertise of a
particular team (just repeating the measurement for each
CRUD operation).

According to the values shown in Table 5, Table 6
presents the costs involved in the manual specification of
each CRUD operation definition case (considering data
entity relationships). In order to be able to compare manual
to tool-aided development times, Table 6 also shows how
long (on average) it takes a developer to specify each case for
the CRUD operations using AutoCRUD. Note that we are
not considering here the time spent on the automatic

generation of the final code because it is not significant
enough.

Once the base time measurements were obtained, we
analyzed 6 different projects previously developed by the
company, whose source models were available. For this
purpose, a quantitative analysis was carried out where the
IFML elements needed for CRUD operations’ specification
were identified.

As an example of the results, Table 7 shows for each
project: (1) its size; (2) the amount of CRUD operations,
organized by cases; (3) the total number of CRUD operations;
(4) the total number of data entities in the data model; (5) the
total number of IFML elements used to specify all the CRUD
operations (classified as flows, units, and bindings); and (6)
the total time (in hours) dedicated to the project (based on
timesheets used by the developers). Based on the number of
CRUD cases (instantiation cases according to data entity
relationships, Table 1) in each project (row (2)) and the time
spent on specifying each case (shown in Table 6), the total
time needed for manually implementing these operations
has been calculated for each project (row (7)). Based on rows
(6) and (7), the percentage of time dedicated to the CRUD
operations for each project is shown in row (8). Likewise,
considering the time spent on specifying each CRUD op-
eration with our tool (last column in Table 6), the time taken
to define all the CRUD operations with AutoCRUD for each
project has been calculated (row (9)). Finally, the table shows
the difference (row (10)) between both costs (manually) vs.
tool aided (showing the benefits in terms of hours and
percentage).

As shown in Table 7, the development time reduction
obtained by using our tool is above 95% of the total time
dedicated to CRUD operations in all the projects. -ese
results show a clear evidence of the significant productivity
improvement provided by our approach and tool presented
here since they practically eliminate the time dedicated to
CRUD operations specification from the projects. Moreover,
Table 7 shows also some evidence about a possible corre-
lation between the benefit obtained and the project size. In
other words, the larger the project, the more significant the
productivity improvement obtained. As an example, a
99.88% time reduction in CRUD specification for the largest
project was achieved.

Additionally, these results should also be considered
regarding the percentage of time dedicated to CRUD
specification in each project. Observe that, in the projects
analyzed, these percentages range from 6.14% to 9.69% of the
total development time (row (8) in Table 7). -is means that,
for instance, our tool-aided approach is able to achieve a 10%
reduction in the total development time for the largest
project. Moreover, such result becomes even more relevant
considering the total development time involves many other
activities, such as user interface design or scripting imple-
mentation. Furthermore, according developers’ timesheets,
the percentage of time dedicated to IFML specification in
each project is presented in Figure 10 (horizontal axis). It
also shows the percentage of the IFML specification time
dedicated to CRUD operations (vertical axis) so that the
reduction in the time dedicated to IFML in each project has

Table 3: Aggregated number of IFML elements for the C-nM case.

Flows Units Bindings

C-nM 7 5 3

10 Scientific Programming

T
a

b
l
e
4:

N
u
m
b
er

o
f
IF
M
L
el
em

en
ts

fo
r
al
l
p
o
ss
ib
le

in
st
an

ti
at
io
n
s.

N
av
ig
at
io
n

fl
o
w

D
at
a

fl
o
w

O
K
L
in
k

K
O
L
in
k

P
ag
e

In
d
ex

D
at
a

F
o
rm

Se
le
ct
o
r

M
es
sa
ge

C
o
n
te
n
t

C
re
at
e

M
o
d
if
y

D
el
et
e

C
o
n
n
ec
t

D
is
co
n
n
ec
t

Is
N
o
tN

u
ll

B
in
d
in
g

T
o
ta
l

C
-n
o

1
0

1
1

1
0

0
1

0
1

0
1

0
0

0
0

0
1

8

R
-n
o

1
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
1

5

U
-n
o

2
1

1
1

1
1

0
1

1
1

0
0

1
0

0
0

0
3

1
4

D
-n
o

1
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

0
1

8

A
ll
-

n
o

5
3

4
4

5
1

1
1

1
1

1
2

0
1

0
0

1
6

3
7

C
-1
N

1
1

1
1

1
0

0
1

1
1

0
1

0
0

0
0

0
2

1
1

R
-1
N

1
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
1

5

U
-1
N

2
2

1
1

1
1

0
1

1
1

0
0

1
0

0
0

0
4

1
8

D
-1
N

1
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

0
1

8

A
ll
-

1N
7

4
4

4
5

1
1

1
2

1
1

2
0

1
0

0
1

9
4
4

C
-

n
M

1
2

2
2

1
0

0
1

1
1

0
1

0
0

1
0

0
3

1
7

R
-

n
M

1
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
1

5

U
-

n
M

2
5

3
3

1
1

0
1

3
1

0
0

1
0

1
1

0
7

3
0

D
-

n
M

1
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

0
1

8

A
ll
-

n
M

7
8

6
6

5
1

1
1

2
1

1
2

0
1

1
1

1
13

5
8

Scientific Programming 11

been calculated. -is reduction varies from 14.99% (P2) to
28.15% (P6). As a result, considering that the time dedicated
to CRUD specification is almost completely eliminated, a
19.75% (mean) reduction in the time dedicated to IFML
specification is eventually achieved in these projects. Finally,
as Figure 10 clearly illustrates, there seem to be no

correlation between the size of the project and the final time
reduction achieved.

8. Conclusions

-is paper has presented a pattern-based approach to reduce
web application development effort when using IFML as
specification language. -e definition and instantiation of
IFML patterns have been introduced with detail and ex-
emplified by specifying common CRUD operations as IFML
patterns. -ose definitions have been developed in collab-
oration with an industrial partner to properly derive them
from experience. However, they are not mandatory.
-erefore, every company can define them according to its
own experience and style. Additionally, our approach fosters
the definition and instantiation of new patterns in order to
maintain a richer pattern repository for a given domain.
Furthermore, we have developed a supporting tool to
simplify and automate pattern instantiation and operation.
-e tool has been developed as a WebRatio plug-in by
explicit requirement of our industrial partner so that it can
be easily integrated into its development process. Finally, we
presented the results of applying our approach (and tool) to
real life projects developed by our industrial partner. As
main benefits, we have observed the following: (1) a clear
reduction of the time spent in repetitive tasks (specification
of CRUD operations); (2) a significant decrement of errors
due to redundant IFML specifications; and (3) a growing
consistency across projects regarding CRUD modeling,
which makes applications more regular and thus more
usable.

As future work, we plan to follow several research
lines. We want to define IFML patterns to automate other
repetitive modeling activities in IFML, probably focusing
on specific domains, e.g., mobile applications. We are
also working on the definition of some heuristics to guide
an algorithm on the automatic generation of the most
likely useful CRUD operations for every data entity

Figure 9: Tool screenshot.

Table 5: Developer time average (secs) per group of IFML
elements.

Group Flows Units Bindings

Dev. time (secs) 24 112 66
Standard deviation (S) 1.55 4.22 2.83

Table 6: Development time (secs) for the specification of every
CRUD case: manually and AutoCRUD supported.

Flows Units Bindings
Manual dev.
time (secs)

AutoCRUD
dev. time (secs)

C-no 3 4 1 586 1
R-no 1 3 1 426 1
U-no 5 6 3 990 1
D-no 3 4 1 586 1
All-no 16 19 6 2908 2
Total-no 28 36 12 5496 6

C-1N 4 5 2 788 2
R-1N 1 3 1 426 1
U-1N 6 7 4 426 2
D-1N 3 4 1 1192 1
All-1N 19 16 9 2842 3
Total-1N 33 35 17 5674 9

C-nM 7 5 3 926 3
R-nM 1 3 1 426 1
U-nM 13 10 7 1894 3
D-nM 3 4 1 586 1
All-nM 27 18 13 3522 5
Total-nM 51 40 25 7354 13

12 Scientific Programming

Table 7: Results of the 6 projects under evaluation.

Projects

P1 P2 P3 P4 P5 P6

(1) Size
Big Medium Medium Medium Small Small

(2) Different CRUD cases
C-no 115 8 5 3 2 2
R-no 107 9 4 3 1 1
U-no 116 7 5 4 2 1
D-no 112 7 5 5 1 1
All-no 116 9 5 3 2 2
C-1N 97 5 4 4 2 1
R-1N 94 7 4 3 2 1
U-1N 92 4 4 3 2 1
D-1N 95 6 3 3 1 1
All-1N 97 10 4 4 2 2
C-nM 26 6 3 4 3 3
R-nM 42 8 2 2 2 2
U-nM 42 9 6 4 3 2
D-nM 24 6 3 3 1 1
All-nM 83 7 6 5 4 2

(3) Total CRUD operations
1258 108 63 63 38 33

(4) Entities in the domain model
193 84 36 27 14 10

(5) Total IFML units
Total flows 11259 874 512 404 224 177
Total units 11285 848 533 391 222 168
Total bindings 5387 414 250 194 108 109

(6) Project total time
Hours 5380 650 350 230 125 80

(7) CRUD operation cost (manually)
Secs 1876777 143848 77388 65812 34258 28382
Hours 521.33 39.96 21.50 18.28 9.52 7.88

(8) Time dedicated to CRUD
% 9.69 6.15 6.14 7.95 7.61 9.85

(9) CRUD operations cost (tool aided)
Secs 2225 1370 1339 1330 1317 1307
Hours 0.62 0.38 0.37 0.37 0.37 0.36

(10) Time reduction in CRUD definition (manual-tool aided)
Hours 520.71 39.58 21.12 17.91 9.15 7.52
% 99.88 99.05 98.27 97.98 96.16 95.39

T
im

e
(%

)
C

R
U

D
 s

p
ec

if
ic

at
io

n
 i

n
 I

F
M

L

30

25

P6

P5
P4

P3 P2

P1
20

15

10

35 40

Time (%) for IFML specification

5045

Figure 10: Time (%) for CRUD specification in IFML by project size.

Scientific Programming 13

given a domain model and a profile of the final appli-
cation. In parallel, we plan to extend this algorithmic
approach to automatically discover and register patterns
from preexisting IFML models to improve their
maintenance.

Data Availability

All the data used in the validation section are attached to the
article as a supplementary file in order to allow researchers to
verify the results, replicate the analysis, and conduct sec-
ondary analyses.

Conflicts of Interest

All the authors confirm that the mentioned received funding
did not lead to any conflicts of interest regarding the
publication of this manuscript.

Acknowledgments

-e authors wish to acknowledge the collaborative funding
support from (i) POCTEP 4IE project (0045-4IE-4-P) and
(ii) Consejeŕıa de Economı́a e Infraestructuras/Junta de
Extremadura (Spain)-European Regional Development
Fund (ERDF) projects (GR18112 and IB16055). -e authors
also wish to acknowledge the valuable contribution of
Homeria as the industrial partner who participated in the
development of the tool and its validation.

Supplementary Materials

Herewith this document, a spreadsheet with all the data
needed to perform our validation has been included.
Concretely, this file contains 4 different sheets, which are
next described using their names as identifiers. Sheet 1
contains the data to populate Tables 5 and 6 of this paper.
Such data are organized into three different tables: Table 1
shows the time spent by each developer on manually
specifying each IFML element (summarized in Table 5 of the
paper). Table 2 groups four different tables presenting the
number of entities involved in the specification of each
CRUD realization case, considering data entity relation-
ships. -is information is used in Table 6 of the paper.
Table 3 just shows the mean times of manual development,
which we used to calculate Table 2 (last column) of that
sheet. Sheet 2 contains two tables necessary to create part of
Table 7 in the paper. Concretely, Table 1 provides the values
shown in its row 2, while Table 2 contains the base mea-
surements to compute the values shown in its row 9 (CRUD
operation costs (tool aided)). Sheet 3 contains data about
CRUD operation cost for each project considered, useful for
Table 7 in the paper. Table 1 shows manual specification cost
(time) whilst Table 2 presents tool-aided cost (rows 7 and 9,
respectively). Sheet 4 also contains data for Table 7 and
Figure 10 in the paper. In particular, Table 1 presents the
values needed for rows 6 to 10, while Table 2 shows the data
to calculate the percentage of time dedicated to CRUD
specification with respect to both the total project time and

the time dedicated to IFML specification for each project
(row 8). (Supplementary Materials)

References

[1] N. Koch, S. Meliá-Beigbeder, N. Moreno-Vergara et al.,
“Model-driven web engineering,” Upgrade-Novática Jour-
nal, Council of European Professional Informatics Societies
(CEPIS), vol. 9, no. 2, pp. 40–45, 2008, in English and
Spanish.

[2] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Web
Engineering: Modelling and Implementing Web Applica-
tions, Springer Science & Business Media, Berlin, Germany,
2007.

[3] P. Vuorimaa, M. Laine, E. Litvinova, and D. Shestakov,
“Leveraging declarative languages in web application
development,” World Wide Web, vol. 19, no. 4, pp. 519–543,
2016.

[4] M. Brambilla and P. Fraternali, Interaction Flow Modeling
Language: Model–Driven UI Engineering of Web and Mobile
Apps with IFML, Elsevier Science, Amsterdam, Netherlands,
2014.

[5] S. Casteleyn, I. Garrigós, and J.-N. Mazón, “Ten years of rich
internet applications: a systematic mapping study, and be-
yond,” ACM Transactions on the Web (TWEB), vol. 8, no. 3,
pp. 1–46, 2014.

[6] G. Toffetti, S. Comai, J. C. Preciado, and M. Linaje, “State-of-
the art and trends in the systematic development of rich
internet applications,” Journal of Web Engineering, vol. 10,
pp. 70–86, 2011.

[7] M. Fowler, Patterns of Enterprise Application Architecture,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[8] Ruby on Rails, April 2019, Available at: https://rubyonrails.
org/.

[9] Djangoproject.com, -e web framework for perfectionists
with deadline|django, April 2019, Available at: https://www.
djangoproject.com/.

[10] Castleproject.org, Monorail|castle project, April 2019, Available
at: https://www.castleproject.org/projects/monorail/.

[11] funkreich.de, T Catalyst|perl MVC web application frame-
work, Catalyst framework.org, April 2019, Available at: http://
www.catalystframework.org/.

[12] S. Mbarki and M. Erramdani, “Toward automatic generation
of mvc2 web applications,” INFOCOMP, vol. 7, pp. 84–91,
2008.

[13] P. E. Papotti, A. F. Do Prado, W. L. de Souza, C. E. Cirilo,
and L. F. Pires, “A quantitative analysis of model-driven
code generation through software experimentation,” in
Proceedings of the International Conference on Advanced
Information Systems Engineering, pp. 321–337, Valencia,
Spain, June 2013.

[14] R. Rodriguez-Echeverria, J. M. Conejero, J. C. Preciado, and
F. Sanchez-Figueroa, “AutoCRUD-automating IFML spec-
ification of CRUD operations,” in Proceedings of the 12th
International Conference on Web Information Systems and
Technologies, vol. 1, pp. 307–314, Rome, Italy, December
2016.

[15] R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra,
J. M. Conejero, and F. Sanchez-Figueroa, “AutoCRUD: au-
tomatic generation of CRUD specifications in interaction flow
modelling language,” Science of Computer Programming,
vol. 168, pp. 165–168, 2018.

14 Scientific Programming

http://downloads.hindawi.com/journals/sp/2019/7904353.f1.xlsx
https://rubyonrails.org/
https://rubyonrails.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.castleproject.org/projects/monorail/
http://www.catalystframework.org/
http://www.catalystframework.org/

[16] A. Fatolahi and S. S. Some, “Assessing a model-driven web-
application engineering approach,” Journal of Software En-
gineering and Applications, vol. 7, no. 5, pp. 360–370, 2014.

[17] Y.Mart́ınez, C. Cachero, and S.Meliá, “Empirical study on the
maintainability of web applications: model-driven engineer-
ing vs code-centric,” Empirical Software Engineering, vol. 19,
no. 6, pp. 1887–1920, 2014.

[18] G. Jaime, P. Sandy, D. Oscar et al., “A model-driven devel-
opment for GWT-based rich internet applications with
OOH4RIA,” in Proceedings of the Eighth International Con-
ference on Web Engineering, vol. 13–23, New York, NY, USA,
July 2008.

[19] Y. Mart́ınez, C. Cachero, M. Matera, S. Abrahao, and S. Luján,
“Impact of MDE approaches on the maintainability of web
applications: an experimental evaluation,” in Proceedings of
the International Conference on Conceptual Modeling,
vol. 233–246, Brussels, Belgium, November 2011.

[20] S. Ceri, A. Bongio, P. Fraternali, M. Brambilla, S. Comai, and
M. Matera, “Designing data-intensive web applications,” in
Morgan Kaufmann Series in Data Management Systems,
Morgan Kaufmann Publishers, Burlington, MA, USA, 2003.

[21] S. Ceri, P. Fraternali, and A. Bongio, “Webmodeling language
(WebML): a Modeling Language for designing web sites,”
Computer Networks, vol. 33, no. 1–6, pp. 137–157, 2000.

[22] Grocerycrud.com, Grocery CRUD|auto PHP codeigniter
CRUD, April 2019, Available at: https://www.grocerycrud.
com.

[23] Homeria.com, HOMERIA -open solutions, April 2019,
Available at: https://www.homeria.com.

Scientific Programming 15

https://www.grocerycrud.com
https://www.grocerycrud.com
https://www.homeria.com

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable

Computing

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scientific
Programming

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

