Pattern Decomposition Algorithm for Data Mining
Frequent Patterns

Qinghua Zou, Wedey Chu, David Johnson, Henry Chiu
Computer Science Department
Universty of Cdifornia— Los Angeles

Abstract

Efficent dgorithms to mine frequent patterns are crucid to many tasks in data
mining. Since the Apriori adgorithm was proposed in 1994, there have been severd
methods proposed to improve its performance. However, most till adopt its candidate
st generation-and-test gpproach. In addition, many methods do not generate al frequent
patterns, making them inadequate to derive association rules. We propose a pattern
decompostion (PD) agorithm that can sgnificantly reduce the Sze of the dataset on each
pass making it more efficient to mine dl frequent petterns in a large dataset. The
proposed agorithm avoids the costlly process of candidate set generation and saves time
by reducing dataset. Our empirical evaudion shows that the agorithm outperforms
Apriori by one order of magnitude and is faster than FP-tree.

1. Introduction

A fundamentd problem in data mining is the process of finding frequent petterns in
large datasets. This problem is further exasperated when deding with datasets which
contain highly frequent, yet often meaningful peterns (eg., free text). While many
different dgorithms have been proposed, the fact remains that finding frequent patterns
endbles essentid data mining tasks such as discovering associations relationships,
correlations between data as well as finding sequentid patterns [8].

Two main classes of agorithms have been proposed. The first class uses a process of
candidate generation and testing to find frequent patterns. The second class of adgorithms
transform the origina data into a representation better suited for frequent pattern mining.

1.1 Generate and Test Algorithms

Severd different agorithms have been proposed to find dl frequent patterns in a
daasst [1, 5, 6, 7, 8. The Apriori dgorithm [1] accomplishes this by employing a
bottomrup search. The dgorithm generates candidate sets to limit pattern counting to
only those patterns which can possbly meet the minimum support requirement. At each
pass, the dgorithm deermines which candidates ae frequent by counting their
occurrence. Due to combinatory explosion, this leads to poor performance when frequent
pattern Szes are large.

To avoid this problem, some dgorithms output only maxima frequent patterns [2, 3,
4]. Pincer-Search [4] uses a bottomrup search aong with top-down pruning to find
maximd frequent patterns. Max-Miner [2] uses a heurigic bottom-up search to identify
frequent sets as early as posshle. Even though performance improvements may be
Ubdantid, maxima frequent sets have limited use in associdion rule mining. A

p.1/1

complete set of rules cannot be extracted without support information of the subsats of
those maximd frequent sets.

Algorithm in [13] partition the initid dataset into severd patitions and then uses
candidate set generate-and-test approach to caculate loca frequent sets for each partition.
The globd frequent sets can be generated from counting for dl loca frequent sets in the
whole dataset.

Other techniques have used sampling methods to select random subsets of a dataset to
cdculate candidate sets and then test those sets to identify frequent patterns [14, 15].
Given tha the method uses sampling techniques, it is possble that some frequent patterns
ae not incuded in the candidate sets, thus the dgorithm may not find dl frequent
patterns. In generd, the accuracy of this approach is highly dependant on the data
characteristic and the specific sampling technique used.

1.2 Data Transform

Mogt previous dgorithms have used the candidate set generate-and-test gpproach and
have mined patterns directly from an origind dataset. Researchers are now exploring
trandforming the origind data into data representations optimized for data mining. FP-
tree-based mining [8] is a such an approach which firs builds a compressed data
representation from a dataset and then dl mining tasks are peformed on the FP-tree
rather than on the dataset. It has performance improvements over Apriori Since it uses
FP-tree and does not need to generate candidate sets. However, FP-tree-based mining
uses a complicated data structure and performance gains are sendtive to the support
threshold.

1.3 Pattern Decomposition [16]

This paper introduces an innovative agorithm which uses pattern decompostion (PD)
to mine frequent paiterns. Pettern decompogition provides three significant
improvements. Firs, by decomposing transactions into short itemsets, it is possble to
combine regular patterns together, thus dgnificantly reducing the dataset in each pass
Second, the algorithm does not need to generate candidate sets since the reduced dataset
does not contain any infrequent patterns found before. Finaly, using a reduced dataset
greatly savesthe time for counting pattern occurrence.

Pettern decomposition trandforms the dataset, Smilar to the FP-tree
dgorithm. However, unlike the FP-tree dgorithm, pattern decompostion
does not pre-cdculate the new data representation, instead the dataset s
transformed only when the changes may shorten subsequent passes (eg.,
decrease the number of data items to count).

2. The Method

Usng cadidate set generate-and-test gpproach, it is time consuming to count pattern
occurrence since origind datasets are often of huge number of transactions. The intuition
of our approach is that the huge dataset need to be dramaticadly reduced in order to give
better peformance. Our dgorithm is dhrinking the dataset itsdf when new infrequent
itemsets are discovered. More specificaly, the PD dgorithm finds frequent sets by

p.2/2

employing a bottom-up search. For a given transaction dataset D;, the first pass of the
agorithm have two phrases. Firg, the adgorithm counts for item occurrences to determine
the frequent 1-itemsats L; and the infrequent 1-itemsets ~L;. Second, PD-decompose
agorithm in Section 2.2 is used to decompose D; to get D, such that D, contains no items
in ~L;. Similarly, in a subsequent pass, say pass k, condsts of two phases. Firdt, frequent
itemsets Ly and ~Lx are generated by counting for al k-itemsets in Dy. Next, Dys1 iS
generated by decomposing Dy using ~L such that Dy.1 contains no itemsatsin ~Ly.

2.1 Definitions

The terms item and transaction keep the same meaning as used in [1] where items are
literds and a transaction is a set of literds in one basket. Let us define other terms as
follows

1) A pattern p is a par of a set of itemsets and its occurrence, denoted by <.IS

p.Occ>; in p.IS anitemset can not be a subset of another. For example,
p1=<{abdef},3>, p1.1S={abdef}, p1.0cc=3. For short, we write p;=abdef:3.
p2=<{abcd,cde} ,3>, p2.1S={abcd,cde}, p2.0cc=3. Smilaly, p,=abcd,cde:3.

A pattern p isa smple pattern if p.IS contains only one itemset. A pattern p isa

composite pattern if p.IS contans a least 2 itemsats. The dze of p is the

maxima sze of its itemsats, denoted by p.Len. In the example, p; is a Imple

pattern, p;.Len=5; p, isacomposite pattern, p..Len=4.

2) A dataset D isaset of patterns.
D={p: p isapattern}
For example, D; ={abc:1, abd:2, abel, ace:l, ade 1, bce:l, bdel, cde:l}.
Note that the dataset we redefined here includes pattern occurrence. The reason is
that in our agorithm, we only need to consder a specific pattern once which
saves computation for repeat patterns.

3) Thesupport of anitemst | inadataset D is
up(lID) = ? p.Occ,if p? Dand (? R? p.ISand 1? R).
For above D1, Sup(abd|D;)=2, Sup(ab|D1)=4.

The PD agorithm uses a dataset Dy on the K" pass to determine frequent itemsets Ly

and infrequent itemsets ~Lx. For every pattern p? Dy, PD needs to decomposeitsp.IS.

4) The decomposition of an itemset | with Ly and ~Ly is to find dl maximd subsets
Sof | which does not contain any infrequent itemsat in ~Ly. In other words, al k-
itemsat of those maxima subsets are frequent in Ly. The decomposition of a set

of itemsets R is the union of the decompostion of each itemset of R and then
removing al non-maximal itemsets that are subsets of another itemset.

5) ltemst S is sad k-item independent with itemst R if the number of ther
common items is less than k. For example, {1,2,3} and {2,3,4} has a common set
of {2,3}, so they are 3-item independent, but not 2-item independent.

Pattern decompostion rule: Given Dy, Ly, ~Lk, for a pattern p? Dy, if the

decomposition of p.ISis R={S,$,...Sn}, and D= (Dk{p})? {(R p.Occ)}, then for any
frequent itemsst S Sup(§Dw)=Sup(SD’k). It folows from the definition of

p.3/3

decompogtion. The rule means if we replace p by its decompostion result (R, p.Occ),
then Dx and D’y have the same support for any frequent itemset. This process reduces the

paitern length in D.
After decomposgtion, a long pattern becomes a composite pattern with severa smaller

itemsats. In order to merge identicd itemsets in different patterns, PD need to separate
composite patterns.

Pattern separation rule: For acomposte pattern p? Dy, p.1S={$,,....Sn}, if S isk-

item independent with S,...Sn ad D= (DAp})? {{S}.p.0co)? {{S.....Sn},
p.Occ)}, then for every k or longer itemset S SUp(SDk) = SUP(SD’w). This means if we

replace p by the two patterns {({Si},p.Occ)} and {{S.....Sn},p.Occ)}, then Dx and D'
have the same support for k or longer itemsets. This increases the opportunity of merging
identical patterns.

There are two reasons to decompose a pettern if it contains infrequent itemsets: 1) to
use the infrequent itemsets ~Ly to reduce long patterns to short patterns which contain
only frequent k-item sets, thus eiminating the need to generate candidates snce PD in
k+ 1" smply counts for dl k+1 itemsets in patterns of Dy; 2) to shorten a long pattern to
increese the chance of merging identica patterns, and thus reducing the size of the
dataset.

. . . D D
Let usillustrate how a pattern in the dataset is T abcdef Lot fabcde:
decomposed on a specific pass: 2abcg:

B RN

1) Suppose we ae given a paten p= 3iabdh: o
4:bcdek: 1k 4:bcde:
?

abcdef:1? D1 where a,b,c,de? Ly and 2 ~L1. 5 5 ¢ 142
To decompose p with ~L;, we smply delete f L, ~L,
from p, leaving us with a new pattern abcde:1 Ly L1 IS Occi IS Occ
. IS OccilS Occ
inD,. @4 {n 1 E:(t:)}} 431 {ae} 1

2) Suppose apattern p= abcde:1? D, and ae? ~L,. {b} 5 {9} 1 fad) 2
Since ae cannot occur in a future frequent set, {ct 4 i} 1 {bc} 4
we decompose p= abcde:1 t0 a composite Egi g {k} 1 {bd} 3
pattern g= abcd,bcde:1 by removing a and e {be} 2
respectively from p. Ds Eggi g

3) Suppose a pattern p= abcdbede:1 ?Dg and 5 200w P99 1 fae} 2
acd? ~Lz. Since acd ? abcd, abed is 3abd 1 7 D4
decomposed into abc, abd, bed. Ther sizes 4 bcde: 1-—libcde:r 2
ae less than 4, 0 they are not qudified for 5
Ds. ltemset bede does not contain acd, so it :‘83 Oce ;8"3 - :‘é‘ Occg;SLg -
remainsthe same and isincluded in Dy. fabc} 3 facd} 1 {bede} 2

Now let us illustrate the complete process for {abd} 2

mining frequent patterns. In Figure 1, we show how Egggi g

PD is used to find &l frequent petterns in a daaset. {pde) 2 Ds=F
Suppose the origind data set is D; and minimd fcde} 2
support is 2. We first count the support of dl itemsin
D; to determine L; and ~L;. In this case, frequent 1-

Figure 1. Pattern Decomposition Example

p.4/4

itemsat Ly={ab,c,d,e} and infrequent Titemset L;={f,g,hk}. Then we decompose each
pattern in D; udng ~L; to get D,. In the second pass, we generate and count al 2item
sets contained in D, to determine L, and ~ Ly, as shown in the figure. Then we decompose
each pattern in D, to get Ds. This continues until we determine Ds from D4, which is the

empty st and we terminate. The find result is the union of al frequent sets L, through
L4.

The example illugtrates three ways to reduce the dataset as denoted by 2, 2, ? in
Figure 1.

In 2, when patterns after decomposition yied the same itemset, we combine them by
summing their occurrence. Here, abcg and abc reduce to abc. Since both their
occurrences are 1, the fina pattern isabc: 2 in D».

In 2, we remove paiterns if ther Szes are smdler than the required sze of the next
dataset. Here, patterns abc and abd with szes of 3 cannot bein D4 and are deleted.

In 2, when a pat of a given pattern has the same itemset with another pattern after
decomposition, we combine them by summing their occurrence. Here, bcde is the itemsat
of patern 4 and pat of pattern 1's itemset after decomposition, so the fina pattern is
bcde:2in Dg.

Notably, the dgorithm firg counts for Lx and ~Lx and then decomposes patterns in
esch pass It differs fundamentally from previous agorithms in that it avoids candidete
set generation and reduces the dataset on each pass. Counting time is thus aso reduced.

2.2. The PD-decompose Algorithm

There could be many ways to decompose a pattern. As shown above, to decompose a

pattern p with ~L;, we smply remove the items in ~L; from p. For a p? D, suppose q is
its frequent 2-item sets, maxima clique techniques discussed in [4, 9, 10] can be used to
cdculae the decompostion result from g.. Since the number of items in p is smdl and
possble maxima cliques are few, those dgorithms are very efficient. For k>2, no reaults
are avalable to efficiently decompose a pattern. Thus a novel dgorithm PD-decompose iS
proposed for this task.

The PD-decompose dgorithm is shown in Fgure

PD-decompose(itemset s, ~qi) 2. Here, s is an itemset; ~qk is the infrequent k-
;{ 'f(kt:i)ramveitemsim I itemsets of s. In other words, ~g are k-item subsets
3 dsef b of sthat are in ~Lx. When k=1, PD-decompose Smply
4: build ordered frequency treer; removes the infrequent items in ~g; from itemset s.
5 Sbs= Quick-split(r); When k=2, we firg build up a frequency tree from
6: t=mapping Sbsto itemsets; the itemsats in ~qx. Then in step 5, we cdl quick-
. r}etumt it to perform a calculation on the tree. The result

' is dored in Ss. In step 6, we map Sbs back to
Figure 2. PD-decompose itemssts We give deals in the following
paragraphs.

p.5/5

One smple way to decompose the itemset s by an infrequent k-item sat t, as explained
in [4], is to replace shby k itemsets, each obtained by removing a Sngle item in t from s.
For example, for s = abcdefgh and t = aef, we decompose s by removing a, e, f
repectively to obtain {bcdefgh, abcdfgh, abcdegh}. We cdl this method smple-split.
When the infrequent sets are large, Smple-olit is not efficent. The main objective of
PD-decompose iS t0 decompose an itemset s by its infrequent k itemsats. It congsts mainly
of two pats 1) building the frequency tree 2) plitting itemsets usng the tree via a
method called Quick-split and returning the resulting itemsets.

A frequency tree is a tree whose nodes are items. In a e B b
the tree, items a each levd ae ordered by the _3
frequency of their occurrence a the levd. The most —f—:b | ¢
frequent item at each level is placed first. A frequency 5 o
tree can be condtructed for a given set of infrequent k- g —h
item sats, ~gk. More specificdly, the frequency tree for —h b
a %t t can be built recursvely as follow: 1) identifying — 9 :C
the mogt frequent item x in t, let t'={i-{x}: i ?t, x?i} —h—/—»>b —ﬁ

I
and t?={i: 1 ?t, x? i} 2) building a tree r with x as root 4

item and trees from t' as x’s subtrees 3) building trees Figure 3. A frequency tree example
fromt?as x’ s shling.

Example Suppose we are given a pattern p? D3 where p.IS = abcdefgh. In the third
pass, we find infrequent 3itemsets {aef, aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace,
acf, acg, ach, ade, adf, adg, adh}. First, we build up a frequency tree, as shown in Fgure
3. The fird levd condds of only a's. The second level consdts of items e, f, g, and h,
with e occurring the mogt & itslevel. Thethird leve is condructed in Smilar fashion.

After we built a frequency tree, we then use the Quick-split technique to caculate the
maxima frequent ssts. The main purpose of Quick-Split is to find dl possble maxima
frequent sets of an itemset given its infrequent k-itemset ~gx. In other words, Quick-salit
is used to find the decomposing results for an itemset.

The Quick-split agorithm is given in Figure 4. To speed up cdculaion, an itemset is
represented by a bitset with 0 and 1 for specifying the absence or presence of an item a a
corresponding position respectively. Step 1 in the Figure 4 is the exit condition. In steps
2 to 3, the subtrees of r are caculated and stored in an array of sub results (subres). The
new bitset of ~x fewBS(~x)) returns a bitset of which dl bits are 1s except that the bit
corresponding to x is 0. Step 4 initializes Quick-split(Treer) // returns an array of BitSet
result to an al 1's bitset. The results of I's | 1. i isleaf) retum @ :
subtree are logicaly AND together to yield | o 410 1 subsdo
the final results in steps 5 to 6. Step 7 , o .
removes non-maxima itemsats and thus i’ re;f? r:?e\);],gsg?'Ck'Sp“t(x)? newBs ()
yields the maximal ones 5: foral x? r.subs do

Quick-split performs a cdculation on a | 6 result=result & subres[x];
frequency tree and returns an aray of | 7:removeb? result, b.size=k
bitssts, which represent a group of | 8 returnresult
decomposed itemsets. Sdlitting is

Figure 4. Quick-split algorithm

p.6/6

accomplished by caculating bitset results in a bottom-up fashion in the tree. In the above
example, we have 8 items a, b, ..., h corresponding to postions 0-7 in a 8hit bitset. So
p.IS= abcdefgh = {11111111}; abcd = {11110000} ; bcdefgh = {01111111}. The Size of
the bitsat is the number of items in p.IS which is usudly much smdler than the totd item

dzein the datast.

Table 1 shows the Quick-split splitting operations for the frequency treein Figure 3.

Table 1: Quick-split example

Step | Reaults Remarks
1 a-—e:. ~b~c~d~f~g~h From Figure 3, the leaf trees are
+—%:. ~b~c~d~g~h translated into a list of ~Itens.
+—g: ~b~c~d~h The neani ng of “a-e: ~b~c~d~f~g~h”
+-h: ~b~c~d is that if a set contains a and e,
then it nmay not contain b, c, d,
f, g, and h.
2 a-—e @ Tota! # of ite_msis 8; the re_sults
requires # of itenp=4. So maxi mal
+—+: 0 ~Itemis 8-4=4.
::g ~g~g~g h Thus we replace first two with @.
3 a: ~]? (;) The “a—e: @” contains two cases:
- (2) “a: e@” and “a: ~e”. The first case is
g~b~c~d~h deleted since it contains “@”.
~E b-c~d Other branches can be computed in the
same way.
4 a: ~e~f (3) Fromstep 3, (1)&(2) yields (3).
~ (4)
g~b~c~d~h
~h
h~b~c~d
5 a: ~e~f~g (5) Fromstep 4, (3)&4) yields (5).
~e~f g~b~c~d~h
~h
h~b~c~d
6 a: ~e~f~g (6) From step 5, “~e~fg~b~c~d~h” has 6
~h (7) ~Item and thus is renoved.
h~b~c~d
7 a: ~e~f~g~h (8) From step 6, (6)&(7) yields (8).
~e~f ~gh~b~c~d
8 a. ~e~f~g~h (8) “~e~f ~gh~b~c~d” is renoved.
9 T ~a (9) (8) contains two cases: “~a” and
a~e~f ~g~h (10) “a~e~f ~g~h".
10 bcdef gh From step 9,(9) =« bcdefgh; (10)«
abcd abcd.

As we can see from Table 1, for the itemsat abcdefgh and infrequent 3-itemsets {aef,
aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, acf, acg, ach, ade, adf, adg, adh},
Quick_split returns the possible maximd frequent sets {abcd, becdefgh} .

p.7/7

2.3. The PD Algorithm

In this section we will show the PD dgorithm tha uses PD-decompose to find dl
frequent patternsin a transaction dataset T.

As shown in Figure 5, PD is the top-leve function that accepts a transaction dataset
as its input and returns the union of &l frequent sets as the result. At the k™ pass, steps 3-
6 count for every k itemsat of each pattern in Dy and then determine the frequent and
infrequent sets, Lk and ~Ly; step 7 uses Dy, Lk and ~L to rebuild Dy:1. PD stops when Dy
isempty.

The PD-rebuild shown in Figure 6 is to determine Dy+1 by Dy, Lk and ~Lx. For each
pattern p in Dy, step 3 computes its gk and ~qx; step 4 calls PD-decompose dgorithm to
decompose p by ~Qx. Note that gk is not used here for decomposing p. As we will discuss
in section 6, in some Studions, usng gk to decompose p will be more efficient than using
~Ok- We leave this for future research. In steps 5 to 9, we use pattern separation rule to
separate p. In steps 7 to 9, PD-rebuild merges the patterns separated from p with their
identica ones via a hash table ht. Since PD follows the pattern decompostion rule to
decompose paterns and the pattern separation rule for merging identical patterns that
yield same support, the answers generated by PD are correct.

PD (transaction-set T) PD-rebuild (Dy, Ly, ~Lk)
1Dy ={<t, 1>[t? T}: k=L L Dy+1 = F; ht =an empty hash table;
2: while (D¢? F) do begin 2: fordl p? Dy do begin
3 fordl p? Dydo // counting 3: /1gk ~gk can be taken from previous counting
4 forall k-itemset s? p.ISdo Q={S? pISn L} ~q={t? plSn ~Li}
5: Sup(sPx) += p.Occ; 4: u=PD-decompose(p.IS, ~qy);
6: decidelyand ~Ly; 5 v={s?u] s is k-item independent in u}
/1build Dy 1 6. add <u-v, p.Occ> to Dy.q;
7. Dy+1= PD—rebuiId(Dk, Ly, "Lk); 7: fordl s? vdo
8 k++; 8 if sin ht then ht.s.Occ+= p.Occ;
9: end 9: eseput<sp.Occ> to ht;
10:Answer =? Ly 10: end
11: Dy+1 =Dy+1 ? {p? ht};
Figure 5. PD Figure 6. PD-rebuild

3. Performance Study

We compare PD with Apriori and FP-tree since the former is widely cited and the laiter
clamsthe best performancein the literature.

Our experiments were performed on a 330MHz Pentium PC machine with 128 MB main
memory, running on Microsoft Windows 2000. PD dgorithms were written in Java
JDK1.22. The test data sets were generated in the same fashion as the IBM Quest
project [1]. We used two data sets T10.14.D100K denoted as D1, and T25.110.D100K as
D2. In the datasets, the number of digtinct items N was set to 1000. The corruption level
for a seed large itemsat was fixed, obtained from a norma didribution with mean 0.5 and
variance 0.1. In the fird dataset, dl items in a seed large itemset were corruptible while
in the latter datasets haf were corruptible. In the dataset D1, the average transaction size
[T| ard average maxima potentidly frequent itemset sze || ae st to 10 and 4,

p.8/8

respectively, while the number of transactions |D| in the dataset is sat to 100K. In the
dataset D2, [T|=25, |I|=10, [D|=100K.

For the comparison of PD with FP-tree, snce PD was written in Java and FP-tree in C++
and we don't have time to implement PD in C++, their results are adjused by a
coefficient about 10.

3.1 Comparison of PD with Apriori

Figures 7 and 8 display our tet results for datasets T10.4.D100K and
T25.110.D100K respectively. Figure 7 shows the execution times for different minimum
support. We can see that PD is about 30 times faster than Apriori with minimal support
at 2% and about 10 times faster than Apriori at 0.25%.

T10.14.D100K T25.110.D100K
1000 10000
E ---¢---Apriori
—=—PFD *
- " .-)
100 ¢ ‘_o"' 1000
z o 2
= =

10 g 100

1 - 1 1 1 1 10
2 15 1 075 05 033 025 2 15 1 075 05 033 025
Minimum Support (%) Minimum Support (%)
Figure 7. Execution times comparison between Apriori and PD vs. minimum support

Figure 8 shows execution times for each pass given minsup=0.25%. Initidly,
execution times of Apriori and PD are comparable. In later passes, when frequent sets
become numerous and longer, PD outperforms Apriori. Apriori counts candidates support
in the origina dataset with 100K transactions with average sze [T|; while PD counts in a
reduced dataset with only about 5K patterns with average size much less than [T

T10.14.D100K T25.110.D100K
70 2500
60
2000
50
@ 40 @1500
[} ()
S
E 30 = 1000
20
500
10
0 0
2nd 3rd 4th 5th 6th 7th 8th Oth B SR SRR SRS SR SR S
Passes (minsup=0.25%) Passes (minsup=0.25%)

Figure 8. Execution times comparison between Apriori and PD vs. passes

p.9/9

To test the scdability with the number of transactions, experiments on dataset D2 are
used. The support threshold is set to 0.75%. The results are presented in Figure 9. The
execution time for Apriori linearly T25.110
increases with the number of transactions
from 50K to 250K. However, the
execution time for PD does not necessarily
increase as the number of transactions
increases. This is due to the fact that as
number of transaction [D| incresses, the
possihility of patterns after decompaosition
can combine with others increases.
Suppose two datasets D' and D? have 0
different numbers of transactions with 50K 100K 150K 200K 250K
D'|>>|D?; it is possble dfter Number of transactions (minsup=0.75%)
decompogtion to have |Di'|<|D1?|, i.e. a
much bigger dataset after decomposition
may become gmdler. This means
increasing the number of transactions may decrease the time for PD to mine al frequent
patterns. Thus PD has a better scaability in terms of number of transactions than that of
Apriori.

10

[ee]

D

Relative Time
S

N

Figure9. Scalability comparison between
Apriori and PD

3.2 Comparison of PD with FP-tree

FP-tree dgorithm is an efficient agorithm recently proposed in [8]. The nove ideais
to build up frequent pattern trees to store data and mine frequent patterns using the trees.
We note that: (1). FP-treesis subgtantialy smaler than the origina data and saves costly
database scans; (2) It avoids candidate set generation and testing. For comparison, we
ran the PD and FP-tree dgorithms on the same machine using the same dataset asinput
and generated the same output. For each test point, we determined four vaues. () trp the
running time for FP-tree (in C++); (b) tpp the running time for PD (in Java); (C) tac the
running time for Apriori (in C++); (d) tay the running time for Apriori (in Java). To
cdculate the language time difference between C++ and Java, we adjusted tpp to tpp*
(tacltas), where tac/ta; = 10. According to our experiments, both FP tree and PD were
faster than Apriori, especidly when the minimum support was relatively low. However,
PD ran two times faster than FP-tree.

As shown in Figure 10, both FP-tree and PD have good performance on D1. But FP-
tree takes subgtantialy more time when minimum support in the range from 0.5% to 2%.
When minsup less than 0.5%, the number of frequent patterns increased quickly and thus
the execution times are comparable. For D2, FP-tree takes nine times longer than PD at
minsup=2% and the gap reduces to 2 times fagter at minsup=0.25%

In Figure 11, we compared the scdability of PD with FP-tree on the dataset D2 with
minimum support=0.75%. When the number of transactions ranged from 60k-80Kk, both

p.10/10

methods took dmost congtant time (most likely due to overhead). When we scaled up to
200K, FP-tree required more than 1884M of virtud memory and could not run on our
meachine while PD finished the computation within 64M man memory.

D1=T10.14.D100K, D2= T25.1210.D100K T25.110

150
500

o Q
£ £ 400
© 100 2
= =
8 T 300
() ped
= ke
e} Q
g © 200
5 3
S O 100

0 0

2 15 1 075 05 033 025 60 'io b 1OSI 120t. 14}3 160 200
Minimum Support (%) umber of transactions (K)
Figure 10. Performance comparison between Figure 11. Scalability comparison between
FP-tree and PD for selective minimum support FP-tree and PD

The main cods in FP-tree-based mining involve recursvely building conditiond FP-
trees. The number of conditiond FP-trees can be enormous and run out of virtud
memory space on our machine when we run 200K transaction dataset. Further, the
complicated data structure of FP-tree requires large number of pointers. In order to build
the conditiond FP-tree efficiently, each node needs three pointers. Suppose the item,
counter, and pointer is encoded in 4 bytes, the storage overhead of pointers in a node will
be 60% of the data storage.

PD, like the FP-tree-based agorithm, uses a compressed data representation to find
the frequent patterns. However, PD uses a very smple and flat data structures and
ggnificantly shrinks the dataset in each pass. PD keeps only the current dataset Dy and a
hash table for pattern decomposition. Thus it requires much less sorage space than FP-
tree and thus yields better scdability.

4. Further Discussions

4.1 Comparison with Pincer-search

The idea of usng a newly discovered infrequent set to split its supersats was discussed in
Pincer-search [4]. It was reported to have performance improvements up to severd
orders of magnitude compared to the best agorithms at that time. Pincer-search uses
both the bottomrup and top-down searches. Its primary search direction is ill bottom+
up, but arestricted search is dso conducted in the top-down direction.

However, there are severd differences between PD and Rincer-search. Firdst, the
quick-galit dgorithm is more efficient than the MFCS-gen used by pincer-search [4]
which we cdl gample-glit in section 3. Intuitively in quick-split, usng a frequency tree
saves much computation on shared items than using smple split. Second, we use quick-
glit to decompose a pattern of the dataset while Pincer-search uses smple-split to split

p.11/11

candidate sets. In addition, it discovers only maxima frequent sets which do not provide
enough information for generating association rules.

4.2 Further Improvements

Fird, we note that quick-split is not the only technique we can use for pattern
decomposition. For an itemset s, suppose gk is its frequent k-item sets and ~q is its
infrequent k-item sats, if | gk | << | ~0k |, one can follow that it would be more efficient to
caculate decompogtion results from g rather than from ~q.

Second, PD is flexible in that it can be extended in various ways or applied with other
agorithms. We can extend PD to output maxima frequent patterns whenever the support
of apattern in the dataset satisfies the given requirement of minimal support.

p.12/12

5. An Application

The motivation of our work originaes from the problem of finding multi-word
combinations in a group of medica report documents, where sentences can be viewed as
transactions and words can be viewed as items. The problem is to find al multi-word
combinations that occur at least in 2 sentences of a document.

As a dmple example, Figure 12(f) shows a sample medicd report.

Its topic is

“Aspirin greatly underused in people with heart disesess’. After stlemming and removing
stop words, there are 135 digtinct words. The 34 frequent words are shown in Figure

12(a) in decreasng order of frequency.

combinations are listed in Figures 12(b)-(e).
Aspirin greatly underused in people with heart disease

DALLAS(AP) -- Too few heart patients are taking aspirin despite
itswidely known ability to prevent heart attacks, according to a
study released Monday.

The study, published in the American Heart Association's journal
Circulation, found that only 26 percent of patientswho had hean
disease and could have benefited from aspirin took the pain
reliever.

"This suggests that there's a substantial number of patients who are
at higher risk of more problems because they're not taking aspirin,”
said Dr. Randall Stafford, an internist at Harvard's Massachusetts
General Hospital who led the study. "Aswe all know, thisisavery
inexpensive medication -- very affordable.”

The regular use of aspirin has been shown to reduce the risk of
blood clots that can block an artery and trigger a heart attack.
Experts say aspirin can also reduce the risk of a stroke and angina,
or severe chest pain.

Because regular aspirin use can cause some side effects -- axha
stomach ulcers, internal bleeding and allergic reactions —doctors
are too often reluctant to prescribe it for heart patients, Stafford
sad.

"There's abias in medicine toward treatment and within that bias
we tend to underutilize preventative services -- even if they've
been clearly proven," said Marty Sullivan, a professor of
cardiology at Duke University in Durham, N.C.

Stafford's findings were based on 1996 data from 10,942 doctor
visits by people with heart disease. The study may underestimate
aspirin use; some doctors may not have reported instances in
which they recommended patients take over-the-counter
medications, he said.

He called the data "a wake-up call" to doctors who focus too much
on acute medical problems and ignore general prevention.

(f) A sample medical report

Frequent 2-word, 3-word, 4-word, 5-word

heart, aspirin, patient, doct, study, they, risk, prevent, take, diseas,
stafford, use, too, may, thi, we, attack, ther, intern, bia, gener, peopl,
problem, call, know, not, pain, some, reduc, medicat, very, becaus, data,

regul

(a) Frequent 1-word table (total 34)

aspirin patient, heart aspirin, aspirin use, aspirin take, aspirin risk,
aspirin study, patient take, patient study, heart diseas, heart patient,
diseas peopl, prevent too, they not, they ther, they take, doct data, doct
some, doct too, doct use, doct stafford, aspirin regul, aspirin becaus,
aspirin reduc, aspirin some, aspirin pain, aspirin not, aspirin attack,
aspirin too, aspirin diseas, use regul, aspirin they, aspirin doct, stafford
intern, take not, risk reduc, study take, patient becaus, patient some,
patient not, patient too, patient use, patient they, patient doct, heart
regul, heart peopl, heart attack, heart too, heart use, heart stafford, use
some, heart study, heart doct

(b) Frequent 2-word table (total 52)

aspirin patient take, aspirin patient study, heart aspirin patient, aspirin
doct some, aspirin patient some, heart aspirin use, doct use some, aspirin
take not, aspirin they not, aspirin patient not, aspirin they take, aspirir
study take, patient doct use, heart aspirin diseas, heart use regul, heart
aspirin regul, aspirin patient too, heart aspirin attack, aspirin risk reduc,
patient take not, patient they not, heart patient too, heart aspirin too,
patient use some, patient doct some, patient they take, patient study take,
aspirin doct use, heart doct stafford, aspirin patient use, heart diseas
peopl, aspirin use regul, aspirin patient they, heart patient study, heart
aspirin study, aspirin patient becaus, aspirin patient doct, aspirin use
some, they take not

(c) Frequent 3-word table (total 39)

heart aspirin use regul, aspirin they take not, aspirin patient take not.
patient doct use some, aspirin patient study take, patient they take not,
aspirin patient use some, aspirin doct use some, aspirin patient they not,
aspirin patient they take, aspirin patient doct some, heart aspirin patient
too, aspirin patient doct use, heart aspirin patient study

(d) Freguent 4-word table (total 14)
aspirin patient they take not, aspirin patient doct use some

(e) Frequent 5-word table (total 2)

Figure 12. An example of multi-word combination

Multi-word combinations ae effective for document indexing and summarization.
The work in [12,11] shows that multi-word combinations can index documents more

accuratdly than usng sngle-word

indexing terms.

Multi-word combinations can

p.13/13

delineate the concepts or content of a doman specific document collection more
precisely than single word. For example, from the frequent Tword table in Figure 12(a),
we may infer that ‘heart”, “aspirin”, and "patient” are the most important concepts in the
text dnce they occur more often then others. For the frequent 2-word table in Figure
12(b), we see a large number of 2-word combinaions with “aspirin’, i.e “aspirin
patient”, “heart aspirin®, *“aspirin use”, “aspirin take’, eic. This infers that the
document emphasizes “aspirin” and “aspirin related” topics more than any other words.

6. Conclusion

In this paper, we propose a pattern decomposition algorithm to find frequent patterns
for large datasets. The PD dgorithm sgnificantly shrinks the dataset in each pass. It
avoids the cogtly candidate set generation procedure and greetly saves counting time by
usng reduced datasets. Our experiments show that the PD agorithm has an order of
megnitude improvement over the Apriori agorithm on sandard test data and is fader
than FP-tree. Since PD reduces the dataset, mining time does not necessary increase as
the number of transactions increases. Experimental results reved that PD has better
scaability than both Apriori and FP-tree. We ae usng PD to mine multi-word
combinations from medical report documents. Without an efficient technique, we
otherwise need to limit the length of sentences as wdl as the sze of multi-word
combinations.

Acknowledgment

The authors wish to thank Professor Jawe Han, Mr. Jan Pie and Mr. Runying Mao of
Simon Fraser Universty for providing their FP-tree software for the performance study.

References

[1] R. Agrawa and R. Srikant. Fast agorithms for mining association rules. In VLDB'%4,
pp. 487-499.

[2] R J Bayado. Efficiently mining long paiterns from databases. In SIGMOD'98, pp.
85-93.

[3] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 1997. New Algorithms for
Fast Discovery of Association Rules. In Proc. of the Third Int'l Conf. on Knowledge
Discovery in Databases and Data Mining, pp. 283-286.

[4] Lin, D.-1 and Kedem, Z. M. 1998. Pincer-Search: A New Algorithm for Discovering
the Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending
DatabaseTechnology.

[5] Park, J. S.; Chen, M.-S;; and Yu, P. S. 1996. An Effective Hash Basaed Algorithm for
Mining Association Rules. In Proc. of the 1995 ACM-SIGMOD Conf. on
Management of Data, pp. 175-186.

[6] Brin, S; Motwani, R.; Ullman, J; and Tsur, S. 1997. Dynamic ltemset Counting and
Implication Rules for Market Basket Data In Proc. of the 1997 ACM-SIGMOD
Conf. On Management of Data, 255-264.

p.14/14

[7] J Pe, J Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets, Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining and
Knowledge Discovery (DMKD'00), Ddlas, TX, May 2000.

[8] J Han, J Pe, and Y. Yin. Mining Frequent Patterns without Candidate Generation,
Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),
Ddlas, TX, May 2000.

[9] Bomze, |. M., Budinich, M., Parddos, P. M., and Pdlillo, M. The maximum dique
problem, Handbook of Combinatoriad Optimization (Supplement Volume A), in D.-Z.
Du and P. M. Pardalos (eds.). Kluwer Academic Publishers, Boston, MA, 1999.

[10] C. Bron and J Kerbosch. Finding al cligues of an undirected graph. In
Communications of the ACM, 16(9):575-577, Sept. 1973.

[11] Johnson D.B., Chu W.W., Dioniso JD.N., Tara RK., Kangarloo H., Creating and
Indexing Teaching Files from Free-text Patient Reports. Proc. AMIA Symp 1999; pp.
814-818.

[12] Johnson D.B., Chu W.W., Using nword combinations for doman specific
information retrieval, Proceedings of the Second Internationd Conference on
Information Fuson — FUSION’ 99, San Jose, CA, July 6-9,1999.

[13] A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining
Asociation Rules in Large Databases. In Proceedings of the 21st VLDB Conference,
1995.

[14] Hekki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient dgorithms for
discovering asociation rules. In Usama M. Fayyad and Ramasamy Uthurusamy,
editors, Proc. of the AAAI Workshop on Knowledge Discovery in Databases, pp.
181-192, Sesttle, Washington, July 1994,

[15] H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of
the 22nd Internationa Conference on Very Large Daa Bases, Bombay, India,
September 1996.

[16] Q. Zou, W. Chu, D. Johnson, H. Chiu. A Pattern Decompodtion (PD) Algorithm for
Finding All Frequent Petterns in Large Datasets Proc. of the IEEE Internationd
Conference on Data Mining, San Jose, Cdifornia, November 2001.

p.15/15

