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Abstract 
Efficient algorithms to mine frequent patterns are crucial to many tasks in data 

mining.  Since the Apriori algorithm was proposed in 1994, there have been several 
methods proposed to improve its performance.  However, most still adopt its candidate 
set generation-and-test approach.  In addition, many methods do not generate all frequent 
patterns, making them inadequate to derive association rules.  We propose a pattern 
decomposition (PD) algorithm that can significantly reduce the size of the dataset on each 
pass making it more efficient to mine all frequent patterns in a large dataset. The 
proposed algorithm avoids the costly process of candidate set generation and saves time 
by reducing dataset. Our empirical evaluation shows that the algorithm outperforms 
Apriori by one order of magnitude and is faster than FP-tree.  

1. Introduction 
A fundamental problem in data mining is the process of finding frequent patterns in 

large datasets.  This problem is further exasperated when dealing with datasets which 
contain highly frequent, yet often meaningful patterns (e.g., free text). While many 
different algorithms have been proposed, the fact remains that finding frequent patterns 
enables essential data mining tasks such as discovering associations relationships, 
correlations between data as well as finding sequential patterns [8].  

Two main classes of algorithms have been proposed.  The first class uses a process of 
candidate generation and testing to find frequent patterns.  The second class of algorithms 
transform the original data into a representation better suited for frequent pattern mining. 

1.1 Generate and Test Algorithms 

Several different algorithms have been proposed to find all frequent patterns in a 
dataset [1, 5, 6, 7, 8].  The Apriori algorithm [1] accomplishes this by employing a 
bottom-up search.  The algorithm generates candidate sets to limit pattern counting to 
only those patterns which can possibly meet the minimum support requirement.  At each 
pass, the algorithm determines which candidates are frequent by counting their 
occurrence.  Due to combinatory explosion, this leads to poor performance when frequent 
pattern sizes are large.   

To avoid this problem, some algorithms output only maximal frequent patterns  [2, 3, 
4].  Pincer-Search [4] uses a bottom-up search along with top-down pruning to find 
maximal frequent patterns.  Max-Miner [2] uses a heuristic bottom-up search to identify 
frequent sets as early as possible.  Even though performance improvements may be 
substantial, maximal frequent sets have limited use in association rule mining.  A 
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complete set of rules cannot be extracted without support information of the subsets of 
those maximal frequent sets.   

Algorithm in [13] partition the initial dataset into several partitions and then uses 
candidate set generate-and-test approach to calculate local frequent sets for each partition.  
The global frequent sets can be generated from counting for all local frequent sets in the 
whole dataset.  

Other techniques have used sampling methods to select random subsets of a dataset to 
calculate candidate sets and then test those sets to identify frequent patterns [14, 15].  
Given that the method uses sampling techniques, it is possible that some frequent patterns 
are not included in the candidate sets, thus the algorithm may not find all frequent 
patterns.  In general, the accuracy of this approach is highly dependant on the data 
characteristic and the specific sampling technique used. 

1.2 Data Transform 

Most previous algorithms have used the candidate set generate-and-test approach and 
have mined patterns directly from an original dataset.  Researchers are now exploring 
transforming the original data into data representations optimized for data mining.  FP-
tree-based mining [8] is a such an approach which first builds a compressed data 
representation from a dataset and then all mining tasks are performed on the FP-tree 
rather than on the dataset.  It has performance improvements over Apriori since it uses 
FP-tree and does not need to generate candidate sets.  However, FP-tree-based mining 
uses a complicated data structure and performance gains are sensitive to the support 
threshold.  

1.3 Pattern Decomposition [16] 

This paper introduces an innovative algorithm which uses pattern decomposition (PD) 
to mine frequent patterns.  Pattern decomposition provides three significant 
improvements.  First, by decomposing transactions into short itemsets, it is possible to 
combine regular patterns together, thus significantly reducing the dataset in each pass.    
Second, the algorithm does not need to generate candidate sets since the reduced dataset 
does not contain any infrequent patterns found before.  Finally, using a reduced dataset 
greatly saves the time for counting pattern occurrence.   

Pattern decomposition transforms the dataset, similar to the FP-tree 
algorithm.  However, unlike the FP-tree algorithm, pattern decomposition 
does not pre-calculate the new data representation, instead the dataset is 
transformed only when the changes may shorten subsequent passes (e.g., 
decrease the number of data items to count). 

2. The Method 
Using candidate set generate-and-test approach, it is time consuming to count pattern 

occurrence since original datasets are often of huge number of transactions.  The intuition 
of our approach is that the huge dataset need to be dramatically reduced in order to give 
better performance.  Our algorithm is shrinking the dataset itself when new infrequent 
itemsets are discovered. More specifically, the PD algorithm finds frequent sets by 
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employing a bottom-up search.  For a given transaction dataset D1, the first pass of the 
algorithm have two phrases. First, the algorithm counts for item occurrences to determine 
the frequent 1-itemsets L1 and the infrequent 1-itemsets ~L1.  Second, PD-decompose 
algorithm in Section 2.2 is used to decompose D1 to get D2 such that D2 contains no items 
in ~L1.  Similarly, in a subsequent pass, say pass k, consists of two phases.  First, frequent 
itemsets Lk and ~Lk are generated by counting for all k-itemsets in Dk.  Next, Dk+1 is 
generated by decomposing Dk using ~Lk such that Dk+1 contains no itemsets in ~Lk.   

2.1 Definitions 
 

The terms item and transaction keep the same meaning as used in [1] where items are 
literals and a transaction is a set of literals in one basket.  Let us define other terms as 
follows: 

1) A pattern p is a pair of a set of itemsets and its occurrence, denoted by <p.IS, 
p.Occ>; in p.IS, an itemset can not be a subset of another.  For example, 

p1=<{abdef},3>,  p1.IS={abdef},  p1.Occ=3.  For short, we write p1=abdef:3. 
p2=<{abcd,cde},3>,  p2.IS={abcd,cde},  p2.Occ=3.  Similarly, p2=abcd,cde:3. 

A pattern p is a simple pattern if p.IS contains only one itemset.  A pattern p is a 
composite pattern if p.IS contains at least 2 itemsets.  The size of p is the 
maximal size of its itemsets, denoted by p.Len. In the example, p1 is a simple 
pattern, p1.Len=5;  p2 is a composite pattern, p2.Len=4. 

2) A dataset D is a set of patterns. 
D={p: p is a pattern} 

For example, D1 = {abc:1,  abd:2,  abe:1, ace:1, ade:1, bce:1, bde:1, cde:1}. 
Note that the dataset we redefined here includes pattern occurrence. The reason is 
that in our algorithm, we only need to consider a specific pattern once which 
saves computation for repeat patterns. 

      3)  The support of an itemset I in a dataset D is  
 Sup(I|D)  =  ? p.Occ, if p? D and (? R? p.IS and I? R). 

For above D1, Sup(abd|D1)=2, Sup(ab|D1)=4. 

The PD algorithm uses a dataset Dk on the kth pass to determine frequent itemsets Lk 

and infrequent itemsets ~Lk.  For every pattern p? Dk, PD needs to decompose its p.IS.  

4) The decomposition of an itemset I with Lk and ~Lk is to find all maximal subsets 
S of I which does not contain any infrequent itemset in ~Lk. In other words, all k-
itemset of those maximal subsets are frequent in Lk.  The decomposition of a set 
of itemsets R is the union of the decomposition of each itemset of R, and then 
removing all non-maximal itemsets that are subsets of another itemset. 

5) Itemset S is said k-item independent with itemset R if the number of their 
common items is less than k. For example, {1,2,3} and {2,3,4} has a common set 
of {2,3}, so they are 3-item independent, but not 2-item independent. 

Pattern decomposition rule: Given Dk, Lk, ~Lk, for a pattern p? Dk, if the 

decomposition of p.IS is R={S1,S2,…,Sm}, and D’k= (Dk–{p})? {(R, p.Occ)}, then for any 
frequent itemset S, Sup(S|Dk)=Sup(S|D’k).  It follows from the definition of 
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D1 
1: a b c d e f:  1 
2: a b c g:  1 
3: a b d h:  1 
4: b c d e k:  1 
5: a b c:  1 ?  

D2 
1: a b c d e:  1 
2: a b c:  2 
3: a b d:  1 
4: b c d e:  1 

D3 
1: abcd, bcde:  1 
2: a b c:  2 
3: a b d:  1 
4: b c d e:  1 

D4 
1: b c d e:  2 

L1    
IS Occ
{a} 4 
{b} 5 
{c} 4 
{d} 3 
{e} 2 
 

~L1    
IS Occ
{f} 1 
{g} 1 
{h} 1 
{k} 1 
 

f 
g 
h 
k  

L2    
IS Occ
{ab} 4 
{ac} 3 
{ad} 2 
{bc} 4 
{bd} 3 
{be} 2 
{cd} 2 
{ce} 2 
{de} 2 

~L2    
IS   Occ
{ae} 1 

?  

L3    
IS Occ
{abc} 3 
{abd} 2 
{bcd} 2 
{bce} 2 
{bde} 2 
{cde} 2 

~L3    
IS Occ
{acd} 1 
 

L4    
IS     Occ 
{bcde} 2 

~L4   
IS Occ 

D5= F  

? 

Figure 1. Pattern Decomposition Example 

decomposition.  The rule means if we replace p by its decomposition result (R, p.Occ), 
then Dk and D’k have the same support for any frequent itemset.  This process reduces the 
pattern length in Dk. 

After decomposition, a long pattern becomes a composite pattern with several smaller 
itemsets.  In order to merge identical itemsets in different patterns, PD need to separate 
composite patterns.   

Pattern separation rule: For a composite pattern p? Dk, p.IS={S1,S2,…,Sm}, if S1 is k-

item independent with S2,…,Sm and D’k= (Dk–{p})? {({S1},p.Occ)}? {({S2,…,Sm}, 

p.Occ)}, then for every k or longer itemset S, Sup(S|Dk) = Sup(S|D’k).  This means if we 
replace p by the two patterns {({S1},p.Occ)} and {({S2,…,Sm},p.Occ)}, then Dk and D’k 
have the same support for k or longer itemsets.  This increases the opportunity of merging 
identical patterns. 

There are two reasons to decompose a pattern if it contains infrequent itemsets: 1) to 
use the infrequent itemsets ~Lk to reduce long patterns to short patterns which contain 
only frequent k-item sets, thus eliminating the need to generate candidates since PD in 
k+1th simply counts for all k+1 itemsets in patterns of Dk; 2) to shorten a long pattern to 
increase the chance of merging identical patterns, and thus reducing the size of the 
dataset. 

Let us illustrate how a pattern in the dataset is 
decomposed on a specific pass: 

1) Suppose we are given a pattern p= 
abcdef:1? D1 where a,b,c,d,e? L1 and f? ~L1.  
To decompose p with ~L1, we simply delete f 
from p, leaving us with a new pattern abcde:1 
in D2. 

2) Suppose a pattern p= abcde:1? D2 and ae? ~L2. 
Since ae cannot occur in a future frequent set, 
we decompose p= abcde:1 to a composite 
pattern q= abcd,bcde:1 by removing a and e 
respectively from p. 

3) Suppose a pattern p= abcd,bcde:1 ? D3 and 

acd? ~L3. Since acd ?  abcd, abcd is 
decomposed into abc, abd, bcd.  Their sizes 
are less than 4, so they are not qualified for 
D4.  Itemset bcde does not contain acd, so it 
remains the same and is included in D4. 

Now let us illustrate the complete process for 
mining frequent patterns.  In Figure 1, we show how 
PD is used to find all frequent patterns in a dataset.  
Suppose the original data set is D1 and minimal 
support is 2.  We first count the support of all items in 
D1 to determine L1 and ~L1. In this case, frequent 1-
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itemset L1={a,b,c,d,e} and infrequent 1-itemset ~L1={f,g,h,k}.  Then we decompose each 
pattern in D1 using ~L1 to get D2.  In the second pass, we generate and count all 2-item 
sets contained in D2 to determine L2 and ~ L2, as shown in the figure. Then we decompose 
each pattern in D2 to get D3.  This continues until we determine D5 from D4, which is the 
empty set and we terminate.  The final result is the union of all frequent sets L1 through 
L4.   

The example illustrates three ways to reduce the dataset as denoted by ? , ? , ? in 
Figure 1. 

In ? , when patterns after decomposition yield the same itemset, we combine them by 
summing their occurrence.  Here, abcg and abc reduce to abc.  Since both their 
occurrences are 1, the final pattern is abc:2 in D2.   

In ? , we remove patterns if their sizes are smaller than the required size of the next 
dataset.   Here, patterns abc and abd with sizes of 3 cannot be in D4 and are deleted. 

In ?, when a part of a given pattern has the same itemset with another pattern after 
decomposition, we combine them by summing their occurrence. Here, bcde is the itemset 
of pattern 4 and part of pattern 1’s itemset after decomposition, so the final pattern is 
bcde:2 in D4. 

Notably, the algorithm first counts for Lk and ~Lk and then decomposes patterns in 
each pass.  It differs fundamentally from previous algorithms in that it avoids candidate 
set generation and reduces the dataset on each pass.  Counting time is thus also reduced. 

2.2. The PD-decompose Algorithm 
 

There could be many ways to decompose a pattern.  As shown above, to decompose a 

pattern p with ~L1, we simply remove the items in ~L1 from p.  For a p? D2, suppose q is 
its frequent 2-item sets, maximal clique techniques discussed in [4, 9, 10] can be used to 
calculate the decomposition result from q2.  Since the number of items in p is small and 
possible maximal cliques are few, those algorithms are very efficient.  For k>2, no results 
are available to efficiently decompose a pattern.  Thus a novel algorithm PD-decompose is 
proposed for this task.  
 

The PD-decompose algorithm is shown in Figure 
2. Here, s is an itemset; ~qk is the infrequent k-
itemsets of s.  In other words, ~qk are k-item subsets 
of s that are in ~Lk.  When k=1, PD-decompose simply 
removes the infrequent items in ~q1 from itemset s. 
When k=2, we first build up a frequency tree from 
the itemsets in ~qk.  Then in step 5, we call quick-
split to perform a calculation on the tree.  The result 
is stored in Sbs. In step 6, we map Sbs back to 
itemsets. We give details in the following 
paragraphs.  

 

Figure 2. PD-decompose 
 

PD-decompose(itemset s, ~qk) 
 1: if(k=1) 
 2:      t = remove items in ~qk from s 
  3:  else { 
 4:      build ordered frequency tree r; 
 5:      Sbs = Quick-split( r ); 
 6:      t = mapping Sbs to itemsets; 
         } 
 7: return t 
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One simple way to decompose the itemset s by an infrequent k-item set t, as explained 
in [4], is to replace s by k itemsets, each obtained by removing a single item in t from s. 
For example, for s = abcdefgh and t = aef, we decompose s by removing a, e, f 
respectively to obtain {bcdefgh, abcdfgh, abcdegh}. We call this method simple-split. 
When the infrequent sets are large, simple-split is not efficient.  The main objective of 
PD-decompose is to decompose an itemset s by its infrequent k itemsets.  It consists mainly 
of two parts:  1) building the frequency tree; 2) splitting itemsets using the tree via a 
method called Quick-split and returning the resulting itemsets.     

A frequency tree is a tree whose nodes are items. In 
the tree, items at each level are ordered by the 
frequency of their occurrence at the level.  The most 
frequent item at each level is placed first.  A frequency 
tree can be constructed for a given set of infrequent k-
item sets, ~qk. More specifically, the frequency tree for 
a  set t can be built recursively as follow:  1) identifying 
the most frequent item x in t, let t'={i-{x}: i ? t, x? i} 

and t?={i: i ? t, x? i}  2) building a tree r with x as root 
item and trees from t' as x’s subtrees  3) building trees 
from t? as x’s sibling.   

Example Suppose we are given a pattern p? D3 where p.IS = abcdefgh.  In the third 
pass, we find infrequent 3-itemsets {aef, aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, 
acf, acg, ach, ade, adf, adg, adh}.  First, we build up a frequency tree, as shown in Figure 
3.  The first level consists of only a’s.  The second level consists of items e, f, g, and h, 
with e occurring the most at its level.  The third level is constructed in similar fashion.   

After we built a frequency tree, we then use the Quick-split technique to calculate the 
maximal frequent sets.  The main purpose of Quick-split is to find all possible maximal 
frequent sets of an itemset given its infrequent k-itemset ~qk.   In other words, Quick-split 
is used to find the decomposing results for an itemset.   

The Quick-split algorithm is given in Figure 4.  To speed up calculation, an itemset is 
represented by a bitset with 0 and 1 for specifying the absence or presence of an item at a 
corresponding position respectively.  Step 1 in the Figure 4 is the exit condition.  In steps 
2 to 3, the subtrees of r are calculated and stored in an array of sub results (subres).  The 
new bitset of ~x (newBS(~x)) returns a bitset of which all bits are 1s except that the bit 
corresponding to x is 0. Step 4 initializes 
result to an all 1’s bitset. The results of r’s 
subtree are logically AND together to yield 
the final results in steps 5 to 6.  Step 7 
removes non-maximal itemsets and thus 
yields the maximal ones. 

 Quick-split performs a calculation on a 
frequency tree and returns an array of 
bitsets, which represent a group of 
decomposed itemsets.  Splitting is 

a b 
c 
d 
f 
g 
h 

b 
c 
d
g 
h 

b 
c 
d 
h 

b 
c 
d 

e 

f 

g 

h 

 Figure 3. A frequency tree example 
  

Quick-split(Tree r) // returns an array of BitSet 

 1: if(r is leaf) return Ø ; 

 2: forall x? r.subs do  

 3:     subres[x] = Quick-split(x) ?  newBS (~x) 
 4: result =newBS(); 

 5: forall x? r.subs do 
  6:      result = result & subres[x]; 

 7: remove b?  result, b.size= k  
 8: return result; 

 
 Figure 4. Quick-split algorithm 
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accomplished by calculating bitset results in a bottom-up fashion in the tree.  In the above 
example, we have 8 items a, b, … , h corresponding to positions 0-7 in a 8-bit bitset. So 
p.IS = abcdefgh = {11111111}; abcd = {11110000}; bcdefgh = {01111111}.  The size of 
the bitset is the number of items in p.IS which is usually much smaller than the total item 
size in the dataset.  

Table 1 shows the Quick-split splitting operations for the frequency tree in Figure 3.  

Table 1: Quick-split example 
Step Results Remarks 
1 a-—e: ~b~c~d~f~g~h 

 +—f: ~b~c~d~g~h 
 +—g: ~b~c~d~h 
 +—h: ~b~c~d 

From Figure 3, the leaf trees are 
translated into a list of ~Items. 
The meaning of “a-e: ~b~c~d~f~g~h” 
is that if a set contains a and e, 
then it may not contain b, c, d, 
f, g, and h.   

2 a-—e: Ø  
 +—f: Ø  
 +—g: ~b~c~d~h 
 +—h: ~b~c~d  

Total # of items is 8; the results 
requires # of item>=4. So maximal 
~Item is 8-4=4. 
Thus we replace first two with Ø . 

3 a: ~e                (1)  
 : ~f                (2) 
 : ~g 
    g~b~c~d~h 
 : ~h 
    h~b~c~d 

The “a—e: Ø ”  contains two cases: 
“a: eØ” and   “a: ~e”.  The first case is 
deleted since it contains “Ø”. 
Other branches can be computed in the 
same way. 

4 a: ~e~f              (3)  
 : ~g                (4) 
    g~b~c~d~h 
 : ~h 
    h~b~c~d 

From step 3, (1)&(2) yields (3). 

5 a: ~e~f~g            (5)  
   ~e~fg~b~c~d~h 
 : ~h 
    h~b~c~d 

From step 4, (3)&(4) yields (5).  

6 a: ~e~f~g            (6)  
 : ~h                (7) 
    h~b~c~d 

From step 5, “~e~fg~b~c~d~h” has 6 
~Item and thus is removed. 

7 a: ~e~f~g~h          (8)  
   ~e~f~gh~b~c~d 

From step 6, (6)&(7) yields (8). 

8 a: ~e~f~g~h          (8) “~e~f~gh~b~c~d” is removed.  
9 :~a                  (9) 

  a~e~f~g~h         (10) 
(8) contains two cases: “~a” and 
“a~e~f~g~h”. 

10 bcdefgh 
abcd 

From step 9,(9)? bcdefgh; (10)? 
abcd. 

 
As we can see from Table 1, for the itemset abcdefgh and infrequent 3-itemsets {aef, 

aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, acf, acg, ach, ade, adf, adg, adh}, 
Quick_split returns the possible maximal frequent sets {abcd, bcdefgh}. 
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2.3. The PD Algorithm 
In this section we will show the PD algorithm that uses PD-decompose to find all 
frequent patterns in a transaction dataset T.  

As shown in Figure 5, PD is the top-level function that accepts a transaction dataset 
as its input and returns the union of all frequent sets as the result.  At the kth pass, steps 3-
6 count for every k itemset of each pattern in Dk and then determine the frequent and 
infrequent sets, Lk and ~Lk; step 7 uses Dk, Lk and ~Lk to rebuild Dk+1.  PD stops when Dk 
is empty.  

The PD-rebuild shown in Figure 6 is to determine Dk+1 by Dk, Lk and ~Lk.  For each 
pattern p in Dk, step 3 computes its qk and ~qk; step 4 calls PD-decompose algorithm to 
decompose p by ~qk. Note that qk is not used here for decomposing p.  As we will discuss 
in section 6, in some situations, using qk to decompose p will be more efficient than using 
~qk.  We leave this for future research.  In steps 5 to 9, we use pattern separation rule to 
separate p.  In steps 7 to 9, PD-rebuild merges the patterns separated from p with their 
identical ones via a hash table ht.  Since PD follows the pattern decomposition rule to 
decompose patterns and the pattern separation rule for merging identical patterns that 
yield same support, the answers generated by PD are correct. 

3. Performance Study 
We compare PD with Apriori and FP-tree since the former is widely cited and the latter 
claims the best performance in the literature. 

Our experiments were performed on a 330MHz Pentium PC machine with 128 MB main 
memory, running on Microsoft Windows 2000.  PD algorithms were written in Java 
JDK1.2.2.  The test data sets were generated in the same fashion as the IBM Quest 
project [1].  We used two data sets T10.I4.D100K denoted as D1, and T25.I10.D100K as 
D2. In the datasets, the number of distinct items N was set to 1000.  The corruption level 
for a seed large itemset was fixed, obtained from a normal distribution with mean 0.5 and 
variance 0.1.  In the first dataset, all items in a seed large itemset were corruptible while 
in the latter datasets half were corruptible.  In the dataset D1, the average transaction size 
|T| and average maximal potentially frequent itemset size |I| are set to 10 and 4, 

PD ( transaction-set T ) 

 1: D1 = {<t, 1>| t ?  T }; k=1; 
 2: while (Dk? F ) do begin 

 3:      forall  p ?  Dk do    // counting 

 4:           forall k-itemset s ?  p.IS do 
 5:                Sup(s|Dk) += p.Occ; 
 6:      decide Lk and ~Lk ; 
    //build Dk+1 
 7:      Dk+1= PD-rebuild(Dk, Lk, ~Lk);   
 8:      k++; 
 9:  end 
 10:Answer = ?  Lk 

PD-rebuild (Dk, Lk, ~Lk) 
 1: Dk+1 = F ;  ht = an empty hash table; 

 2:  forall  p ?  Dk do  begin 
  3:     // qk, ~qk can be taken from previous counting 

         qk={s|s?  p.IS n  Lk }; ~qk={t|t?  p.IS n  ~Lk } 
 4:     u = PD-decompose(p.IS, ~qk); 

 5:     v ={s? u| s is k-item independent in u} 
 6:     add <u-v, p.Occ> to Dk+1; 

 7:     forall s?  v do 
 8:         if s in ht then ht.s.Occ+= p.Occ; 
 9:         else put <s,p.Occ> to ht; 
 10: end 
 11: Dk+1 = Dk+1 ?  {p?  ht}; 

Figure 5. PD  Figure 6. PD-rebuild 
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respectively, while the number of transactions |D| in the dataset is set to 100K.  In the 
dataset D2, |T|=25, |I|=10, |D|=100K. 

For the comparison of PD with FP-tree, since PD was written in Java and FP-tree in C++ 
and we don’t have time to implement PD in C++, their results are adjusted by a 
coefficient about 10.  

3.1 Comparison of PD with Apriori 

Figures 7 and 8 display our test results for datasets T10.I4.D100K and 
T25.I10.D100K respectively.  Figure 7 shows the execution times for different minimum 
support.   We can see that PD is about 30 times faster than Apriori with minimal support 
at 2% and about 10 times faster than Apriori at 0.25%.    

 

 

 

 

 

 

 

 

 

 

Figure 8 shows execution times for each pass given minsup=0.25%.  Initially, 
execution times of Apriori and PD are comparable.  In later passes, when frequent sets 
become numerous and longer, PD outperforms Apriori. Apriori counts candidates support 
in the original dataset with 100K transactions with average size |T|; while PD counts in a 
reduced dataset with only about 5K patterns with average size much less than |T|.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Execution times comparison between Apriori and PD vs. minimum support 
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Figure 8.  Execution times comparison between Apriori and PD vs. passes 
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To test the scalability with the number of transactions, experiments on dataset D2 are 

used.  The support threshold is set to 0.75%. The results are presented in Figure 9.  The 
execution time for Apriori linearly 
increases with the number of transactions 
from 50K to 250K.  However, the 
execution time for PD does not necessarily 
increase as the number of transactions 
increases.  This is due to the fact that as 
number of transaction |D| increases, the 
possibility of patterns after decomposition 
can combine with others increases. 
Suppose two datasets D' and D? have 
different numbers of transactions with 
|D'|>>|D?|; it is possible after 
decomposition to have |D1'|<|D1?|, i.e. a 
much bigger dataset after decomposition 
may become smaller.  This means 
increasing the number of transactions may decrease the time for PD to mine all frequent 
patterns.  Thus PD has a better scalability in terms of number of transactions than that of 
Apriori. 

3.2 Comparison of PD with FP-tree 
 

FP-tree algorithm is an efficient algorithm recently proposed in [8].  The novel idea is 
to build up frequent pattern trees to store data and mine frequent patterns using the trees.   
We note that: (1). FP-trees is substantially smaller than the original data and saves costly 
database scans; (2) It avoids candidate set generation and testing.  For comparison, we 
ran the PD and FP-tree algorithms on the same machine using the same dataset as input 
and generated the same output.  For each test point, we determined four values: (a) tFP the 
running time for FP-tree (in C++); (b) tPD the running time for PD (in Java); (c) tAC the 
running time for Apriori (in C++); (d) tAJ the running time for Apriori (in Java).  To 
calculate the language time difference between C++ and Java, we adjusted tPD to tPD* 
(tAC/tAJ), where tAC/tAJ ˜ 10.  According to our experiments, both FP tree and PD were 
faster than Apriori, especially when the minimum support was relatively low.  However, 
PD ran two times faster than FP-tree. 
 

As shown in Figure 10, both FP-tree and PD have good performance on D1.  But FP-
tree takes substantially more time when minimum support in the range from 0.5% to 2%.  
When minsup less than 0.5%, the number of frequent patterns increased quickly and thus 
the execution times are comparable. For D2, FP-tree takes nine times longer than PD at 
minsup=2% and the gap reduces to 2 times faster at minsup=0.25% 
 

In Figure 11, we compared the scalability of PD with FP-tree on the dataset D2 with 
minimum support=0.75%.  When the number of transactions ranged from 60k-80k, both 

Figure 9.  Scalability comparison between 
Apriori and PD 
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methods took almost constant time (most likely due to overhead).  When we scaled up to 
200K, FP-tree required more than 1884M of virtual memory and could not run on our 
machine while PD finished the computation within 64M main memory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main costs in FP-tree-based mining involve recursively building conditional FP-
trees.  The number of conditional FP-trees can be enormous and run out of virtual 
memory space on our machine when we run 200K transaction dataset.  Further, the 
complicated data structure of FP-tree requires large number of pointers. In order to build 
the conditional FP-tree efficiently, each node needs three pointers. Suppose the item, 
counter, and pointer is encoded in 4 bytes; the storage overhead of pointers in a node will 
be 60% of the data storage.  

PD, like the FP-tree-based algorithm, uses a compressed data representation to find 
the frequent patterns.  However, PD uses a very simple and flat data structures and 
significantly shrinks the dataset in each pass.  PD keeps only the current dataset Dk and a 
hash table for pattern decomposition.  Thus it requires much less storage space than FP-
tree and thus yields better scalability.   

4. Further Discussions  

4.1 Comparison with Pincer-search 
The idea of using a newly discovered infrequent set to split its supersets was discussed in 
Pincer-search [4].  It was reported to have performance improvements up to several 
orders of magnitude compared to the best algorithms at that time.  Pincer-search uses 
both the bottom-up and top-down searches.  Its primary search direction is still bottom-
up, but a restricted search is also conducted in the top-down direction. 

However, there are several differences between PD and Pincer-search. First, the 
quick-split algorithm is more efficient than the MFCS-gen used by pincer-search [4] 
which we call simple-split in section 3. Intuitively in quick-split, using a frequency tree 
saves much computation on shared items than using simple split. Second, we use quick-
split to decompose a pattern of the dataset while Pincer-search uses simple-split to split 
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candidate sets.  In addition, it discovers only maximal frequent sets which do not provide 
enough information for generating association rules. 

4.2 Further Improvements 
First, we note that quick-split is not the only technique we can use for pattern 
decomposition. For an itemset s, suppose qk is its frequent k-item sets and ~qk is its 
infrequent k-item sets, if | qk | << | ~qk |, one can follow that it would be more efficient to 
calculate decomposition results from qk rather than from ~qk.  

Second, PD is flexible in that it can be extended in various ways or applied with other 
algorithms.  We can extend PD to output maximal frequent patterns whenever the support 
of a pattern in the dataset satisfies the given requirement of minimal support. 
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5. An Application 
The motivation of our work originates from the problem of finding multi-word 
combinations in a group of medical report documents, where sentences can be viewed as 
transactions and words can be viewed as items.  The problem is to find all multi-word 
combinations that occur at least in 2 sentences of a document.  

As a simple example, Figure 12(f) shows a sample medical report.  Its topic is 
“Aspirin greatly underused in people with heart disease”.  After stemming and removing 
stop words, there are 135 distinct words.  The 34 frequent words are shown in Figure 
12(a) in decreasing order of frequency.  Frequent 2-word, 3-word, 4-word, 5-word 
combinations are listed in Figures 12(b)-(e).   

 
Multi-word combinations are effective for document indexing and summarization. 

The work in [12,11] shows that multi-word combinations can index documents more 
accurately than using single-word indexing terms.  Multi-word combinations can 

heart, aspirin, patient, doct, study, they, risk, prevent, take, diseas, 
stafford, use, too, may, thi, we, attack, ther, intern, bia, gener, peopl, 
problem, call, know, not, pain, some, reduc, medicat, very, becaus, data, 
regul 

aspirin patient, heart aspirin, aspirin use, aspirin take, aspirin risk, 
aspirin study, patient take, patient study, heart diseas, heart patient, 
diseas peopl, prevent too, they not, they ther, they take, doct data, doct
some, doct too, doct use, doct stafford, aspirin regul, aspirin becaus, 
aspirin reduc, aspirin some, aspirin pain, aspirin not, aspirin attack,  
aspirin too, aspirin diseas, use regul, aspirin they, aspirin doct, stafford 
intern, take not, risk reduc, study take, patient becaus, patient some, 
patient not, patient too, patient use, patient they, patient doct, heart 
regul, heart peopl, heart attack, heart too, heart use, heart stafford, use 
some, heart study, heart doct  

aspirin patient take, aspirin patient study, heart aspirin patient, aspirin 
doct some, aspirin patient some, heart aspirin use, doct use some, aspirin 
take not, aspirin they not, aspirin patient not, aspirin they take, aspirin 
study take, patient doct use, heart aspirin diseas, heart use regul, heart 
aspirin regul, aspirin patient too, heart aspirin attack, aspirin risk reduc, 
patient take not, patient they not, heart patient too, heart aspirin too, 
patient use some, patient doct some, patient they take, patient study take, 
aspirin doct use, heart doct stafford, aspirin patient use, heart diseas 
peopl, aspirin use regul, aspirin patient they, heart patient study, heart 
aspirin study, aspirin patient becaus, aspirin patient doct, aspirin use 
some, they take not 

heart aspirin use regul, aspirin they take not, aspirin patient take not, 
patient doct use some, aspirin patient study take, patient they take not, 
aspirin patient use some, aspirin doct use some, aspirin patient they not, 
aspirin patient they take, aspirin patient doct some, heart aspirin patient 
too, aspirin patient doct use, heart aspirin patient study  

aspirin patient they take not, aspirin patient doct use some 

(a) Frequent 1-word table (total 34) 

(b) Frequent 2-word table (total 52) 

(c) Frequent 3-word table (total 39) 

(d) Frequent 4-word table (total 14) 

(e) Frequent 5-word table (total 2) 

Aspirin greatly underused in people with heart disease 
 
DALLAS (AP) -- Too few heart patients are taking aspirin despite 
its widely known ability to prevent heart attacks, according to a 
study released Monday. 
 
The study, published in the American Heart Association's journal 
Circulation, found that only 26 percent of patients who had heart 
disease and could have benefited from aspirin took the pain 
reliever. 
 
"This suggests that there's a substantial number of patients who are 
at higher risk of more problems because they're not taking aspirin," 
said Dr. Randall Stafford, an internist at Harvard's Massachusetts 
General Hospital who led the study. "As we all know, this is a very 
inexpensive medication -- very affordable." 
 
The regular use of aspirin has been shown to reduce the risk of 
blood clots that can block an artery and trigger a heart attack. 
Experts say aspirin can also reduce the risk of a stroke and angina, 
or severe chest pain. 
 
Because regular aspirin use can cause some side effects -- such as 
stomach ulcers, internal bleeding and allergic reactions – doctors 
are too often reluctant to prescribe it for heart patients, Stafford 
said. 

 
"There's a bias in medicine toward treatment and within that bias 
we tend to underutilize preventative services -- even if they've 
been clearly proven," said Marty Sullivan, a professor of 
cardiology at Duke University in Durham, N.C.  
 
Stafford's findings were based on 1996 data from 10,942 doctor 
visits by people with heart disease. The study may underestimate 
aspirin use; some doctors may not have reported instances in 
which they recommended patients take over-the-counter 
medications, he said.  
 
He called the data "a wake-up call" to doctors who focus too much 
on acute medical problems and ignore general prevention. 

(f) A sample medical report 

Figure 12. An example of multi-word combination 
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delineate the concepts or content of a domain specific document collection more 
precisely than single word.  For example, from the frequent 1-word table in Figure 12(a), 
we may infer that “heart”, “aspirin”, and “patient” are the most important concepts in the 
text since they occur more often than others.  For the frequent 2-word table in Figure 
12(b), we see a large number of 2-word combinations with “aspirin”, i.e. “aspirin 
patient”,  “heart aspirin”,  “aspirin use”, “aspirin take”, etc.  This infers that the 
document emphasizes “aspirin” and “aspirin related” topics more than any other words.  

6. Conclusion 
In this paper, we propose a pattern decomposition algorithm to find frequent patterns 

for large datasets. The PD algorithm significantly shrinks the dataset in each pass. It 
avoids the costly candidate set generation procedure and greatly saves counting time by 
using reduced datasets.  Our experiments show that the PD algorithm has an order of 
magnitude improvement over the Apriori algorithm on standard test data and is faster 
than FP-tree.  Since PD reduces the dataset, mining time does not necessary increase as 
the number of transactions increases.  Experimental results reveal that PD has better 
scalability than both Apriori and FP-tree.  We are using PD to mine multi-word 
combinations from medical report documents. Without an efficient technique, we 
otherwise need to limit the length of sentences as well as the size of multi-word 
combinations. 
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