
 p.1/1

Pattern Decomposition Algorithm for Data Mining
Frequent Patterns

Qinghua Zou, Wesley Chu, David Johnson, Henry Chiu

Computer Science Department
University of California – Los Angeles

Abstract
Efficient algorithms to mine frequent patterns are crucial to many tasks in data

mining. Since the Apriori algorithm was proposed in 1994, there have been several
methods proposed to improve its performance. However, most still adopt its candidate
set generation-and-test approach. In addition, many methods do not generate all frequent
patterns, making them inadequate to derive association rules. We propose a pattern
decomposition (PD) algorithm that can significantly reduce the size of the dataset on each
pass making it more efficient to mine all frequent patterns in a large dataset. The
proposed algorithm avoids the costly process of candidate set generation and saves time
by reducing dataset. Our empirical evaluation shows that the algorithm outperforms
Apriori by one order of magnitude and is faster than FP-tree.

1. Introduction
A fundamental problem in data mining is the process of finding frequent patterns in

large datasets. This problem is further exasperated when dealing with datasets which
contain highly frequent, yet often meaningful patterns (e.g., free text). While many
different algorithms have been proposed, the fact remains that finding frequent patterns
enables essential data mining tasks such as discovering associations relationships,
correlations between data as well as finding sequential patterns [8].

Two main classes of algorithms have been proposed. The first class uses a process of
candidate generation and testing to find frequent patterns. The second class of algorithms
transform the original data into a representation better suited for frequent pattern mining.

1.1 Generate and Test Algorithms

Several different algorithms have been proposed to find all frequent patterns in a
dataset [1, 5, 6, 7, 8]. The Apriori algorithm [1] accomplishes this by employing a
bottom-up search. The algorithm generates candidate sets to limit pattern counting to
only those patterns which can possibly meet the minimum support requirement. At each
pass, the algorithm determines which candidates are frequent by counting their
occurrence. Due to combinatory explosion, this leads to poor performance when frequent
pattern sizes are large.

To avoid this problem, some algorithms output only maximal frequent patterns [2, 3,
4]. Pincer-Search [4] uses a bottom-up search along with top-down pruning to find
maximal frequent patterns. Max-Miner [2] uses a heuristic bottom-up search to identify
frequent sets as early as possible. Even though performance improvements may be
substantial, maximal frequent sets have limited use in association rule mining. A

 p.2/2

complete set of rules cannot be extracted without support information of the subsets of
those maximal frequent sets.

Algorithm in [13] partition the initial dataset into several partitions and then uses
candidate set generate-and-test approach to calculate local frequent sets for each partition.
The global frequent sets can be generated from counting for all local frequent sets in the
whole dataset.

Other techniques have used sampling methods to select random subsets of a dataset to
calculate candidate sets and then test those sets to identify frequent patterns [14, 15].
Given that the method uses sampling techniques, it is possible that some frequent patterns
are not included in the candidate sets, thus the algorithm may not find all frequent
patterns. In general, the accuracy of this approach is highly dependant on the data
characteristic and the specific sampling technique used.

1.2 Data Transform

Most previous algorithms have used the candidate set generate-and-test approach and
have mined patterns directly from an original dataset. Researchers are now exploring
transforming the original data into data representations optimized for data mining. FP-
tree-based mining [8] is a such an approach which first builds a compressed data
representation from a dataset and then all mining tasks are performed on the FP-tree
rather than on the dataset. It has performance improvements over Apriori since it uses
FP-tree and does not need to generate candidate sets. However, FP-tree-based mining
uses a complicated data structure and performance gains are sensitive to the support
threshold.

1.3 Pattern Decomposition [16]

This paper introduces an innovative algorithm which uses pattern decomposition (PD)
to mine frequent patterns. Pattern decomposition provides three significant
improvements. First, by decomposing transactions into short itemsets, it is possible to
combine regular patterns together, thus significantly reducing the dataset in each pass.
Second, the algorithm does not need to generate candidate sets since the reduced dataset
does not contain any infrequent patterns found before. Finally, using a reduced dataset
greatly saves the time for counting pattern occurrence.

Pattern decomposition transforms the dataset, similar to the FP-tree
algorithm. However, unlike the FP-tree algorithm, pattern decomposition
does not pre-calculate the new data representation, instead the dataset is
transformed only when the changes may shorten subsequent passes (e.g.,
decrease the number of data items to count).

2. The Method
Using candidate set generate-and-test approach, it is time consuming to count pattern

occurrence since original datasets are often of huge number of transactions. The intuition
of our approach is that the huge dataset need to be dramatically reduced in order to give
better performance. Our algorithm is shrinking the dataset itself when new infrequent
itemsets are discovered. More specifically, the PD algorithm finds frequent sets by

 p.3/3

employing a bottom-up search. For a given transaction dataset D1, the first pass of the
algorithm have two phrases. First, the algorithm counts for item occurrences to determine
the frequent 1-itemsets L1 and the infrequent 1-itemsets ~L1. Second, PD-decompose
algorithm in Section 2.2 is used to decompose D1 to get D2 such that D2 contains no items
in ~L1. Similarly, in a subsequent pass, say pass k, consists of two phases. First, frequent
itemsets Lk and ~Lk are generated by counting for all k-itemsets in Dk. Next, Dk+1 is
generated by decomposing Dk using ~Lk such that Dk+1 contains no itemsets in ~Lk.

2.1 Definitions

The terms item and transaction keep the same meaning as used in [1] where items are
literals and a transaction is a set of literals in one basket. Let us define other terms as
follows:

1) A pattern p is a pair of a set of itemsets and its occurrence, denoted by <p.IS,
p.Occ>; in p.IS, an itemset can not be a subset of another. For example,

p1=<{abdef},3>, p1.IS={abdef}, p1.Occ=3. For short, we write p1=abdef:3.
p2=<{abcd,cde},3>, p2.IS={abcd,cde}, p2.Occ=3. Similarly, p2=abcd,cde:3.

A pattern p is a simple pattern if p.IS contains only one itemset. A pattern p is a
composite pattern if p.IS contains at least 2 itemsets. The size of p is the
maximal size of its itemsets, denoted by p.Len. In the example, p1 is a simple
pattern, p1.Len=5; p2 is a composite pattern, p2.Len=4.

2) A dataset D is a set of patterns.
D={p: p is a pattern}

For example, D1 = {abc:1, abd:2, abe:1, ace:1, ade:1, bce:1, bde:1, cde:1}.
Note that the dataset we redefined here includes pattern occurrence. The reason is
that in our algorithm, we only need to consider a specific pattern once which
saves computation for repeat patterns.

 3) The support of an itemset I in a dataset D is
 Sup(I|D) = ? p.Occ, if p? D and (? R? p.IS and I? R).

For above D1, Sup(abd|D1)=2, Sup(ab|D1)=4.

The PD algorithm uses a dataset Dk on the kth pass to determine frequent itemsets Lk

and infrequent itemsets ~Lk. For every pattern p? Dk, PD needs to decompose its p.IS.

4) The decomposition of an itemset I with Lk and ~Lk is to find all maximal subsets
S of I which does not contain any infrequent itemset in ~Lk. In other words, all k-
itemset of those maximal subsets are frequent in Lk. The decomposition of a set
of itemsets R is the union of the decomposition of each itemset of R, and then
removing all non-maximal itemsets that are subsets of another itemset.

5) Itemset S is said k-item independent with itemset R if the number of their
common items is less than k. For example, {1,2,3} and {2,3,4} has a common set
of {2,3}, so they are 3-item independent, but not 2-item independent.

Pattern decomposition rule: Given Dk, Lk, ~Lk, for a pattern p? Dk, if the

decomposition of p.IS is R={S1,S2,…,Sm}, and D’k= (Dk–{p})? {(R, p.Occ)}, then for any
frequent itemset S, Sup(S|Dk)=Sup(S|D’k). It follows from the definition of

 p.4/4

D1
1: a b c d e f: 1
2: a b c g: 1
3: a b d h: 1
4: b c d e k: 1
5: a b c: 1 ?

D2
1: a b c d e: 1
2: a b c: 2
3: a b d: 1
4: b c d e: 1

D3
1: abcd, bcde: 1
2: a b c: 2
3: a b d: 1
4: b c d e: 1

D4
1: b c d e: 2

L1
IS Occ
{a} 4
{b} 5
{c} 4
{d} 3
{e} 2

~L1
IS Occ
{f} 1
{g} 1
{h} 1
{k} 1

f
g
h
k

L2
IS Occ
{ab} 4
{ac} 3
{ad} 2
{bc} 4
{bd} 3
{be} 2
{cd} 2
{ce} 2
{de} 2

~L2
IS Occ
{ae} 1

?

L3
IS Occ
{abc} 3
{abd} 2
{bcd} 2
{bce} 2
{bde} 2
{cde} 2

~L3
IS Occ
{acd} 1

L4
IS Occ
{bcde} 2

~L4
IS Occ

D5= F

?

Figure 1. Pattern Decomposition Example

decomposition. The rule means if we replace p by its decomposition result (R, p.Occ),
then Dk and D’k have the same support for any frequent itemset. This process reduces the
pattern length in Dk.

After decomposition, a long pattern becomes a composite pattern with several smaller
itemsets. In order to merge identical itemsets in different patterns, PD need to separate
composite patterns.

Pattern separation rule: For a composite pattern p? Dk, p.IS={S1,S2,…,Sm}, if S1 is k-

item independent with S2,…,Sm and D’k= (Dk–{p})? {({S1},p.Occ)}? {({S2,…,Sm},

p.Occ)}, then for every k or longer itemset S, Sup(S|Dk) = Sup(S|D’k). This means if we
replace p by the two patterns {({S1},p.Occ)} and {({S2,…,Sm},p.Occ)}, then Dk and D’k
have the same support for k or longer itemsets. This increases the opportunity of merging
identical patterns.

There are two reasons to decompose a pattern if it contains infrequent itemsets: 1) to
use the infrequent itemsets ~Lk to reduce long patterns to short patterns which contain
only frequent k-item sets, thus eliminating the need to generate candidates since PD in
k+1th simply counts for all k+1 itemsets in patterns of Dk; 2) to shorten a long pattern to
increase the chance of merging identical patterns, and thus reducing the size of the
dataset.

Let us illustrate how a pattern in the dataset is
decomposed on a specific pass:

1) Suppose we are given a pattern p=
abcdef:1? D1 where a,b,c,d,e? L1 and f? ~L1.
To decompose p with ~L1, we simply delete f
from p, leaving us with a new pattern abcde:1
in D2.

2) Suppose a pattern p= abcde:1? D2 and ae? ~L2.
Since ae cannot occur in a future frequent set,
we decompose p= abcde:1 to a composite
pattern q= abcd,bcde:1 by removing a and e
respectively from p.

3) Suppose a pattern p= abcd,bcde:1 ? D3 and

acd? ~L3. Since acd ? abcd, abcd is
decomposed into abc, abd, bcd. Their sizes
are less than 4, so they are not qualified for
D4. Itemset bcde does not contain acd, so it
remains the same and is included in D4.

Now let us illustrate the complete process for
mining frequent patterns. In Figure 1, we show how
PD is used to find all frequent patterns in a dataset.
Suppose the original data set is D1 and minimal
support is 2. We first count the support of all items in
D1 to determine L1 and ~L1. In this case, frequent 1-

 p.5/5

itemset L1={a,b,c,d,e} and infrequent 1-itemset ~L1={f,g,h,k}. Then we decompose each
pattern in D1 using ~L1 to get D2. In the second pass, we generate and count all 2-item
sets contained in D2 to determine L2 and ~ L2, as shown in the figure. Then we decompose
each pattern in D2 to get D3. This continues until we determine D5 from D4, which is the
empty set and we terminate. The final result is the union of all frequent sets L1 through
L4.

The example illustrates three ways to reduce the dataset as denoted by ? , ? , ? in
Figure 1.

In ? , when patterns after decomposition yield the same itemset, we combine them by
summing their occurrence. Here, abcg and abc reduce to abc. Since both their
occurrences are 1, the final pattern is abc:2 in D2.

In ? , we remove patterns if their sizes are smaller than the required size of the next
dataset. Here, patterns abc and abd with sizes of 3 cannot be in D4 and are deleted.

In ?, when a part of a given pattern has the same itemset with another pattern after
decomposition, we combine them by summing their occurrence. Here, bcde is the itemset
of pattern 4 and part of pattern 1’s itemset after decomposition, so the final pattern is
bcde:2 in D4.

Notably, the algorithm first counts for Lk and ~Lk and then decomposes patterns in
each pass. It differs fundamentally from previous algorithms in that it avoids candidate
set generation and reduces the dataset on each pass. Counting time is thus also reduced.

2.2. The PD-decompose Algorithm

There could be many ways to decompose a pattern. As shown above, to decompose a

pattern p with ~L1, we simply remove the items in ~L1 from p. For a p? D2, suppose q is
its frequent 2-item sets, maximal clique techniques discussed in [4, 9, 10] can be used to
calculate the decomposition result from q2. Since the number of items in p is small and
possible maximal cliques are few, those algorithms are very efficient. For k>2, no results
are available to efficiently decompose a pattern. Thus a novel algorithm PD-decompose is
proposed for this task.

The PD-decompose algorithm is shown in Figure
2. Here, s is an itemset; ~qk is the infrequent k-
itemsets of s. In other words, ~qk are k-item subsets
of s that are in ~Lk. When k=1, PD-decompose simply
removes the infrequent items in ~q1 from itemset s.
When k=2, we first build up a frequency tree from
the itemsets in ~qk. Then in step 5, we call quick-
split to perform a calculation on the tree. The result
is stored in Sbs. In step 6, we map Sbs back to
itemsets. We give details in the following
paragraphs.

Figure 2. PD-decompose

PD-decompose(itemset s, ~qk)
 1: if(k=1)
 2: t = remove items in ~qk from s
 3: else {
 4: build ordered frequency tree r;
 5: Sbs = Quick-split(r);
 6: t = mapping Sbs to itemsets;
 }
 7: return t

 p.6/6

One simple way to decompose the itemset s by an infrequent k-item set t, as explained
in [4], is to replace s by k itemsets, each obtained by removing a single item in t from s.
For example, for s = abcdefgh and t = aef, we decompose s by removing a, e, f
respectively to obtain {bcdefgh, abcdfgh, abcdegh}. We call this method simple-split.
When the infrequent sets are large, simple-split is not efficient. The main objective of
PD-decompose is to decompose an itemset s by its infrequent k itemsets. It consists mainly
of two parts: 1) building the frequency tree; 2) splitting itemsets using the tree via a
method called Quick-split and returning the resulting itemsets.

A frequency tree is a tree whose nodes are items. In
the tree, items at each level are ordered by the
frequency of their occurrence at the level. The most
frequent item at each level is placed first. A frequency
tree can be constructed for a given set of infrequent k-
item sets, ~qk. More specifically, the frequency tree for
a set t can be built recursively as follow: 1) identifying
the most frequent item x in t, let t'={i-{x}: i ? t, x? i}

and t?={i: i ? t, x? i} 2) building a tree r with x as root
item and trees from t' as x’s subtrees 3) building trees
from t? as x’s sibling.

Example Suppose we are given a pattern p? D3 where p.IS = abcdefgh. In the third
pass, we find infrequent 3-itemsets {aef, aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace,
acf, acg, ach, ade, adf, adg, adh}. First, we build up a frequency tree, as shown in Figure
3. The first level consists of only a’s. The second level consists of items e, f, g, and h,
with e occurring the most at its level. The third level is constructed in similar fashion.

After we built a frequency tree, we then use the Quick-split technique to calculate the
maximal frequent sets. The main purpose of Quick-split is to find all possible maximal
frequent sets of an itemset given its infrequent k-itemset ~qk. In other words, Quick-split
is used to find the decomposing results for an itemset.

The Quick-split algorithm is given in Figure 4. To speed up calculation, an itemset is
represented by a bitset with 0 and 1 for specifying the absence or presence of an item at a
corresponding position respectively. Step 1 in the Figure 4 is the exit condition. In steps
2 to 3, the subtrees of r are calculated and stored in an array of sub results (subres). The
new bitset of ~x (newBS(~x)) returns a bitset of which all bits are 1s except that the bit
corresponding to x is 0. Step 4 initializes
result to an all 1’s bitset. The results of r’s
subtree are logically AND together to yield
the final results in steps 5 to 6. Step 7
removes non-maximal itemsets and thus
yields the maximal ones.

 Quick-split performs a calculation on a
frequency tree and returns an array of
bitsets, which represent a group of
decomposed itemsets. Splitting is

a b
c
d
f
g
h

b
c
d
g
h

b
c
d
h

b
c
d

e

f

g

h

 Figure 3. A frequency tree example

Quick-split(Tree r) // returns an array of BitSet

 1: if(r is leaf) return Ø ;

 2: forall x? r.subs do

 3: subres[x] = Quick-split(x) ? newBS (~x)
 4: result =newBS();

 5: forall x? r.subs do
 6: result = result & subres[x];

 7: remove b? result, b.size= k
 8: return result;

 Figure 4. Quick-split algorithm

 p.7/7

accomplished by calculating bitset results in a bottom-up fashion in the tree. In the above
example, we have 8 items a, b, … , h corresponding to positions 0-7 in a 8-bit bitset. So
p.IS = abcdefgh = {11111111}; abcd = {11110000}; bcdefgh = {01111111}. The size of
the bitset is the number of items in p.IS which is usually much smaller than the total item
size in the dataset.

Table 1 shows the Quick-split splitting operations for the frequency tree in Figure 3.

Table 1: Quick-split example
Step Results Remarks
1 a-—e: ~b~c~d~f~g~h

 +—f: ~b~c~d~g~h
 +—g: ~b~c~d~h
 +—h: ~b~c~d

From Figure 3, the leaf trees are
translated into a list of ~Items.
The meaning of “a-e: ~b~c~d~f~g~h”
is that if a set contains a and e,
then it may not contain b, c, d,
f, g, and h.

2 a-—e: Ø
 +—f: Ø
 +—g: ~b~c~d~h
 +—h: ~b~c~d

Total # of items is 8; the results
requires # of item>=4. So maximal
~Item is 8-4=4.
Thus we replace first two with Ø .

3 a: ~e (1)
 : ~f (2)
 : ~g
 g~b~c~d~h
 : ~h
 h~b~c~d

The “a—e: Ø ” contains two cases:
“a: eØ” and “a: ~e”. The first case is
deleted since it contains “Ø”.
Other branches can be computed in the
same way.

4 a: ~e~f (3)
 : ~g (4)
 g~b~c~d~h
 : ~h
 h~b~c~d

From step 3, (1)&(2) yields (3).

5 a: ~e~f~g (5)
 ~e~fg~b~c~d~h
 : ~h
 h~b~c~d

From step 4, (3)&(4) yields (5).

6 a: ~e~f~g (6)
 : ~h (7)
 h~b~c~d

From step 5, “~e~fg~b~c~d~h” has 6
~Item and thus is removed.

7 a: ~e~f~g~h (8)
 ~e~f~gh~b~c~d

From step 6, (6)&(7) yields (8).

8 a: ~e~f~g~h (8) “~e~f~gh~b~c~d” is removed.
9 :~a (9)

 a~e~f~g~h (10)
(8) contains two cases: “~a” and
“a~e~f~g~h”.

10 bcdefgh
abcd

From step 9,(9)? bcdefgh; (10)?
abcd.

As we can see from Table 1, for the itemset abcdefgh and infrequent 3-itemsets {aef,

aeg, aeh, afg, afh, agh, abe, abf, abg, abh, ace, acf, acg, ach, ade, adf, adg, adh},
Quick_split returns the possible maximal frequent sets {abcd, bcdefgh}.

 p.8/8

2.3. The PD Algorithm
In this section we will show the PD algorithm that uses PD-decompose to find all
frequent patterns in a transaction dataset T.

As shown in Figure 5, PD is the top-level function that accepts a transaction dataset
as its input and returns the union of all frequent sets as the result. At the kth pass, steps 3-
6 count for every k itemset of each pattern in Dk and then determine the frequent and
infrequent sets, Lk and ~Lk; step 7 uses Dk, Lk and ~Lk to rebuild Dk+1. PD stops when Dk
is empty.

The PD-rebuild shown in Figure 6 is to determine Dk+1 by Dk, Lk and ~Lk. For each
pattern p in Dk, step 3 computes its qk and ~qk; step 4 calls PD-decompose algorithm to
decompose p by ~qk. Note that qk is not used here for decomposing p. As we will discuss
in section 6, in some situations, using qk to decompose p will be more efficient than using
~qk. We leave this for future research. In steps 5 to 9, we use pattern separation rule to
separate p. In steps 7 to 9, PD-rebuild merges the patterns separated from p with their
identical ones via a hash table ht. Since PD follows the pattern decomposition rule to
decompose patterns and the pattern separation rule for merging identical patterns that
yield same support, the answers generated by PD are correct.

3. Performance Study
We compare PD with Apriori and FP-tree since the former is widely cited and the latter
claims the best performance in the literature.

Our experiments were performed on a 330MHz Pentium PC machine with 128 MB main
memory, running on Microsoft Windows 2000. PD algorithms were written in Java
JDK1.2.2. The test data sets were generated in the same fashion as the IBM Quest
project [1]. We used two data sets T10.I4.D100K denoted as D1, and T25.I10.D100K as
D2. In the datasets, the number of distinct items N was set to 1000. The corruption level
for a seed large itemset was fixed, obtained from a normal distribution with mean 0.5 and
variance 0.1. In the first dataset, all items in a seed large itemset were corruptible while
in the latter datasets half were corruptible. In the dataset D1, the average transaction size
|T| and average maximal potentially frequent itemset size |I| are set to 10 and 4,

PD (transaction-set T)

 1: D1 = {<t, 1>| t ? T }; k=1;
 2: while (Dk? F) do begin

 3: forall p ? Dk do // counting

 4: forall k-itemset s ? p.IS do
 5: Sup(s|Dk) += p.Occ;
 6: decide Lk and ~Lk ;
 //build Dk+1
 7: Dk+1= PD-rebuild(Dk, Lk, ~Lk);
 8: k++;
 9: end
 10:Answer = ? Lk

PD-rebuild (Dk, Lk, ~Lk)
 1: Dk+1 = F ; ht = an empty hash table;

 2: forall p ? Dk do begin
 3: // qk, ~qk can be taken from previous counting

 qk={s|s? p.IS n Lk }; ~qk={t|t? p.IS n ~Lk }
 4: u = PD-decompose(p.IS, ~qk);

 5: v ={s? u| s is k-item independent in u}
 6: add <u-v, p.Occ> to Dk+1;

 7: forall s? v do
 8: if s in ht then ht.s.Occ+= p.Occ;
 9: else put <s,p.Occ> to ht;
 10: end
 11: Dk+1 = Dk+1 ? {p? ht};

Figure 5. PD Figure 6. PD-rebuild

 p.9/9

respectively, while the number of transactions |D| in the dataset is set to 100K. In the
dataset D2, |T|=25, |I|=10, |D|=100K.

For the comparison of PD with FP-tree, since PD was written in Java and FP-tree in C++
and we don’t have time to implement PD in C++, their results are adjusted by a
coefficient about 10.

3.1 Comparison of PD with Apriori

Figures 7 and 8 display our test results for datasets T10.I4.D100K and
T25.I10.D100K respectively. Figure 7 shows the execution times for different minimum
support. We can see that PD is about 30 times faster than Apriori with minimal support
at 2% and about 10 times faster than Apriori at 0.25%.

Figure 8 shows execution times for each pass given minsup=0.25%. Initially,
execution times of Apriori and PD are comparable. In later passes, when frequent sets
become numerous and longer, PD outperforms Apriori. Apriori counts candidates support
in the original dataset with 100K transactions with average size |T|; while PD counts in a
reduced dataset with only about 5K patterns with average size much less than |T|.

Figure 7. Execution times comparison between Apriori and PD vs. minimum support

T10.I4.D100K

1

10

100

1000

2 1.5 1 0.75 0.5 0.33 0.25
 Minimum Support (%)

T
im

e
(s

)

Apriori

PD

10

100

1000

10000

2 1.5 1 0.75 0.5 0.33 0.25
 Minimum Support (%)

T
im

e
(s

)

Apriori

PD

T25.I10.D100K

T10.I4.D100K

0

10

20

30

40

50

60

70

2nd 3rd 4th 5th 6th 7th 8th 9th
Passes (minsup=0.25%)

T
im

e
(s

)

Apriori

PD

Figure 8. Execution times comparison between Apriori and PD vs. passes

0

500

1000

1500

2000

2500

2nd 4th 6th 8th 10t
h

12t
h

14t
h

Passes (minsup=0.25%)

T
im

e
(s

)

Apriori

PD

T25.I10.D100K

 p.10/10

To test the scalability with the number of transactions, experiments on dataset D2 are

used. The support threshold is set to 0.75%. The results are presented in Figure 9. The
execution time for Apriori linearly
increases with the number of transactions
from 50K to 250K. However, the
execution time for PD does not necessarily
increase as the number of transactions
increases. This is due to the fact that as
number of transaction |D| increases, the
possibility of patterns after decomposition
can combine with others increases.
Suppose two datasets D' and D? have
different numbers of transactions with
|D'|>>|D?|; it is possible after
decomposition to have |D1'|<|D1?|, i.e. a
much bigger dataset after decomposition
may become smaller. This means
increasing the number of transactions may decrease the time for PD to mine all frequent
patterns. Thus PD has a better scalability in terms of number of transactions than that of
Apriori.

3.2 Comparison of PD with FP-tree

FP-tree algorithm is an efficient algorithm recently proposed in [8]. The novel idea is
to build up frequent pattern trees to store data and mine frequent patterns using the trees.
We note that: (1). FP-trees is substantially smaller than the original data and saves costly
database scans; (2) It avoids candidate set generation and testing. For comparison, we
ran the PD and FP-tree algorithms on the same machine using the same dataset as input
and generated the same output. For each test point, we determined four values: (a) tFP the
running time for FP-tree (in C++); (b) tPD the running time for PD (in Java); (c) tAC the
running time for Apriori (in C++); (d) tAJ the running time for Apriori (in Java). To
calculate the language time difference between C++ and Java, we adjusted tPD to tPD*
(tAC/tAJ), where tAC/tAJ ˜ 10. According to our experiments, both FP tree and PD were
faster than Apriori, especially when the minimum support was relatively low. However,
PD ran two times faster than FP-tree.

As shown in Figure 10, both FP-tree and PD have good performance on D1. But FP-
tree takes substantially more time when minimum support in the range from 0.5% to 2%.
When minsup less than 0.5%, the number of frequent patterns increased quickly and thus
the execution times are comparable. For D2, FP-tree takes nine times longer than PD at
minsup=2% and the gap reduces to 2 times faster at minsup=0.25%

In Figure 11, we compared the scalability of PD with FP-tree on the dataset D2 with
minimum support=0.75%. When the number of transactions ranged from 60k-80k, both

Figure 9. Scalability comparison between
Apriori and PD

0

2

4

6

8

10

50K 100K 150K 200K 250K
Number of transactions (minsup=0.75%)

R
el

at
iv

e
Ti

m
e

Apriori

PD-Miner

T25.I10

 p.11/11

methods took almost constant time (most likely due to overhead). When we scaled up to
200K, FP-tree required more than 1884M of virtual memory and could not run on our
machine while PD finished the computation within 64M main memory.

The main costs in FP-tree-based mining involve recursively building conditional FP-
trees. The number of conditional FP-trees can be enormous and run out of virtual
memory space on our machine when we run 200K transaction dataset. Further, the
complicated data structure of FP-tree requires large number of pointers. In order to build
the conditional FP-tree efficiently, each node needs three pointers. Suppose the item,
counter, and pointer is encoded in 4 bytes; the storage overhead of pointers in a node will
be 60% of the data storage.

PD, like the FP-tree-based algorithm, uses a compressed data representation to find
the frequent patterns. However, PD uses a very simple and flat data structures and
significantly shrinks the dataset in each pass. PD keeps only the current dataset Dk and a
hash table for pattern decomposition. Thus it requires much less storage space than FP-
tree and thus yields better scalability.

4. Further Discussions

4.1 Comparison with Pincer-search
The idea of using a newly discovered infrequent set to split its supersets was discussed in
Pincer-search [4]. It was reported to have performance improvements up to several
orders of magnitude compared to the best algorithms at that time. Pincer-search uses
both the bottom-up and top-down searches. Its primary search direction is still bottom-
up, but a restricted search is also conducted in the top-down direction.

However, there are several differences between PD and Pincer-search. First, the
quick-split algorithm is more efficient than the MFCS-gen used by pincer-search [4]
which we call simple-split in section 3. Intuitively in quick-split, using a frequency tree
saves much computation on shared items than using simple split. Second, we use quick-
split to decompose a pattern of the dataset while Pincer-search uses simple-split to split

0

100

200

300

400

500

60 80 100 120 140 160 200
Number of transactions (K)

C
al

ib
ra

te
d

re
la

tiv
e

tim
e

FP-tree

PD

0

50

100

150

2 1.5 1 0.75 0.5 0.33 0.25
 Minimum Support (%)

C
al

ib
ra

te
d

re
la

tiv
e

tim
e

D1 FP-tree

D1 PD

D2 FP-tree

D2 PD

D1=T10.I4.D100K, D2= T25.I10.D100K T25.I10

Figure 10. Performance comparison between
FP-tree and PD for selective minimum support

Figure 11. Scalability comparison between
FP-tree and PD

 p.12/12

candidate sets. In addition, it discovers only maximal frequent sets which do not provide
enough information for generating association rules.

4.2 Further Improvements
First, we note that quick-split is not the only technique we can use for pattern
decomposition. For an itemset s, suppose qk is its frequent k-item sets and ~qk is its
infrequent k-item sets, if | qk | << | ~qk |, one can follow that it would be more efficient to
calculate decomposition results from qk rather than from ~qk.

Second, PD is flexible in that it can be extended in various ways or applied with other
algorithms. We can extend PD to output maximal frequent patterns whenever the support
of a pattern in the dataset satisfies the given requirement of minimal support.

 p.13/13

5. An Application
The motivation of our work originates from the problem of finding multi-word
combinations in a group of medical report documents, where sentences can be viewed as
transactions and words can be viewed as items. The problem is to find all multi-word
combinations that occur at least in 2 sentences of a document.

As a simple example, Figure 12(f) shows a sample medical report. Its topic is
“Aspirin greatly underused in people with heart disease”. After stemming and removing
stop words, there are 135 distinct words. The 34 frequent words are shown in Figure
12(a) in decreasing order of frequency. Frequent 2-word, 3-word, 4-word, 5-word
combinations are listed in Figures 12(b)-(e).

Multi-word combinations are effective for document indexing and summarization.

The work in [12,11] shows that multi-word combinations can index documents more
accurately than using single-word indexing terms. Multi-word combinations can

heart, aspirin, patient, doct, study, they, risk, prevent, take, diseas,
stafford, use, too, may, thi, we, attack, ther, intern, bia, gener, peopl,
problem, call, know, not, pain, some, reduc, medicat, very, becaus, data,
regul

aspirin patient, heart aspirin, aspirin use, aspirin take, aspirin risk,
aspirin study, patient take, patient study, heart diseas, heart patient,
diseas peopl, prevent too, they not, they ther, they take, doct data, doct
some, doct too, doct use, doct stafford, aspirin regul, aspirin becaus,
aspirin reduc, aspirin some, aspirin pain, aspirin not, aspirin attack,
aspirin too, aspirin diseas, use regul, aspirin they, aspirin doct, stafford
intern, take not, risk reduc, study take, patient becaus, patient some,
patient not, patient too, patient use, patient they, patient doct, heart
regul, heart peopl, heart attack, heart too, heart use, heart stafford, use
some, heart study, heart doct

aspirin patient take, aspirin patient study, heart aspirin patient, aspirin
doct some, aspirin patient some, heart aspirin use, doct use some, aspirin
take not, aspirin they not, aspirin patient not, aspirin they take, aspirin
study take, patient doct use, heart aspirin diseas, heart use regul, heart
aspirin regul, aspirin patient too, heart aspirin attack, aspirin risk reduc,
patient take not, patient they not, heart patient too, heart aspirin too,
patient use some, patient doct some, patient they take, patient study take,
aspirin doct use, heart doct stafford, aspirin patient use, heart diseas
peopl, aspirin use regul, aspirin patient they, heart patient study, heart
aspirin study, aspirin patient becaus, aspirin patient doct, aspirin use
some, they take not

heart aspirin use regul, aspirin they take not, aspirin patient take not,
patient doct use some, aspirin patient study take, patient they take not,
aspirin patient use some, aspirin doct use some, aspirin patient they not,
aspirin patient they take, aspirin patient doct some, heart aspirin patient
too, aspirin patient doct use, heart aspirin patient study

aspirin patient they take not, aspirin patient doct use some

(a) Frequent 1-word table (total 34)

(b) Frequent 2-word table (total 52)

(c) Frequent 3-word table (total 39)

(d) Frequent 4-word table (total 14)

(e) Frequent 5-word table (total 2)

Aspirin greatly underused in people with heart disease

DALLAS (AP) -- Too few heart patients are taking aspirin despite
its widely known ability to prevent heart attacks, according to a
study released Monday.

The study, published in the American Heart Association's journal
Circulation, found that only 26 percent of patients who had heart
disease and could have benefited from aspirin took the pain
reliever.

"This suggests that there's a substantial number of patients who are
at higher risk of more problems because they're not taking aspirin,"
said Dr. Randall Stafford, an internist at Harvard's Massachusetts
General Hospital who led the study. "As we all know, this is a very
inexpensive medication -- very affordable."

The regular use of aspirin has been shown to reduce the risk of
blood clots that can block an artery and trigger a heart attack.
Experts say aspirin can also reduce the risk of a stroke and angina,
or severe chest pain.

Because regular aspirin use can cause some side effects -- such as
stomach ulcers, internal bleeding and allergic reactions – doctors
are too often reluctant to prescribe it for heart patients, Stafford
said.

"There's a bias in medicine toward treatment and within that bias
we tend to underutilize preventative services -- even if they've
been clearly proven," said Marty Sullivan, a professor of
cardiology at Duke University in Durham, N.C.

Stafford's findings were based on 1996 data from 10,942 doctor
visits by people with heart disease. The study may underestimate
aspirin use; some doctors may not have reported instances in
which they recommended patients take over-the-counter
medications, he said.

He called the data "a wake-up call" to doctors who focus too much
on acute medical problems and ignore general prevention.

(f) A sample medical report

Figure 12. An example of multi-word combination

 p.14/14

delineate the concepts or content of a domain specific document collection more
precisely than single word. For example, from the frequent 1-word table in Figure 12(a),
we may infer that “heart”, “aspirin”, and “patient” are the most important concepts in the
text since they occur more often than others. For the frequent 2-word table in Figure
12(b), we see a large number of 2-word combinations with “aspirin”, i.e. “aspirin
patient”, “heart aspirin”, “aspirin use”, “aspirin take”, etc. This infers that the
document emphasizes “aspirin” and “aspirin related” topics more than any other words.

6. Conclusion
In this paper, we propose a pattern decomposition algorithm to find frequent patterns

for large datasets. The PD algorithm significantly shrinks the dataset in each pass. It
avoids the costly candidate set generation procedure and greatly saves counting time by
using reduced datasets. Our experiments show that the PD algorithm has an order of
magnitude improvement over the Apriori algorithm on standard test data and is faster
than FP-tree. Since PD reduces the dataset, mining time does not necessary increase as
the number of transactions increases. Experimental results reveal that PD has better
scalability than both Apriori and FP-tree. We are using PD to mine multi-word
combinations from medical report documents. Without an efficient technique, we
otherwise need to limit the length of sentences as well as the size of multi-word
combinations.

Acknowledgment
The authors wish to thank Professor Jaiwei Han, Mr. Jian Pie and Mr. Runying Mao of
Simon Fraser University for providing their FP-tree software for the performance study.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB'94,

pp. 487-499.

[2] R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pp.
85-93.

[3] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 1997. New Algorithms for
Fast Discovery of Association Rules. In Proc. of the Third Int’l Conf. on Knowledge
Discovery in Databases and Data Mining, pp. 283-286.

[4] Lin, D.-I and Kedem, Z. M. 1998. Pincer-Search: A New Algorithm for Discovering
the Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending
DatabaseTechnology.

[5] Park, J. S.; Chen, M.-S.; and Yu, P. S. 1996. An Effective Hash Based Algorithm for
Mining Association Rules. In Proc. of the 1995 ACM-SIGMOD Conf. on
Management of Data, pp. 175-186.

[6] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997. Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In Proc. of the 1997 ACM-SIGMOD
Conf. On Management of Data, 255-264.

 p.15/15

[7] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets, Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining and
Knowledge Discovery (DMKD'00), Dallas, TX, May 2000.

[8] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation,
Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),
Dallas, TX, May 2000.

[9] Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. The maximum clique
problem, Handbook of Combinatorial Optimization (Supplement Volume A), in D.-Z.
Du and P. M. Pardalos (eds.). Kluwer Academic Publishers, Boston, MA, 1999.

[10] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. In
Communications of the ACM, 16(9):575-577, Sept. 1973.

[11] Johnson D.B., Chu W.W., Dionisio J.D.N., Taira R.K., Kangarloo H., Creating and
Indexing Teaching Files from Free-text Patient Reports. Proc. AMIA Symp 1999; pp.
814-818.

[12] Johnson D.B., Chu W.W., Using n-word combinations for domain specific
information retrieval, Proceedings of the Second International Conference on
Information Fusion – FUSION’99, San Jose, CA, July 6-9,1999.

[13] A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. In Proceedings of the 21st VLDB Conference,
1995.

[14] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for
discovering association rules. In Usama M. Fayyad and Ramasamy Uthurusamy,
editors, Proc. of the AAAI Workshop on Knowledge Discovery in Databases, pp.
181-192, Seattle, Washington, July 1994.

[15] H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of
the 22nd International Conference on Very Large Data Bases, Bombay, India,
September 1996.

[16] Q. Zou, W. Chu, D. Johnson, H. Chiu. A Pattern Decomposition (PD) Algorithm for
Finding All Frequent Patterns in Large Datasets. Proc. of the IEEE International
Conference on Data Mining, San Jose, California, November 2001.

