
Kunal Ganeshpure, Alodeep Sanyal, Sandip Kundu
Electrical and Computer Engineering, University of Massachusetts, Amherst

{kganeshp, asanyal, kundu}@ecs.umass.edu

Abstract―Max-current analysis is essential in power rail
design and power supply switching noise analysis. Traditionally,
maximum current from all CMOS gates are added together to
compute maximum current level. This approach ignores all
Boolean relationships. The problem of finding the input vector
pair that will cause worst case current draw from the power rails
when Boolean relationships are considered is an NP-hard
problem. In this paper, we propose a Current Maximizing
Pattern Generation (CMPG) algorithm which greatly reduces the
computational complexity by using a parameterized branch-and-
bound heuristic that prunes the search space by looking for a
lower as well as an upper bound for maximum switching
currents. When allowed to proceed indefinitely, the CMPG
algorithm converges on an exact solution instead of finding upper
and lower bounds. When coupled with a switch level SAT solver,
CMPG can generate patterns for cell library characterization.

Index Terms― Peak Current Analysis, Power Supply Current,
Pattern Generation, Max-satisfiability

I. INTRODUCTION
major concern in present day VLSI circuits is the design
of power and ground lines in a way that ensures design

reliability and performance. Excessive currents can affect
performance by causing voltage droop in the power rails,
which in turn degrade the switching speed of CMOS circuits
[1]. Excessive current-flow through metal conductors
accelerates electro-migration and cause long term reliability
problems [1]. Excessive current through die-package interface,
namely the C4 pads can cause thermal meltdown of solder
bumps and also cause reliability problems [2].

Therefore it becomes imperative to estimate current through
power supply lines more accurately. The total current through
power supply is constituted of two major components: current
due to switching of CMOS gates and the CMOS leakage
current. CMOS leakage current has been steadily rising due to
increased sub-threshold and gate oxide leakages and has
gained attention in the literature [3]. However, the switching
current still dominates overall current consumption and
accurate estimation of worst case switching current is the
focus of this paper.

Current is drawn from the power rail when a node output
switches from logic 0 state to logic 1, and to the ground rail
when it switches from logic 1 to logic 0. An input pattern for a
circuit with n inputs is defined as a vector of n excitations,

where each excitation could be any one of four possibilities: l
(low), h (high), hl (high to low) or lh (low to high). For
different input patterns, different transient current waveforms
are drawn at the contact points. The transient current
waveform can be described by a piece-wise linear (PWL)
function with a peak current value Ipeak. Accurate estimation of
the maximum current waveform at every contact point implies
determining current waveforms corresponding to all possible
input patterns. For a circuit with n primary inputs, we need to
simulate for 4n input patterns, since each input can be l, h, hl
or lh. Therefore, estimating maximum current for a large
CMOS logic network is computationally intractable because it
implies that the number of simulations which must be
performed in order to find the maximum current is exponential
in the number of inputs to the network, which makes it fall
into the NP-hard class of problems.

In this paper, instead of finding an exact solution to this NP-
hard problem, we seek to establish a tight upper and lower
bound for switching current estimates. This approach whittles
down the computational complexity and makes a practical
solution attainable. However, we retain the completeness of a
NP-hard solver by maintaining a parameter η that can be
controlled to close the gap between upper and lower bounds to
achieve an exact solution at the obvious cost of extreme
computation.

The rest of the paper is organized as follows: in section 2,
we review previous work in this domain. In section 3 we
describe our new approach of establishing upper and lower
bounds for the maximum currents drawn from the supply rails.
Section 4 narrates the results obtained through simulation of
the proposed algorithm on ISCAS85 benchmark circuits. We
conclude in section 5.

II. RELATED WORK
The problems of estimating maximum current and the peak

power dissipation for a CMOS circuit are mathematically
identical in nature and have been addressed in literature with
significant importance over the last decade. Previous studies
of supply rail currents includes pattern independent approach
by Kriplani et al. [4], which offer improvement in execution
times compared to SPICE-based methods [5][6], but is overly
pessimistic because Boolean filtering is not used. Chowdhury
et al. [7] addressed the problem of maximum current
estimation by partitioning the circuit into macro modules and

A Pattern Generation Technique for Maximizing
Power Supply Currents

A

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

then applying the exact search technique or a suitable heuristic
separately on each of them to come up with the solution.
However, their methodology suffers from an over-estimation
trend because of their assumption that all the macros draw
their maximum currents simultaneously.

A set of different algorithms and their relative performance
was studied by Jiang et al. [8]. They reported that for small
circuits the ILP-with-partitioning approach provides tightest
upper bound, and for large circuits the lower bound obtained
by the GA-based approach seems to be most effective and
outperforms the other two approaches viz. the timed-ATPG
approach and the probability-based approach. They also
observed that the timed-ATPG, probability-based, and ILP
approaches are only applicable to combinational circuits,
while the GA approach applies to sequential circuits as well.
Estimation of worst case power dissipation in CMOS
combinational circuits was studied by Devadas et al. [9]. They
reduced the problem to weighted max-satisfiability problem
on a set of multi-output Boolean functions followed by using
either a disjoint cover enumeration algorithm or the branch-
and-bound algorithm to solve the NP-hard problem. However,
for a multilevel logic circuit, even under a unit gate delay
assumption, the functions generated by their algorithm are
fairly complex, and suffers from long execution time.
Moreover, this approach requires that the problem be solved
optimally – no sub-optimal solution can be used as upper
bounds of switching activity. Chai et al. [10] formulated an
integer linear program (ILP) based on the signal correlations
within a circuit. They claimed a faster solution compared to
[9] only through relaxing the constraints of the integer
program. Hsiao et al. [11] proposed a peak power estimation
tool, K2, that generates a specific vector sequence that
produces maximum power dissipation in both combinational
and sequential circuits. A Hamming distance-based approach
was studied by Gupta et al. [12], where they estimate energy
and peak current for every input vector pair.

Several ATPG-based approaches have also been reported in
literature [13][14], which generate input vectors to either
estimate the power supply noise or in the context of delay
testing, where delay is seen as an effect of variable IR-drop
across the power supply rails. Tirumurti et al. [1] proposed a
fault model to address the problem of vector generation for
delay faults arising out of power delivery problems.

III. THE PROPOSED APPROACH
From the above survey, it becomes clear that existing

methods for calculation of maximum currents in the power
supply rails suffer from limitations such as long execution
time or weak upper or lower bounds for maximum currents
while handling large VLSI circuits.

In this paper, we propose a four step approach to simplify
this problem:

a) Given the first input pattern I1, generate the second input
pattern I2 that causes maximum supply rail currents

b) Provide a tight lower as well as upper bound for the
supply rail currents for the input vector pair <I1,I2>

c) Solve the problem of finding an initial pattern I1 that

Inputs
Outputs

i1
i3

i6

i2

i7

o1

o2

10

11

16

19

23

22

19
1
1

1

0

1

1

1 1

1

1

10

0

0

0

0

1

5

2733

15

17

Fig. 1: c17 benchmark circuit with peak current weights associated with
individual nodes

creates worst case <I1,I2> combination. The mathematical
solution of this step turns out to be exact equivalent of step (a)
mentioned above. We will revisit this in section 3.2.

d) By observing sub-optimality of the solution obtained in
step (c), which will be explained in details through an example
later, propose a technique of concurrently generating the input
vector pair <I1,I2> which leads to a near-optimal solution. This
technique is also based on the basic algorithm proposed for
solving step (a) and will be discussed in depth in section 3.3.

To solve the steps (a) and (b), we propose a branch-and-
bound heuristic which reduces the exponential complexity of
the original problem by using a parameter η. The value of the
parameter η is defined as the ratio between the target peak
current and the maximum peak current that could be obtained
starting from the first input pattern I1. The following example
explains the concept:

Example 1: An input pattern I1 = {1,1,0,1,1} is applied to
the primary inputs of the ISCAS85 benchmark circuit c17
(shown in Fig. 1). The peak current weights (random values
without any unit) associated with individual nodes are shown
in square boxes on the top of the nodes in Fig. 1. The input
pattern I1 produces 0 at the output of nodes 10, 16 and 19.
Therefore, maximum peak current weight that can be drawn
from the power rail is Wmax = 19+33+15 = 67 when all these
three nodes switch to 1 on application of a second input
pattern I2. Now, if we set the parameter η = 0.5, then the
proposed algorithm will search for finding an I2 such that it
switches at least those many nodes whose cumulative weight
will exceed ηWmax=33.5. A possible solution for
I2={0,1,0,1,0} with total switched weight = 34 for nodes 10
and 19 switching back to 1. ■

With this discussion on the parameter η, we now delve into
a detailed study of the proposed algorithm.

Assumption(s): We are given an input netlist consisting of
gates (cells) and weights associated with each gate (cell)
corresponding to its peak current to VDD or GND.

For solving steps (a) and (b), we proceed as follows:
Step 1: Through logic simulation of the given input pattern

I1, we obtain the set of internal nodes S0 (S1) that produce 0 (1)
and Wmax for the sets S0 (S1).

Step 2: Then we sort the above lists of internal nodes by the
descending order of their peak current consumption measure
(weight).

Fig. 2: The CMPG (Current Maximizing Pattern Generation) algorithm

Step 3: For a given I1, we perform a preprocessing step by

randomly choosing a finite number of candidates for input
pattern I2 and by logic simulation computing the total peak
current drawn by the respective <I1,I2> pair. During this
process, we keep the maximum peak current noted so far and
stop the preprocessing when no change is observed in the
noted maximum peak current for 100 consecutive simulations.
The ratio between the noted maximum peak current in the
preprocessing step and Wmax obtained in step 1 defines the
initial value of η.

Step 4:: We then employ a greedy branch-and-bound
heuristic which selects a subset S’ of S0 (S1) and form a
Boolean function. Then we invoke a SAT solver to determine
whether S’ is satisfiable.

Step 5: Based on the satisfiability result obtained from the
SAT-solver, we grow the list of selected nodes by appropriate
inclusions and exclusions while maintaining the lower bound
established by η.

In stead of building our own SAT-solver, we used. ZChaff
developed by Malik et al. [15][16] to illustrate the idea of
bounding introduced by our algorithm. Zchaff accepts the
Boolean expression, to be checked for satisfiability, in
Conjunctive Normal Form (CNF). To extract the CNF form,
the circuit topology is represented in the form of a directed
acyclic graph (DAG) [17]. The nodes of the graph represent
the circuit inputs, outputs and gates. This requires an extra
step for converting the Boolean functions to CNF format and
introduces inefficiency. However, our thrust in this paper is to
show the practicality of the bounding approach in solving an
NP-hard problem.

A. The Current Maximizing Pattern Generation (CMPG)
Algorithm
One approach to solving a max-satisfiability problem is to

use a branch-and-bound heuristic. We use a threshold
parameter η as discussed above which sets the lower bound of
the maximum supply rail currents. The CMPG algorithm is
then invoked with the parameter η as obtained from the
preprocessing step. The algorithm starts by selecting the node
with the highest weight (say node 1) and invoking the SAT-
solver to check its satisfiability, followed by exhaustively
exploring all the combinations of this node with the other
nodes. If none of the combinations satisfy the threshold
condition set by η, the algorithm permanently excludes the
node 1 from the list of valid future choices and starts exploring
the combinations of the node with second highest weight and
so on. This strategy of starting from the node with the highest
weight becomes truly advantageous in pruning an appreciable
number of useless searches and was studied by Devadas et al.
[18][19] in the context of identifying and removing false paths
in the domain of delay testing. The proposed algorithm allows
user to supply termination condition with upper and lower
bound.

Theorem: The algorithm CMPG is complete, i..e., given
enough time and space it will be able to produce the list of
gates that switch from 0 to 1 (or vice versa) to cause
maximum supply rail current.

Proof: We prove the above theorem using induction method
in the following way:

Base case: When there exists only one node, the algorithm
chooses the node and invokes the SAT-solver to check its

satisfiability.
In case of two nodes {n1, n2} arranged in descending order

of weight, the algorithm chooses the node n1 and checks
whether it is satisfiable. If the SAT-solver returns TRUE, next
it tries the combination <n1,n2>. Otherwise, the algorithm
checks for the satisfiability of the node n2. Therefore, for a set
of two nodes, the algorithm explores all 22=4 combinations
either explicitly or implicitly.

Inductive hypothesis: For k choice of nodes, the algorithm
will visit all the 2k combinations, either explicitly or implicitly
i.e. the algorithm is complete with k choice of nodes.

Inductive step: Now for k+1 choice of nodes, the algorithm
will check first whether the (k+1)th node is satisfiable, and
irrespective of the satisfiability result, will recurse on k choice
of nodes, which is the inductive hypothesis. Therefore, it will
explore all the 2.2k=2k+1 combinations.

Hence, the proof. ■

B. Pre-condition pattern generator
We find the first input pattern I1 through the Pre-condition

pattern generator which essentially invokes the CMPG
algorithm with the list of all nodes and their associated
weights as the input. Here our objective is to maximize the
sum of weights of the nodes producing 0 (1) in the process of
estimating the VDD (GND) rail current. In order to achieve that
goal, all the nodes of the circuit are initialized at 1(0) and then
CMPG is invoked to find out the first input pattern I1 which
sets a subset (say, S1) of all the nodes to 0 fulfilling the
threshold set by η. Once I1 is known, CMPG will be invoked
again to work on the subset S1 to find the second input pattern
I2 which will switch a further subset of S1 (say, S2) to 1
satisfying the threshold condition. The input vector pair
<I1,I2> together establishes the bound on the worst case supply
rail switching currents for a given circuit. De-coupling the
steps for generating pattern 1 and 2 makes them sub-optimal
as explained next.

Example 2: We consider two separate input vector pairs
applied to the benchmark c17 (shown in Fig. 1).

The first pair <I1,I2> = {(1,1,0,1,1);(0,1,0,1,0)}. The first
pattern I1, obtained from CMPG, sets the nodes 10, 16 and 19
to 0 with an initial switching weight Winit= 19+33+15 = 67.
Then CMPG is invoked again and it finds the second pattern I2
which switches node 10 and 19 back to 1 thereby causing the
final switched weight Wfinal = 19+15 = 34. Now let’s consider
the second vector pair <I1,I2> = {(1,1,0,1,0);(0,1,0,0,0)}. The
first pattern in this case sets only the nodes 10 and 16 to 0 with
Winit = 19+33 = 52. We see that the initial switching weight
here is lower compared to the previous case. However, the
second pattern I2 switches both the nodes back to 1 thereby
causing the final switched weight Wfinal = 19 +33 = 52, which
is higher compared to the previous case. ■

C. The CONCURRENT-INPUT-PAIR Algorithm
One way to solve the above sub-optimality is to

concurrently generate the input vector pair <I1,I2> to account
for the correlation between the two patterns to manifest their
combined effect in the final switched weight. The following

five steps briefly describe our technique:
Step 1: Two copies of the circuit are created and merged to

form a combined circuit.
Step 2: Logic simulation for the combined circuit is

performed repeatedly on randomly generated input patterns
until the maximum switched weight does not change for 100
consecutive patterns.

Step 3: The threshold parameter η is obtained from the
maximum switched weight (obtained through logic simulation
in step 2) in the way mentioned before.

Step 4: CMPG is invoked for the combined circuit with the
threshold set appropriately by the parameter η obtained above.
The CNF equations are formed in such a way that it tries to
maximize 0’s at the node outputs on one copy of the circuit
and 1’s on the same node outputs of the other. These CNF
equations are then combined followed by invoking the SAT-
solver.

Step 5: The input vector obtained through CMPG in step 4
is split into two halves which form the input vector pair
<I1,I2>.

IV. RESULTS
Experiments were conducted on all 3 approaches described

in the previous section. Results from these experiments are
shown in Tables I-III respectively.

The lower bound is determined by starting with the base η
value obtained from preprocessing step, incrementing it by a
small step size of 0.05. We continue to increment this η value
if SAT portion of CMPG returns with success. If SAT portion
of CMPG results in a failure, lower bound on η is established.
For upper bound, we start with η = 1.0, and decrement η with
the same step size with each failure. A timer is used to
terminate the process when the search takes too long for either
the lower or the upper bound of η. The time-out limit was set
to 5 hours.

In Table I, results from CMPG on ISCAS-85 benchmark
circuits are presented for the case where the second input
pattern I2 is determined for a given first input pattern I1. In this
case the first input pattern I1 was chosen randomly. For
determining I2, first random patterns were simulated to
establish a lower bound for the maximum weight (that
corresponds to current) that can be switched by simulation.
Simulation of random patterns continues, until 100
consecutive patterns do not show any improvement of the
lower bound. At that point, simulation is terminated and
deterministic algorithm is invoked. The simulations already
establish a lower bound on how much current can be drawn
from the supply rail. We try to improve on that lower bound
through deterministic branch and bound technique as
described in section III A. The adaptive random simulation
runs longest for c3540, where most current is drawn in pattern
249. In Fig. 3, we show how the relative η value changes
during random logic simulation for the circuit c3540. In Table
I, the η values are given in both relative and absolute sense,
where by relative we mean relative to input pattern I1, and
absolute means relative to maximum supply rail current that

could be drawn if all nodes could be switched for the circuit.
Same definition of η also applies for Table II and Table III.

TABLE I
EXPERIMENTAL RESULTS FOR GENERATING INPUT PATTERN I1, GIVEN INPUT

PATTERN I2 FOR ISCAS-85 BENCHMARK CIRCUITS

η from logic simulation η obtained from CMPG
Lower Bound Upper Bound Circuit

Name # of
patterns

Rel.
η

Abs.
η Rel.

η
Abs
. η

Rel.
η

Abs.
η

C17 103 1.00 0.529 1.00 0.529 1.0 0.529
C432 288 0.72 0.358 0.85 0.423 0.85 0.423
C499 240 0.46 0.314 0.50 0.341 0.70 0.478
C880 132 0.53 0.273 0.75 0.387 0.95 0.490
C1355 253 0.60 0.226 0.67 0.252 0.95 0.358
C1908 130 0.61 0.259 0.65 0.276 1.0 0.424
C2670 164 0.44 0.238 0.60 0.324 1.0 0.540
C3540 349 0.36 0.213 0.36 0.213 1.0 0.592
C5315 231 0.43 0.248 0.50 0.288 1.0 0.577
C6288 144 0.34 0.229 0.37 0.250 1.0 0.608
C7552 102 0.48 0.244 0.50 0.254 1.0 0.509

Fig. 3: Plot showing the gradual saturation of η with number of random
pattern logic simulations for c3540

Table II shows the experimental results for the case when
CMPG algorithm is used to generate both the input pattern I1
and I2 for ISCAS-85 benchmark circuits. Here random pattern
simulation is done by generating random pattern pairs and
stopping when the fraction of the total maximum current
drawn from power supply rail does not change for 100
consecutive simulations.

TABLE II

EXPERIMENTAL RESULTS FOR INDEPENDENT GENERATION OF PATTERNS I1 AND
I2 FOR ISCAS-85 BENCHMARK CIRCUITS

Abs. η for Pattern I1 Abs. η for Pattern I2

CMPG Alg. CMPG Alg. Circuit
Name

η
from
logic
sim

Logic
sim. 1 LB UB

Logic
sim. 2 LB UB

C17 0.543 0.543 0.543 0.543 0.543 0.543 0.543
C432 0.344 0.520 0.520 0.520 0.344 0.448 0.448
C499 0.312 0.730 0.852 1.000 0.414 0.473 0.639
C880 0.240 0.559 0.559 1.000 0.257 0.403 0.531
C1355 0.240 0.425 0.425 1.000 0.260 0.298 0.340
C1908 0.270 0.459 0.459 1.000 0.300 0.300 0.466
C2670 0.259 0.582 0.601 1.000 0.270 0.332 0.601
C3540 0.229 0.619 0.619 1.000 0.229 0.229 0.619
C5315 0.249 0.605 0.605 1.000 0.274 0.274 0.605
C6288 0.198 0.690 0.700 1.000 0.271 0.304 0.700
C7552 0.258 0.545 0.545 1.000 0.474 0.501 0.545

In the second phase, I1 and I2 are generated using algorithm

presented in 3.2. For example for the circuit c880 the random
logic simulation for the pattern pair (col. 2 in Table II) draws a
fraction of 0.24 of the worst case supply rail current. The input

pattern I1 obtained from the Pre-condition pattern generator
draws a fraction of 0.559 of the worst case current (columns 3
and 4 in Table II). Finally, by using the CMPG algorithm for
the second time, we find an input vector pair <I1,I2> which
sets the lower as well as the upper bound of the worst case
power supply rail current to be a fraction of 0.403 and 0.531
of worst case current. We also observe that the lower and the
upper bounds established by this method is consistently higher
than the bounds established by method 1 where input vector 1
was randomly chosen and the deterministic algorithm was
used to find the second pattern.

In Table III, the CMPG algorithm is used to determine the
pattern pair concurrently. For the circuit c880 the logic
simulation gives the base value of η to be 0.263 (col. 3).
Starting from this base η value, the CMPG algorithm is able to
establish a lower bound of 0.309 of the worst case current.

Looking at the result for c432 in Table II and III, we
observe that the upper bound obtained in Table II (the case for
finding I1, followed by I2) is less than even the lower bound
obtained in Table III (the case for finding <I1,I2>
concurrently), which establishes the notion of sub-optimality
inherent in method 2 as discussed in Example 2 above. Using
the same time out period results in looser bounds for this
approach.

TABLE III

EXPERIMENTAL RESULTS FOR CONCURRENT GENERATION OF INPUT PATTERNS
I1 AND I2 FOR ISCAS-85 BENCHMARKS

Algorithm

Circuit Maximum weight that could
be switched

Logic-
simulation Absolute

LB
Absolute

UB
C17 3.0705 0.543 0.543 0.543
C432 73.50 0.312 0.452 0.800
C499 96.38 0.316 0.512 0.849
C880 186.82 0.263 0.309 1.000
C1355 278.35 0.255 0.255 1.000
C1908 431.80 0.281 0.300 1.000
C2670 591.24 0.269 0.350 1.000
C3540 843.54 0.215 0.215 1.000
C5315 1154.62 0.251 0.299 1.000
C6288 1207.79 0.244 0.250 1.000
C7552 1724.74 0.266 0.300 1.000

V. CONCLUSIONS
In the context of peak supply rail current estimation, we

have proposed an approximate solution for a computationally
intractable problem. If allowed to run indefinitely, the
approximate solution asymptotically converges to an exact
solution. Given a circuit description, the algorithm also
generates the input vector pair that produces near optimal
worst case supply current. We studied three methods for
finding out the input vector pair and compared their relative
efficiency over each other. The solution can also be used to
generate input patterns for cell library characterization. This
will require a switch level SAT solver such as [20].

VI. REFERENCES
[1] C. Tirumurti, S. Kundu, S. Sur-Kolay, and Y.-S. Chang, “A Modeling

Approach for Addressing Power Supply Switching Noise Related

Failures of Integrated Circuits,” in Proc. Design, Automation and Test in
Europe (DATE), 2004, pp. 1078-1083.

[2] D. Suryanarayana, R. Hsiao, T.P. Gall, and J.M. McCreary,
"Enhancement of flip-chip fatigue life by encapsulation", IEEE Trans.
on Components, Packaging, and Manufacturing Technology, Vol: 14,
No. 1, Mar. 1991, pp. 218-223

[3] K. Roy. et al. “Leakage Current Mechanisms and Leakage Reduction
Techniques in Deep-Submicron CMOS Circuits,” Proc. of IEEE, Feb.
2003.

[4] H. Kriplani, F. N. Najm, and I. N. Hajj, “Pattern Independent Maximum
current Estimation in Power and Ground Buses of CMOS VLSI Circuits:
Algorithms, Signal Correlations, and Their Resolution,” IEEE Trans.
Computer-Aided Design, Vol. 14, No. 8, Aug. 1995, pp. 998-1012.

[5] A. Nabavi-Lishi and N. Rumin, “Delay and bus current evaluation in
CMOS logic circuits,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 1992, pp. 198-203.

[6] U. Jagau, “SIMCURRENT-An efficient program for the estimation of
the current flow of complex CMOS circuits,” in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design, 1988, pp. 208-211.

[7] S. Chowdhury, and J. S. Barkatullah, “Estimation of maximum currents
in MOS IC logic circuits,” IEEE Trans. Computer-Aided Design, Vol. 9,
No. 6, Jun. 1990, pp. 642-654.

[8] Y.-M. Jiang, A. Krstic, and K.-T. Cheng, “Estimation for Maximum
Instantaneous Current Through supply Lines for CMOS Circuits,” IEEE
Trans. VLSI Systems, Vol. 8, No. 1, Feb. 2000, pp. 61-73.

[9] S. Devadas, K. Keutzer, and J. White, “Estimation of Power Dissipation
in CMOS Combinational Circuits Using Boolean Function
Manipulation,” IEEE Trans. Computer-Aided Design, Vol. 11, No. 3,
Mar. 1992, pp. 373-383.

[10] D. Chai, and A. Kuehlmann, “Circuit-based Preprocessing of ILP and Its
applications in Leakage Minimization and Power Estimation,” in Proc.
IEEE Intl. Conf. Computer Design (ICCD), 2004, pp. 387-392.

[11] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Peak Power Estimation of
VLSI Circuits: New Peak Power Measures,” IEEE Trans. VLSI
Systems, Vol. 8, No. 4, Aug. 2000, pp. 435-439.

[12] S. Gupta, and F. N. Najm, “Energy and Peak-Current Per-Cycle
Estimation at RTL,” IEEE Trans. VLSI Systems, Vol. 11, No. 4, Aug.
2003, pp. 525-537.

[13] Y.-M. Jiang, and K.-T. Cheng, “Vector Generation for Power Supply
Noise Estimation and Verification of Deep Submicron Designs,” IEEE
Trans. VLSI Systems, Vol. 9, No. 2, Apr. 2001, pp. 329-340.

[14] A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Pattern Generation for Delay
Testing and Dynamic Timing Analysis Considering Power Supply Noise
Effects,” IEEE Trans. Computer-Aided Design, Vol. 20, No. 3, Mar.
2001, pp. 416-425.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver”, in Proc. Design Automation
Conference (DAC), 2001, pp. 530-535.

[16] S. Malik, Y.Mahajan, and Z. Fu, “ZChaff2004: An Efficient SAT
Solver”, Theory and Applications of Satisfiability Testing, Selected
Revised Papers Series: Lecture Notes in Computer Science, 2004.

[17] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability”,
IEEE Trans. Computer-Aided Design, Vol. 11, No. 1, Jan. 1992, pp. 4-
15.

[18] S. Devadas, K. Keutzer, and S. Malik, “Computation of Floating Mode
Delay in Combinational Circuits: Theory and Algorithms,” IEEE Trans.
Computer-Aided Design, Vol. 12, No. 12, Dec. 1993, pp. 1913-1923.

[19] S. Devadas, K. Keutzer, S. Malik, and A. Wang, “Computation of
Floating Mode Delay in Combinational Circuits: Practice and
Implementation,” IEEE Trans. Computer-Aided Design, Vol. 12, No.
12, Dec. 1993, pp. 1924-193.

[20] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin, “Verity — a formal
verification program for custom CMOS circuits,” IBM J. Res. Dev. 39,
1-2 (Feb. 1995), pp. 149-165.

