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Abstract―Max-current analysis is essential in power rail 
design and power supply switching noise analysis. Traditionally, 
maximum current from all CMOS gates are added together to 
compute maximum current level. This approach ignores all 
Boolean relationships. The problem of finding the input vector 
pair that will cause worst case current draw from the power rails 
when Boolean relationships are considered is an NP-hard 
problem. In this paper, we propose a Current Maximizing 
Pattern Generation (CMPG) algorithm which greatly reduces the 
computational complexity by using a parameterized branch-and-
bound heuristic that prunes the search space by looking for a 
lower as well as an upper bound for maximum switching 
currents. When allowed to proceed indefinitely, the CMPG 
algorithm converges on an exact solution instead of finding upper 
and lower bounds. When coupled with a switch level SAT solver, 
CMPG can generate patterns for cell library characterization.  
 

Index Terms― Peak Current Analysis, Power Supply Current, 
Pattern Generation, Max-satisfiability 
 

I. INTRODUCTION 
major concern in present day VLSI circuits is the design 
of power and ground lines in a way that ensures design 

reliability and performance. Excessive currents can affect 
performance by causing voltage droop in the power rails, 
which in turn degrade the switching speed of CMOS circuits 
[1]. Excessive current-flow through metal conductors 
accelerates electro-migration and cause long term reliability 
problems [1]. Excessive current through die-package interface, 
namely the C4 pads can cause thermal meltdown of solder 
bumps and also cause reliability problems [2]. 

Therefore it becomes imperative to estimate current through 
power supply lines more accurately. The total current through 
power supply is constituted of two major components: current 
due to switching of CMOS gates and the CMOS leakage 
current. CMOS leakage current has been steadily rising due to 
increased sub-threshold and gate oxide leakages and has 
gained attention in the literature [3]. However, the switching 
current still dominates overall current consumption and 
accurate estimation of worst case switching current is the 
focus of this paper. 

Current is drawn from the power rail when a node output 
switches from logic 0 state to logic 1, and to the ground rail 
when it switches from logic 1 to logic 0. An input pattern for a 
circuit with n inputs is defined as a vector of n excitations, 

where each excitation could be any one of four possibilities: l 
(low), h (high), hl (high to low) or lh (low to high). For 
different input patterns, different transient current waveforms 
are drawn at the contact points. The transient current 
waveform can be described by a piece-wise linear (PWL) 
function with a peak current value Ipeak. Accurate estimation of 
the maximum current waveform at every contact point implies 
determining current waveforms corresponding to all possible 
input patterns. For a circuit with n primary inputs, we need to 
simulate for 4n input patterns, since each input can be l, h, hl 
or lh. Therefore, estimating maximum current for a large 
CMOS logic network is computationally intractable because it 
implies that the number of simulations which must be 
performed in order to find the maximum current is exponential 
in the number of inputs to the network, which makes it fall 
into the NP-hard class of problems.   

In this paper, instead of finding an exact solution to this NP-
hard problem, we seek to establish a tight upper and lower 
bound for switching current estimates. This approach whittles 
down the computational complexity and makes a practical 
solution attainable. However, we retain the completeness of a 
NP-hard solver by maintaining a parameter η that can be 
controlled to close the gap between upper and lower bounds to 
achieve an exact solution at the obvious cost of extreme 
computation. 

The rest of the paper is organized as follows: in section 2, 
we review previous work in this domain. In section 3 we 
describe our new approach of establishing upper and lower 
bounds for the maximum currents drawn from the supply rails. 
Section 4 narrates the results obtained through simulation of 
the proposed algorithm on ISCAS85 benchmark circuits. We 
conclude in section 5. 

II. RELATED WORK 
The problems of estimating maximum current and the peak 

power dissipation for a CMOS circuit are mathematically 
identical in nature and have been addressed in literature with 
significant importance over the last decade. Previous studies 
of supply rail currents includes pattern independent approach 
by Kriplani et al. [4], which offer improvement in execution 
times compared to SPICE-based methods [5][6], but is overly 
pessimistic because Boolean filtering is not used. Chowdhury 
et al. [7] addressed the problem of maximum current 
estimation by partitioning the circuit into macro modules and 
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then applying the exact search technique or a suitable heuristic 
separately on each of them to come up with the solution. 
However, their methodology suffers from an over-estimation 
trend because of their assumption that all the macros draw 
their maximum currents simultaneously.  

A set of different algorithms and their relative performance 
was studied by Jiang et al. [8]. They reported that for small 
circuits the ILP-with-partitioning approach provides tightest 
upper bound, and for large circuits the lower bound obtained 
by the GA-based approach seems to be most effective and 
outperforms the other two approaches viz. the timed-ATPG 
approach and the probability-based approach. They also 
observed that the timed-ATPG, probability-based, and ILP 
approaches are only applicable to combinational circuits, 
while the GA approach applies to sequential circuits as well.  
Estimation of worst case power dissipation in CMOS 
combinational circuits was studied by Devadas et al. [9]. They 
reduced the problem to weighted max-satisfiability problem 
on a set of multi-output Boolean functions followed by using 
either a disjoint cover enumeration algorithm or the branch-
and-bound algorithm to solve the NP-hard problem. However, 
for a multilevel logic circuit, even under a unit gate delay 
assumption, the functions generated by their algorithm are 
fairly complex, and suffers from long execution time. 
Moreover, this approach requires that the problem be solved 
optimally – no sub-optimal solution can be used as upper 
bounds of switching activity. Chai et al. [10] formulated an 
integer linear program (ILP) based on the signal correlations 
within a circuit. They claimed a faster solution compared to 
[9] only through relaxing the constraints of the integer 
program. Hsiao et al. [11] proposed a peak power  estimation 
tool, K2, that generates a specific vector sequence that 
produces maximum power dissipation in both combinational 
and sequential circuits. A Hamming distance-based approach 
was studied by Gupta et al. [12], where they estimate energy 
and peak current for every input vector pair. 

Several ATPG-based approaches have also been reported in 
literature [13][14], which generate input vectors to either 
estimate the power supply noise or in the context of delay 
testing, where delay is seen as an effect of variable IR-drop 
across the power supply rails. Tirumurti et al. [1] proposed a 
fault model to address the problem of vector generation for 
delay faults arising out of power delivery problems.        

III. THE PROPOSED APPROACH 
From the above survey, it becomes clear that existing 

methods for calculation of maximum currents in the power 
supply rails suffer from limitations such as long execution 
time or weak upper or lower bounds for maximum currents 
while handling large VLSI circuits. 

In this paper, we propose a four step approach to simplify 
this problem: 

a) Given the first input pattern I1, generate the second input 
pattern I2 that causes maximum supply rail currents 

b) Provide a tight lower as well as upper bound for the 
supply rail currents for the input vector pair <I1,I2>  

c) Solve the problem of finding an initial pattern I1 that 
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Fig. 1: c17 benchmark circuit with peak current weights associated with 
individual nodes 
 
creates worst case <I1,I2> combination. The mathematical 
solution of this step turns out to be exact equivalent of step (a) 
mentioned above. We will revisit this in section 3.2. 

d) By observing sub-optimality of the solution obtained in 
step (c), which will be explained in details through an example 
later, propose a technique of concurrently generating the input 
vector pair <I1,I2> which leads to a near-optimal solution. This 
technique is also based on the basic algorithm proposed for 
solving step (a) and will be discussed in depth in section 3.3.   

To solve the steps (a) and (b), we propose a branch-and-
bound heuristic which reduces the exponential complexity of 
the original problem by using a parameter η. The value of the 
parameter η is defined as the ratio between the target peak 
current and the maximum peak current that could be obtained 
starting from the first input pattern I1. The following example 
explains the concept:     

Example 1: An input pattern I1 = {1,1,0,1,1} is applied to 
the primary inputs of the ISCAS85 benchmark circuit c17 
(shown in Fig. 1). The peak current weights (random values 
without any unit) associated with individual nodes are shown 
in square boxes on the top of the nodes in Fig. 1. The input 
pattern I1 produces 0 at the output of nodes 10, 16 and 19. 
Therefore, maximum peak current weight that can be drawn 
from the power rail is Wmax = 19+33+15 = 67 when all these 
three nodes switch to 1 on application of a second input 
pattern I2. Now, if we set the parameter η = 0.5, then the 
proposed algorithm will search for finding an I2 such that it 
switches at least those many nodes whose cumulative weight 
will exceed ηWmax=33.5. A possible solution for 
I2={0,1,0,1,0} with total switched weight = 34 for nodes 10 
and 19 switching back to 1.                                                      ■   

With this discussion on the parameter η, we now delve into 
a detailed study of the proposed algorithm. 

Assumption(s): We are given an input netlist consisting of 
gates (cells) and weights associated with each gate (cell) 
corresponding to its peak current to VDD or GND.  

For solving steps (a) and (b), we proceed as follows: 
Step 1:  Through logic simulation of the given input pattern 

I1, we obtain the set of internal nodes S0 (S1) that produce 0 (1) 
and Wmax for the sets S0 (S1). 

Step 2:  Then we sort the above lists of internal nodes by the 
descending order of their peak current consumption measure 
(weight). 



 

 
Fig. 2: The CMPG (Current Maximizing Pattern Generation) algorithm 

 
Step 3:  For a given I1, we perform a preprocessing step by 

randomly choosing a finite number of candidates for input 
pattern I2 and by logic simulation computing the total peak 
current drawn by the respective <I1,I2> pair. During this 
process, we keep the maximum peak current noted so far and 
stop the preprocessing when no change is observed in the 
noted maximum peak current for 100 consecutive simulations. 
The ratio between the noted maximum peak current in the 
preprocessing step and Wmax obtained in step 1 defines the 
initial value of η.   

Step 4:: We then employ a greedy branch-and-bound 
heuristic which selects a subset S’ of S0 (S1) and form a 
Boolean function. Then we invoke a SAT solver to determine 
whether S’ is satisfiable. 

Step 5: Based on the satisfiability result obtained from the 
SAT-solver, we grow the list of selected nodes by appropriate 
inclusions and exclusions while maintaining the lower bound 
established by η.  

In stead of building our own SAT-solver, we used. ZChaff 
developed by Malik et al. [15][16] to illustrate the idea of 
bounding introduced by our algorithm. Zchaff accepts the 
Boolean expression, to be checked for satisfiability, in 
Conjunctive Normal Form (CNF). To extract the CNF form, 
the circuit topology is represented in the form of a directed 
acyclic graph (DAG) [17]. The nodes of the graph represent 
the circuit inputs, outputs and gates. This requires an extra 
step for converting the Boolean functions to CNF format and 
introduces inefficiency. However, our thrust in this paper is to 
show the practicality of the bounding approach in solving an 
NP-hard problem. 

A. The Current Maximizing Pattern Generation (CMPG) 
Algorithm 
One approach to solving a max-satisfiability problem is to 

use a branch-and-bound heuristic. We use a threshold 
parameter η as discussed above which sets the lower bound of 
the maximum supply rail currents. The CMPG algorithm is 
then invoked with the parameter η as obtained from the 
preprocessing step. The algorithm starts by selecting the node 
with the highest weight (say node 1) and invoking the SAT-
solver to check its satisfiability, followed by exhaustively 
exploring all the combinations of this node with the other 
nodes. If none of the combinations satisfy the threshold 
condition set by η, the algorithm permanently excludes the 
node 1 from the list of valid future choices and starts exploring 
the combinations of the node with second highest weight and 
so on. This strategy of starting from the node with the highest 
weight becomes truly advantageous in pruning an appreciable 
number of useless searches and was studied by Devadas et al. 
[18][19] in the context of identifying and removing false paths 
in the domain of delay testing. The proposed algorithm allows 
user to supply termination condition with upper and lower 
bound.  

Theorem: The algorithm CMPG is complete, i..e., given 
enough time and space it will be able to produce the list of 
gates that switch from 0 to 1 (or vice versa) to cause 
maximum supply rail current.  

Proof: We prove the above theorem using induction method 
in the following way: 

Base case: When there exists only one node, the algorithm 
chooses the node and invokes the SAT-solver to check its 



satisfiability. 
In case of two nodes {n1, n2} arranged in descending order 

of weight, the algorithm chooses the node n1 and checks 
whether it is satisfiable. If the SAT-solver returns TRUE, next 
it tries the combination <n1,n2>. Otherwise, the algorithm 
checks for the satisfiability of the node n2. Therefore, for a set 
of two nodes, the algorithm explores all 22=4 combinations 
either explicitly or implicitly.  

Inductive hypothesis: For k choice of nodes, the algorithm 
will visit all the 2k combinations, either explicitly or implicitly 
i.e. the algorithm is complete with k choice of nodes. 

Inductive step: Now for k+1 choice of nodes, the algorithm 
will check first whether the (k+1)th node is satisfiable, and 
irrespective of the satisfiability result, will recurse on k choice 
of nodes, which is the inductive hypothesis. Therefore, it will 
explore all the 2.2k=2k+1 combinations. 

Hence, the proof.                                                                  ■                                                              

B. Pre-condition pattern generator  
We find the first input pattern I1 through the Pre-condition 

pattern generator which essentially invokes the CMPG 
algorithm with the list of all nodes and their associated 
weights as the input. Here our objective is to maximize the 
sum of weights of the nodes producing 0 (1) in the process of 
estimating the VDD (GND) rail current. In order to achieve that 
goal, all the nodes of the circuit are initialized at 1(0) and then 
CMPG is invoked to find out the first input pattern I1 which 
sets a subset (say, S1) of all the nodes to 0 fulfilling the 
threshold set by η. Once I1 is known, CMPG will be invoked 
again to work on the subset S1 to find the second input pattern 
I2 which will switch a further subset of S1 (say, S2) to 1 
satisfying the threshold condition. The input vector pair 
<I1,I2> together establishes the bound on the worst case supply 
rail switching currents for a given circuit. De-coupling the 
steps for generating pattern 1 and 2 makes them sub-optimal 
as explained next. 

Example 2: We consider two separate input vector pairs 
applied to the benchmark c17 (shown in Fig. 1).  

The first pair <I1,I2> = {(1,1,0,1,1);(0,1,0,1,0)}. The first 
pattern I1, obtained from CMPG, sets the nodes 10, 16 and 19 
to 0 with an initial switching weight Winit= 19+33+15 = 67. 
Then CMPG is invoked again and it finds the second pattern I2 
which switches node 10 and 19 back to 1 thereby causing the 
final switched weight Wfinal = 19+15 = 34. Now let’s consider 
the second vector pair <I1,I2> = {(1,1,0,1,0);(0,1,0,0,0)}. The 
first pattern in this case sets only the nodes 10 and 16 to 0 with 
Winit = 19+33 = 52. We see that the initial switching weight 
here is lower compared to the previous case. However, the 
second pattern I2 switches both the nodes back to 1 thereby 
causing the final switched weight Wfinal = 19 +33 = 52, which 
is higher compared to the previous case.                                  ■                                                                                                    

C. The CONCURRENT-INPUT-PAIR Algorithm 
One way to solve the above sub-optimality is to 

concurrently generate the input vector pair <I1,I2> to account 
for the correlation between the two patterns to manifest their 
combined effect in the final switched weight. The following 

five steps briefly describe our technique: 
Step  1: Two copies of the circuit are created and merged to 

form a combined circuit.  
Step 2: Logic simulation for the combined circuit is 

performed repeatedly on randomly generated input patterns 
until the maximum switched weight does not change for 100 
consecutive patterns. 

Step 3: The threshold parameter η is obtained from the 
maximum switched weight (obtained through logic simulation 
in step 2) in the way mentioned before. 

Step 4: CMPG is invoked for the combined circuit with the 
threshold set appropriately by the parameter η obtained above. 
The CNF equations are formed in such a way that it tries to 
maximize 0’s at the node outputs on one copy of the circuit 
and 1’s on the same node outputs of the other. These CNF 
equations are then combined followed by invoking the SAT-
solver. 

Step 5: The input vector obtained through CMPG in step 4 
is split into two halves which form the input vector pair 
<I1,I2>. 

IV. RESULTS 
Experiments were conducted on all 3 approaches described 

in the previous section. Results from these experiments are 
shown in Tables I-III respectively.  

The lower bound is determined by starting with the base η 
value obtained from preprocessing step, incrementing it by a 
small step size of 0.05. We continue to increment this η value 
if SAT portion of CMPG returns with success. If SAT portion 
of CMPG results in a failure, lower bound on η is established. 
For upper bound, we start with η = 1.0, and decrement η with 
the same step size with each failure. A timer is used to 
terminate the process when the search takes too long for either 
the lower or the upper bound of η. The time-out limit was set 
to 5 hours.   

In Table I, results from CMPG on ISCAS-85 benchmark 
circuits are presented for the case where the second input 
pattern I2 is determined for a given first input pattern I1. In this 
case the first input pattern I1 was chosen randomly. For 
determining I2, first random patterns were simulated to 
establish a lower bound for the maximum weight (that 
corresponds to current) that can be switched by simulation. 
Simulation of random patterns continues, until 100 
consecutive patterns do not show any improvement of the 
lower bound. At that point, simulation is terminated and 
deterministic algorithm is invoked. The simulations already 
establish a lower bound on how much current can be drawn 
from the supply rail. We try to improve on that lower bound 
through deterministic branch and bound technique as 
described in section III A. The adaptive random simulation 
runs longest for c3540, where most current is drawn in pattern 
249. In Fig. 3, we show how the relative η value changes 
during random logic simulation for the circuit c3540. In Table 
I, the  η values are given in both relative and absolute sense, 
where by relative we mean relative to input pattern I1, and 
absolute means relative to maximum supply rail current that 



could be drawn if all nodes could be switched for the circuit. 
Same definition of η also applies for Table II and Table III.  

TABLE I  
EXPERIMENTAL RESULTS FOR GENERATING INPUT PATTERN I1, GIVEN INPUT 

PATTERN I2 FOR ISCAS-85 BENCHMARK CIRCUITS 
 

η  from logic simulation η obtained from CMPG 
Lower Bound Upper Bound Circuit 

Name # of 
patterns 

Rel. 
η 

Abs. 
η Rel. 

η 
Abs 
. η 

Rel. 
η 

Abs. 
η 

C17 103 1.00 0.529 1.00 0.529 1.0 0.529 
C432 288 0.72 0.358 0.85 0.423 0.85 0.423 
C499 240 0.46 0.314 0.50 0.341 0.70 0.478 
C880 132 0.53 0.273 0.75 0.387 0.95 0.490 
C1355 253 0.60 0.226 0.67 0.252 0.95 0.358 
C1908 130 0.61 0.259 0.65 0.276 1.0 0.424 
C2670 164 0.44 0.238 0.60 0.324 1.0 0.540 
C3540 349 0.36 0.213 0.36 0.213 1.0 0.592 
C5315 231 0.43 0.248 0.50 0.288 1.0 0.577 
C6288 144 0.34 0.229 0.37 0.250 1.0 0.608 
C7552 102 0.48 0.244 0.50 0.254 1.0 0.509 

 

 
 
Fig. 3: Plot showing the gradual saturation of η with number of random 
pattern logic simulations for c3540 
 

Table II shows the experimental results for the case when 
CMPG algorithm is used to generate both the input pattern I1 
and I2 for ISCAS-85 benchmark circuits. Here random pattern 
simulation is done by generating random pattern pairs and 
stopping when the fraction of the total maximum current 
drawn from power supply rail does not change for 100 
consecutive simulations.   

 
TABLE II 

EXPERIMENTAL RESULTS FOR INDEPENDENT GENERATION OF PATTERNS I1 AND 
I2 FOR ISCAS-85 BENCHMARK CIRCUITS 

 
Abs. η  for Pattern I1 Abs. η  for Pattern I2 

CMPG Alg. CMPG Alg. Circuit 
Name 

η 
from 
logic 
sim 

Logic 
sim. 1 LB UB 

Logic 
sim. 2 LB UB 

C17 0.543 0.543 0.543 0.543 0.543 0.543 0.543 
C432 0.344 0.520 0.520 0.520 0.344 0.448 0.448 
C499 0.312 0.730 0.852 1.000 0.414 0.473 0.639 
C880 0.240 0.559 0.559 1.000 0.257 0.403 0.531 
C1355 0.240 0.425 0.425 1.000 0.260 0.298 0.340 
C1908 0.270 0.459 0.459 1.000 0.300 0.300 0.466 
C2670 0.259 0.582 0.601 1.000 0.270 0.332 0.601 
C3540 0.229 0.619 0.619 1.000 0.229 0.229 0.619 
C5315 0.249 0.605 0.605 1.000 0.274 0.274 0.605 
C6288 0.198 0.690 0.700 1.000 0.271 0.304 0.700 
C7552 0.258 0.545 0.545 1.000 0.474 0.501 0.545 

 
In the second phase, I1 and I2 are generated using algorithm 

presented in 3.2. For example for the circuit c880 the random 
logic simulation for the pattern pair (col. 2 in Table II) draws a 
fraction of 0.24 of the worst case supply rail current. The input 

pattern I1 obtained from the Pre-condition pattern generator 
draws a fraction of 0.559 of the worst case current (columns 3 
and 4 in Table II). Finally, by using the CMPG algorithm for 
the second time, we find an input vector pair <I1,I2> which 
sets the lower as well as the upper bound of the worst case 
power supply rail current to be a fraction of 0.403 and 0.531 
of worst case current. We also observe that the lower and the 
upper bounds established by this method is consistently higher 
than the bounds established by method 1 where input vector 1 
was randomly chosen and the deterministic algorithm was 
used to find the second pattern.  

In Table III, the CMPG algorithm is used to determine the 
pattern pair concurrently. For the circuit c880 the logic 
simulation gives the base value of η to be 0.263 (col. 3).  
Starting from this base η value, the CMPG algorithm is able to 
establish a lower bound of 0.309 of the worst case current.  

Looking at the result for c432 in Table II and III, we 
observe that the upper bound obtained in Table II (the case for 
finding I1, followed by I2) is less than even the lower bound 
obtained in Table III (the case for finding <I1,I2> 
concurrently), which establishes the notion of sub-optimality 
inherent in method 2 as discussed in Example 2 above. Using 
the same time out period results in looser bounds for this 
approach. 

 
TABLE III 

EXPERIMENTAL RESULTS FOR CONCURRENT GENERATION OF INPUT PATTERNS 
I1 AND  I2 FOR ISCAS-85 BENCHMARKS 

 
Algorithm 

Circuit Maximum weight that could 
be switched 

Logic-
simulation Absolute 

LB 
Absolute 

UB 
C17 3.0705 0.543 0.543 0.543 
C432 73.50 0.312 0.452 0.800 
C499 96.38 0.316 0.512 0.849 
C880 186.82 0.263 0.309 1.000 
C1355 278.35 0.255 0.255 1.000 
C1908 431.80 0.281 0.300 1.000 
C2670 591.24 0.269 0.350 1.000 
C3540 843.54 0.215 0.215 1.000 
C5315 1154.62 0.251 0.299 1.000 
C6288 1207.79 0.244 0.250 1.000 
C7552 1724.74 0.266 0.300 1.000 

 

V. CONCLUSIONS  
In the context of peak supply rail current estimation, we 

have proposed an approximate solution for a computationally 
intractable problem. If allowed to run indefinitely, the 
approximate solution asymptotically converges to an exact 
solution. Given a circuit description, the algorithm also 
generates the input vector pair that produces near optimal 
worst case supply current. We studied three methods for 
finding out the input vector pair and compared their relative 
efficiency over each other. The solution can also be used to 
generate input patterns for cell library characterization. This 
will require a switch level SAT solver such as [20]. 
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