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Abstract— This paper presents a motion pattern generator of
humanoid robots that walks on a flat plane, steps and a rough
terrain. It is guaranteed rigorously that the desired contact
between a humanoid robot and terrain should be maintained
by keeping the contact wrench sum between them inside the
contact wrench cone under the sufficient friction assumption.
A walking pattern is generated by solving the contact wrench
equations and by applying the resolved momentum control.

I. INTRODUCTION

The ZMP (Zero Moment Point)[15] has been used as a
stability criterion to judge if the contact between a foot of
a legged robot and a floor should be kept while walking. It
can judge the strong stability of a contact, where a contact
is called strongly stable if it is guaranteed that the contact
should be kept to a given external wrench[12]. A number
of walking pattern generators have been proposed using the
ZMP as the strong stability criterion (See [11], [10], [6] for
example). But the ZMP is a rigorous stability criterion only
when a robot walks on a flat plane without a contact between
a hand and the environment under the sufficient friction
assumption. When the ZMP is used to plan motion patterns
of a robot that walks on a terrain other than a flat plane
and/or a contact between a hand and the environment, some
approximations should be introduced to judge the contact
stability.

We have proposed a strong stability criterion that can judge
if the contact between a robot and the environment should be
kept rigorously under the sufficient friction assumption when
the robot walks on an arbitrary terrain with a possible contact
between a hand and the environment [5]. It was proved
that the contact should be strongly stable if the contact
wrench sum (CWS for short) is an internal element of the
contact wrench cone (CWC for short), and that the CWS and
CWC are equivalent to the ZMP and the supporting polygon
respectively when the robot walks on a flat plane without a
hand contact.

This paper presents a walking pattern generator using the
CWS as the strong stability criterion, and so it is able to
plan motion patterns of a humanoid robot that walks on
an arbitrary terrain possibly with a contact between a hand
and the terrain. It is guaranteed theoretically that the contact
should be stable while walking under the sufficient friction
assumption. The motion patterns are generated by solving
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the contact wrench equations and by applying the resolved
momentum control[7].

This paper is organized as follows. Section 2 presents the
details of the proposed pattern generator. Section 3 gives
examples. Section 4 concludes the paper.

II. PATTERN GENERATOR

A. Equations of Momentum

Let pB,vB ,ωB be the position, velocity and the angular
velocity of the coordinates on the waist link of a humanoid
robot respectively which is supposed to have six degrees
of the freedom in the space with respect to the reference
coordinates. Let n be the number of the joints connected to
the link and θ̇ : n× 1 the angular velocity of the joints. See
Fig.1. Then the momentum of the robot P and the angular
momentum about the center of the gravity L can be given
by

[ P
L

]
=

[
ME −M r̂B→G M θ̇

0 Ĩ H θ̇

] ⎡
⎣ vB

ωB

θ̇

⎤
⎦ , (1)

where M is the total mass of the robot, E the 3 × 3 unit
matrix, rB→G the position vector from the origin of the waist
coordinates to the COG of the robot, Ĩ : 3 × 3 the inertia
matrix about the COG, M θ̇ : 3 × n, H θ̇ : 3 × n the inertia
matrices which relate the joint velocities into the momentum
and the angular momentum of the robot respectively.ˆ is the
operator converting a 3×1 vector into a 3×3 skew-symmetric
matrix whose multiplication from the left makes a vector
product. Let x, y, z axes of the waist coordinates point to
the front, left and top respectively.

Eq.(1) transforms n + 6 velocity variables into 6 momen-
tum variables, but in general the degrees of the freedom of
the robot should degenerate because of the contact between
the robot and the working environment. Let vFi

,ωFi
be the

velocity and the angular velocity of the coordinates fixed
at the i-th foot link (i = 1, 2), and vHi

,ωHi
those of the

coordinates at the i-th hand link (i = 1, 2) respectively.
vFi

,ωFi
and vHi

,ωHi
are constrained by the contact or by

reference trajectories, and Eq.(1) under the constraints can
be given by
[ P

L
]

=
[

M∗
B

H∗
B

]
ξB +

2∑
i=1

{
[

M∗
Fi

H∗
Fi

]
ξFi

+
[

M∗
Hi

H∗
Hi

]
ξHi

},
(2)

where

ξB ≡
[

vB

ωB

]
, ξFi

≡
[

vFi

ωFi

]
, ξHi

≡
[

vHi

ωHi

]
,
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Fig. 1. Definitions of the coordinates

and M∗
B , H∗

B , M∗
Fi

, H∗
Fi

, M∗
Hi

, and H∗
Hi

are the inertia
matrices under the constraints and given by[

M∗
B

H∗
B

]
≡

[
ME −M r̂B→G

0 Ĩ

]

−
2∑

i=1

[
M∗

Fi

H∗
Fi

] [
E −r̂B→Fi

0 E

]

−
2∑

i=1

[
M∗

Hi

H∗
Hi

] [
E −r̂B→Hi

0 E

]
,

[
M∗

Fi

H∗
Fi

]
≡

[
M legi

H legi

]
J−1

legi
,

[
M∗

Hi

H∗
Hi

]
≡

[
Marmi

Harmi

]
J−1

armi
,

where J legi
,Jarmi

are 6 × 6 Jacobian matrices determined
by the kinematics of the legs and arms, rB→Fi

the position
vector from the origin of the waist coordinates to the i-th
foot coordinates, θ̇legi

(i = 1, 2) and θ̇armi
(i = 1, 2) 6 × 1

joint velocity vectors of the legs and the arms respectively,
and the inertia matrices are decomposed into

θ̇ = [θ̇
T

leg1
θ̇

T

leg2
θ̇

T

arm1
θ̇

T

arm2
]T ,

M θ̇ = [M leg1
M leg2

Marm1 Marm2 ],
H θ̇ = [H leg1

H leg2
Harm1 Harm2 ],

whose components correspond to two legs and two arms
respectively [7].

B. Reference Angular Momentum

Since the reference of vFi
,ωFi

and vHi
,ωHi

are given,
the joint velocity of the legs and the arms can be given by

θ̇legi
= J−1

legi

[
vFi

ωFi

]
− J−1

legi

[
E −r̂B→Fi

0 E

] [
vB

ωB

]
,

(3)

θ̇armi = J−1
armi

[
vHi

ωHi

]
−J−1

armi

[
E −r̂B→Hi

0 E

] [
vB

ωB

]
,

(4)

from the reference of (vB ,ωB), and then the reference of the
angular momentum Lref is found by Eq.(1). The reference
of vB is going to be tuned by solving the equations of the
contact wrench in the following, but there is no criterion to
design that of ωB . One of the reasonable choices is to let
ωref

B = 0 which should make the orientation of the waist
link to be upright.

C. Equations of the Contact Wrench

Let the sum of the gravity and the inertia force applied to
the robot be fG and the sum of the moments about the COG
of the robot τG with respect to the reference coordinates,
which can be given by

fG = M(g − p̈G), (5)
τG = pG × M(g − p̈G) − L̇, (6)

where pG is the position vector of the COG with respect to
the reference coordinates and g = [0 0 − g]T the gravity
vector. Let us assume that sufficient friction exists at the
contact. The assumption implies that an arbitrary friction
force can be generated at every contact point with a positive
normal force. Then the set of the contact wrench can be
written by

fC =
K∑

k=1

εk(nk +
2∑

l=1

δl
ktl

k), (7)

τC =
K∑

k=1

pk × εk(nk +
2∑

l=1

δl
ktl

k), (8)

where nk is the unit normal vector at the k-th contact point
pk, tl

k(l = 1, 2) the unit tangent vectors at pk whose linear
combination spans the tangent plane at pk, εk a non-negative
scalar, δl

k a scalar, and K the number of the contact points.
See Fig.1 again. Let us call the set of the contact wrench
Contact Wrench Cone or CWC for short, since the set forms
a polyhedral convex cone. Then the strong contact stability
can be determined as follows[5].

Theorem 1: (Strong stability criterion) If (−fG,−τG)
is an internal element of the CWC given by Eqs.(7) and (8),
then the contact is strongly stable to (fG, τG).

When (−fG,−τG) is an internal element of the CWC,
(fG, τG) should balance with the sum of the contact wrench.
We call the sum the Contact Wrench Sum or CWS for short.
Then Theorem 1 can be rewritten as “If the CWS is an
internal element of the CWC, then the contact is strongly
stable to (fG, τG)”. It was proved that this statement is
equivalent to “If the ZMP is an internal element of the
support polygon, then the contact is strongly stable, when
the robot walks on a flat plane”, and that the CWS is also a
rigorous stability criterion in a generic case[5].

The pattern generators based on the ZMP criterion plan the
reference trajectory of the ZMP, and then find the reference
trajectory of the COG by solving the ZMP equations (see
[6] for example). The proposed pattern generator plans the
reference trajectory of the CWS, and then find the reference
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trajectory of the COG by solving the equations of the
contact wrench which can be derived by balancing the right
hand sides of Eqs.(5) and (6) and those of Eqs.(7) and (8)
respectively and given by

MẍG =
K∑

k=1

εknkx +
K∑

k=1

εk

2∑
l=1

δl
ktlkx, (9)

MÿG =
K∑

k=1

εknky +
K∑

k=1

εk

2∑
l=1

δl
ktlky, (10)

M(z̈G + g) =
K∑

k=1

εknkz +
K∑

k=1

εk

2∑
l=1

δl
ktlkz, (11)

M(z̈G + g)yG − MÿGzG + L̇x

=
K∑

k=1

εk(yknkz − zknky)

+
K∑

k=1

ykεk

2∑
l=1

δl
ktlkz −

K∑
k=1

zkεk

2∑
l=1

δl
ktlky, (12)

−M(z̈G + g)xG + MẍGzG + L̇y

= −
K∑

k=1

εk(xknkz − zknkx)

−
K∑

k=1

xkεk

2∑
l=1

δl
ktlkz +

K∑
k=1

zkεk

2∑
l=1

δl
ktlkx, (13)

MxGÿG − MyGẍG + L̇z

=
K∑

k=1

εk(xknky − yknkx)

+
K∑

k=1

xkεk

2∑
l=1

δl
ktlky −

K∑
k=1

ykεk

2∑
l=1

δl
ktlkx, (14)

where pG = (xG, yG, zG), pk = (xk, yk, zk), L =
(Lx,Ly,Lz), nk = (nkx, nky, nkz) and tl

k = (tlkx, tlky, tlkz).
The reference of the COG is planned based on the equa-

tions of the contact wrench as follows. At first, let us plan
the reference of z̈G. Then the force along the z-axis should
balance as

M(z̈G + g) =
K∑

k=1

εknkz +
K∑

k=1

εk

2∑
l=1

δl
ktlkz, (15)

in which the ratio between the first and second terms of the
right hand side is arbitrary and we choose it as

K∑
k=1

εknkz = (1 − α)M(z̈G + g), (16)

K∑
k=1

εk

2∑
l=1

δl
ktlkz = αM(z̈G + g), (17)

where α = 1 − 1
K

∑K
k=1 nkz . α has no rigorous physical

meaning, but α can be considered as the average slope of
the terrain.

Next εk should be chosen so that 0 < εk holds for at
least three k to keep the strong stability of Theorem 1. For
example, the reference of εk can be chosen to be

εref
k = (1 − α)M(z̈G + g)

λref
k∑K

k=1 λref
k nkz

, (18)

by using 0 < λref
k ≤ 1 for three k at least. Then the reference

trajectories of xG, yG are planned to follow the equations of
the moments about the x and y axes

M(z̈G + g)(yG − yC) − MÿG(zG − zC) + L̇x

=
K∑

k=1

εk(yknkz − zknky) ≡ τ ′
Cx, (19)

−M(z̈G + g)(xG − xC) + MẍG(zG − zC) + L̇y

= −
K∑

k=1

εk(xknkz − zknkx) ≡ τ ′
Cy, (20)

where yC , zC , xC are defined by

yC = α

K∑
k=1

εk

ε
yk, (21)

zC = (1 − α)
K∑

k=1

εk

ε
zk, (22)

xC = α

K∑
k=1

εk

ε
xk, (23)

ε =
K∑

k=1

εk, (24)

and τ ′
Cx(y) is the moment about x(y)-axis excluding that

from the friction force. The point pC = (xC , yC , zC) has no
rigorous physical meaning, but τC is not far from pC ×fC .
Eqs.(19) and (20) are nonlinear differential equations, which
can be solved by substituting a difference equation into ẍG

and ÿG [10]. Then the friction forces have to satisfy equations

K∑
k=1

ykεk

2∑
l=1

δl
ktlkz −

K∑
k=1

zkεk

2∑
l=1

δl
ktlky

= −M(z̈G + g)yC + MÿGzC , (25)

−
K∑

k=1

xkεk

2∑
l=1

δl
ktlkz +

K∑
k=1

zkεk

2∑
l=1

δl
ktlkx

= M(z̈G + g)xC − MẍGzC . (26)

The selections of yC , zC , xC are arbitrary, and the above
definition implies that the friction force at each contact point
should be proportional to the normal force at the point in
the sense to satisfy Eqs.(21)-(26). Needless to say, it is not
possible to control the friction force at each contact point in
general. The friction forces should also satisfy Eqs.(9), (10)
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and (14) which can be rewritten as

K∑
k=1

εk

2∑
l=1

δl
ktlkx = MẍG −

K∑
k=1

εknkx, (27)

K∑
k=1

εk

2∑
l=1

δl
ktlky = MÿG −

K∑
k=1

εknky, (28)

K∑
k=1

xkεk

2∑
l=1

δl
ktlky −

K∑
k=1

ykεk

2∑
l=1

δl
ktlkx

= MxGÿG − MyGẍG + L̇z −
K∑

k=1

εk(xknky − yknkx).

(29)

When z̈ref
G is given and ẍref

G , ÿref
G are planned to follow

Eqs.(19) and (20), it was turned out that the friction forces
should satisfy Eqs.(27), (28), (17), (25), (26) and (29). At
least six variables are necessary to satisfy the equations,
which demands that 0 < εk for three k at least. Without
loss of the generality, let εk be positive for k = 1, 2, 3. Then
the equations can be rewritten in a matrix form as

(
ε1t11 ε1t21 · · · ε3t13 ε3t23

ε1p1 × t11 ε1p1 × t21 · · · ε3p3 × t13 ε3p3 × t23

)
⎛
⎜⎜⎜⎝

δ1
1

δ2
1
...

δ1
3

δ2
3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

MẍG −
∑K

k=1
εknkx

MÿG −
∑K

k=1
εknky

(1 − α)M(z̈G + g)
−M(z̈G + g)yC + MÿGzC

M(z̈G + g)xC − MẍGzC

MxGÿG − MyGẍG + L̇z −
∑K

k=1
εk(xknky − yknkx)

⎞
⎟⎟⎟⎟⎠ .

We call the linear equations the Friction Force Equations
and it should have the unique solution if the 6×6 coefficient
matrix in the left hand side is regular which is true if
p1,p2,p3 are in a general position for example. Then there
is a feasible reference for the friction forces, and therefore
the generated pattern is also feasible.

Besides, the reference of the CWS is an internal element
of the CWC, since εks have been chosen to let the CWS of
the normal forces be an internal element of the corresponding
CWC. Note that the total CWS should be an internal element
of the total CWC when the normal CWS is inside the normal
CWC and the friction CWS inside the friction CWC, since
the friction CWC forms linear subspaces and then the total
CWC is the direct product of the normal CWC and the
friction CWC[2].

When the number of the contact points with non-zero
normal forces are more than three, the friction forces are
indeterminate but there is a feasible solution if the friction
force equations has a solution and it is not required to find
the friction forces to generate the walking patterns.

vH1 vH2

vF1 vF2

J-1
Forward
Momentum

Inverse
Momentum

θarm

θleg
Contact
Wrench

L

P

f   τ

xGvB ωB -
+

Step1Step1

Step2Step2

Step3Step3

Step4Step4

Step5Step5

Step6Step6

Step7Step7

Step8Step8

Fig. 2. Block diagram of the proposed pattern generator

D. Resolved Momentum Control

Let the solution of the equations of Eqs.(19) and
(20) be (xref

G , yref
G ), the reference of the momentum

(Pref
x ,Pref

y ,Pref
z ) can be given by

Pref
x = Mẋref

G , (30)

Pref
y = Mẏref

G , (31)

Pref
z = Mżref

G . (32)

From Eq.(2), the reference of ξB can be found by the
resolved momentum control[7] as

ξB = A−1y, (33)

where

y ≡
[ Pref

Lref

]
−

2∑
i=1

[
M∗

Fi

H∗
Fi

]
ξref

Fi
−

2∑
i=1

[
M∗

Hi

H∗
Hi

]
ξref

Hi
,

(34)

A ≡
[

M∗
B

H∗
B

]
. (35)

Finally, the joint velocity of the robot can be obtained by
Eqs.(3) and (4). The block diagram of the proposed pattern
generator is shown in Fig.2.

E. The Algorithm

A motion pattern of a humanoid robot walking on a rough
terrain can be generated by the following algorithm.

Algorithm 1: Walking Pattern Generation
1) Give (vref

Fi
,ωref

Fi
), (vref

Hi
,ωref

Hi
) and (vref

B ,ωref
B ).

2) Find (θ̇
ref

leg1
, θ̇

ref

leg2
) by Eq.(3) and (θ̇

ref

arm1
, θ̇

ref

arm2
) by

Eq.(4) respectively.
3) Find Lref by Eq.(1) and L̇ref by differentiation.
4) Give z̈ref

G .
5) Give λref

k .
6) Find ẍref

G , ÿref
G by solving Eqs.(19) and (20).

7) Find Pref by Eqs.(30), (31) and (32).
8) Find ξref

B by Eq.(33).
9) If vref

B found in Step 8 is close enough to vref
B given

in Step 1, go to Step 10, otherwise let vref
B be that

found in Step 8 and return to Step 1.
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10) Find (θ̇leg1
, θ̇leg2

) by Eq.(3) and (θarm1 ,θarm2) by
Eq.(4), and terminate the algorithm.

Step 1-Step 8 are shown in Fig. 2. The iteration is necessary,
since L̇ in Step 3 was found from vref

B before solving
Eqs.(19) and (20), and may produce an unnatural motion by
Eq.(33). Note that ωref

B is not renewed, otherwise the loop
will produce the identical motion with the previous iteration.

Algorithm 1 proved that a strongly stable motion pattern
of a humanoid robot walking on a rough terrain should exist
if the friction force equations have a solution. This is the first
rigorous proof that a strongly stable motion of a humanoid
robot walking on a rough terrain should exist under the
sufficient friction assumption if the friction force equations
has a solution.

III. EXAMPLES
Algorithm 1 is implemented for the dynamic model of

humanoid robot HRP-2 [9] whose configuration of the joints
is shown in Fig.1. Several implementation examples are
investigated in the following.

A. Walking on a Horizontal Plane
In the case, ∀ k;nk = (0, 0, 1), and ∀ k; zk = z0 where

z0 is the height of the horizontal plane, α = 0, and then
Eqs.(21)-(23) become

yC = 0, (36)

zC =
K∑

k=1

εk

ε
z0 = z0, (37)

xC = 0, (38)

and Eqs.(19) and (20) do

M(z̈G + g)yG − MÿG(zG − z0) + L̇x =
K∑

k=1

εkyk,

(39)

−M(z̈G + g)xG + MẍG(zG − z0) + L̇y = −
K∑

k=1

εkxk,

(40)

which are equivalent to the ZMP equations[5].
In Step 1 of Algorithm 1, (vref

Fi
,ωref

Fi
) and (vref

Hi
,ωref

Hi
)

are chosen to be smooth curves as well as the initial trajectory
of vref

B , and that of ωref
B is set zero for the whole period. The

trajectory of (
∑K

k=1 εkyk,−∑K
k=1 εkxk) can be planned as

described in the previous section. Fig.3 shows the trajectories
of the orientation of the waist link about x, y, z-axes for
ten walking steps, which was obtained by five iterations
of the algorithm. We can observe that the trajectories were
converging to zero by the iterations.

Fig.4 shows the trajectories of the ZMP in which that of
the dynamics simulation is in the broken curve and that of
the experiment in the solid curve. The dynamics simulation
was done using OpenHRP[8] and the experiment using HRP-
2. The robot walks along x-axis which is the horizontal axis
in the figure. The ZMP is drawn to show that it stays in the
support polygon of the robot both in the simulation and the
experiment.

-0.1

-0.05

0

0.05

0.1

0.15

1 1499 2997 4495 5993 7491 8989104871198513483149811647917977

X
Y
Z

Fig. 3. Trajectories of the orientation of the waist link

B. Walking on Horizontal Steps

In the case, set α = 0, ∀ k;nk = (0, 0, 1), zk = zF1, k =
1, · · · ,KF1 and zk = zF2, k = KF2 + 1, · · · ,KF1 + KF2

where zF1 and zF2 are the heights of two steps respectively
and KF1 and KF2 are the numbers of the contact points on
two steps respectively, and then Eqs.(19)-(20) become

M(z̈G + g)yG − MÿG(zG − zC) + L̇x =
K∑

k=1

εkyk,

(41)

−M(z̈G + g)xG + MẍG(zG − zC) + L̇y = −
K∑

k=1

εkxk,

(42)

where

zC = zF1

KF1∑
k=1

εk + zF2

KF1+KF2∑
k=KF1+1

εk

= (1 − λ)zF1 + λzF2,

0 ≤ λ ≤ 1.

Noting that Eqs.(39) and (40) become identical with Eqs.(41)
and (42) by replacing z0 with zC , the equations can be
interpreted to consider a virtual horizontal plane between
consecutive steps and to set the reference ZMP on the plane.
The interpretation may be a typical heuristics that has been
used to plan motion patterns of a robot that goes up and
down stairs, but it has been turned out that the strong stability
should be guaranteed in the case by Theorem 1.

C. Walking on a Rough Terrain

This is a generic case, and Eqs.(19)-(20) are used in
a generic form. Fig.5 shows an example in which HRP-2
should walk on planes with different slopes and heights. In
other words, HRP-2 walks on a rough terrain, but the whole
soles of HRP-2 can contact with the terrain in the example.
The trajectory of (τ ′

Cx, τ ′
Cy) on fCz = Mg of a walking

along x-axis planned by the proposed algorithm is drawn by
the red curve in Fig.6, where the horizontal axis is τ ′

Cx and
the vertical axis τ ′

Cy . The rectangles show the boundary of
the CWCs in fCzτ

′
Cxτ ′

Cy space corresponding to the single
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Fig. 4. Trajectories of the ZMP in the simulation and experiment for walking on a horizontal plane

Fig. 5. HRP-2 walking on planes with different slopes and heights

support phases respectively. It is observed that (τ ′
Cx, τ ′

Cy)
stay inside the CWCs as planned.

The trajectory of (τ ′
Cx, τ ′

Cy) on fCz = Mg of the walking
planned by the ZMP criterion is also drawn by the blue curve
in Fig.6 in which the ZMP is defined under the assumption
that the floor is a horizontal plane. Two curves almost
coincide, because the whole sole of the robot is contact with
a slope in a single support phase, the normal vectors of the
contact points are identical for each footprint, and then there
is not significant difference between the desired (τ ′

Cx, τ ′
Cy)

derived from two criteria. Fig.7 shows the trajectories of
(τ ′

Cx, τ ′
Cy) on fCz = Mg of a single support phase of the

walking in the dynamic simulation (left) and the experiment
(right) of the planned walking. The trajectories of the other
single support phases are similar.

Fig.8 shows an example in which a sole of HRP-2 is
contact with the terrain by point contacts for a footprint. Then
the normal vectors of the contact points are not identical for
the phase. The trajectory of (τ ′

Cx, τ ′
Cy) on fCz = Mg for the

single support phase planned by the CWS is drawn by the
red curve and that by the ZMP by the blue curve in Fig.9.
It is observed that two curves are not coincide in the case,
and that the red curve should pass through the center of the
CWC. The larger the slope is, more the difference is. Note
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Fig. 6. Trajectories of (τ ′
Cx, τ ′

Cy) on fCz = Mg of walking on planes
with different slopes and heights

that the boundary of the CWC is not a rectangle in the case,
though that of the support polygon stays to be a rectangle.

Fig.7 shows the trajectories of (τ ′
Cx, τ ′

Cy) on fCz = Mg
of the single support phase of the walking in the dynamic
simulation (left) and the experiment (right) of the planned
walking. It is observed that the curve is close to the boundary,
which may be caused by the landing impact force between
the foot and the slope of 1

6π radian.
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Fig. 7. Trajectories of (τ ′
Cx, τ ′

Cy) on fCz = Mg in the dynamic
simulation (left) and the experiment (right) of walking on planes with
different slopes and heights

Fig. 8. HRP-2 walking on a rough terrain with point contacts

IV. CONCLUSIONS

The contributions of the paper can be summarized as
follows.

• A pattern generator of a humanoid robot that walks
on a flat plane, steps and a rough terrain is proposed.
It is guaranteed rigorously that the generated pattern
should keep the desired contact between the robot and
the terrain under the sufficient friction assumption.

• It is shown that there should be a feasible set of friction
forces if the friction force equations have a solution.

• The pattern generator is implemented and the verifica-
tion of the algorithm has been done successfully by the
simulations and experiments.

The future works include the experiments using a hu-
manoid robot that has a sensor to find 3-D geometry of the
terrain.
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