
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

A Pattern Matching Model for Misuse Intrusion Detection A Pattern Matching Model for Misuse Intrusion Detection

Sandeep Kumar

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
94-071

Kumar, Sandeep and Spafford, Eugene H., "A Pattern Matching Model for Misuse Intrusion Detection"
(1994). Department of Computer Science Technical Reports. Paper 1170.
https://docs.lib.purdue.edu/cstech/1170

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PATTERN MATCHING MODEL FOR
MISUSE INTRUSION DETECTION

Sandeep Kumar
Eugene H. Spafford

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD·TR-94-071
October 1994

A PATTERN MATCHING MODEL FOR MISUSE
INTRUSION DETECTION*
Technical Report CSD-TR-94-071

Sandeep Kumar Eugene H. Spafford

The COAST Project
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398
{kumar,spaf}@cs.purdue.edu

Keywords: intrusion detection, misuse, anomaly.

22 October 1994

Abstract

This paper describes a generic model of matching that can be usefully applied to misuse
intrusion detection. The model is based on Colored Petri Nets. Guards define the context in
which signatures are matched. The notion of start and final states, and paths between them
define the set of event sequences matched by the net. Partial order matching can also be
specified in this model. The main benefits of the model are its generality, portability and
flexibility.

1 Introduction

Computer break-ins are becoming increasingly frequent and their detection is increasingly impor
tant. Break-ins make the data residing on computer systems vulnerable to theft and corruption.
Compromised sites can also be used to launch further attacks, thus achieving another level of
indirection for further break-ins. A majority of break-ins, however, are the result of a small number
of known attacks, as evidenced by reports from response teams (e.g. CERT). Automating detection
of these attacks should therefore result in the detection of a significant number of break-in attempts.

*This paper originally appeared in the Proceedings of the 17th National Computer Security Conference, 1994 [11].

1

Intrusion Detection is primarily concerned with the detection of illegal activities and acquisitions
ofprivileges that cannot be detected with information flow and access control models. Examples of
these include software engineering flaws in programs that allow cross privilege domain executions,
insider abuse and failure of authentication procedures. Intrusion Detection models therefore do
not directly overlap with traditional security models [12] which are primarily concerned with
modeling information flow in a computer system to ensure that subjects are never able to access
unauthorized information, or with modeling access control mechansims to prevent unauthorized
access to objects.

Current approaches to detecting intrusions can be broadly classified into two categories: Anomaly
Detection and Misuse Detection [21]. Anomaly Detection is based on the premise that
intrusive activity often manifests itself as an abnormality. The usual approach here is to devise
metrics indicative of intrusive activity, and detect statistically large variances on these metrics.
Examples might be an unusually high number of network connections within an interval of time,
unusually high CPU activity, or use of peripheral devices not normally used. This approach has
been studied extensively and implemented in a large number of systems [20, 19, 13, 15,5, 8]. It
attempts to quantify the acceptable behavior and thus identify abnormal behavior as intrusive.

The other technique of detecting intrusions, misuse detection, attempts to encode knowledge about
attacks as well defined patterns and monitors for the occurrence of these patterns. For example,
exploitation of the fingerd and sendmail bugs used in the Internet Worm attack [22] would
be in this category. This technique specifically represents knowledge about unacceptable behavior
and attempts to detect its occurrence.

This paper proposes a variation of one approach to misuse detection, state transition analysis,
by using pattern matching to detect system attacks. Knowledge about attacks is represented
as specialized graphs. These graphs are an adaptation of Colored Petri Nets [9] with guards
representing signature context and vertices representing system states. The graph represents the
transition ofsystem states along paths that lead to intruded states. Patterns may have user-specifiable
actions associated with them that are executed when patterns are matched. The model provides
the ability to specify partial orders and subsumes matching of sequences and regular expressions.
Patterns also have pre- and post-conditions associated with them that must be satisfied before and
after the match. Patterns also may include invariants to specify that a condition is or is not satisfied
while the pattern is being matched.

There are several benefits to our approach of using a generic model of matching. A significant
benefit is the clean separation of the various components comprising a generic misuse detector. With
our approach to designing a generic misuse detector, it can be viewed as three basic abstractions.
This enables generic solutions to be substituted for each abstraction without changing the interfaces
between the abstractions of the model. These abstractions are:

• The Information Layer. This encapsulates the audit trail and provides a low-level data
interface to the monitored computer system.

• The Signature Layer. This provides for a system-independent internal representation of
signatures and a system-independent virtual machine to represent the signature context.

2

• The Matching Engine. This encapsulates the method used to match the patterns. It makes the
system independent of any particular choice of matching algorithms. It also allows simple
substitution of newer or more powerful mechanisms as they become available.

Furthermore, a standardization of the model of matching signatures permits several external rep
resentations of signatures to exist, each facilitating the representation of certain type of signature
constructs. Other benefits of the model include its extensibility and portability to different event
models; its ability to assign priority to signatures and the ability to dynamically add signatures in
the midst of matching [sec. 4].

Our model is generic and does not assume any characteristics of the underlying events against which
matching is done or the domain of solution. It provides a mechanism on which matching solutions
can be built. For example, the same model applies for the case of monitoring network packet flow,
or for monitoring specific patterns in logs generated by general purpose logging utilities. The input
events in any of these problem domains can be canonicalized and used as input to our model of
matching. Specific instantiations can be made of the model as appropriate to the problem. For
example, a specialized version could be created for matching intrusion signatures in the context of
UNIX audit trails.

2 Primary Approaches To Misuse Detection

Misuse detection might be implemented by one the following techniques:

1. Expert Sys terns, which code knowledge about attacks as if - then implication rules.

2. Model Based Reasoning Systems, which combine models of misuse with eviden
tial reasoning to support conclusions about the occurrence of a misuse.

3. State Transition Analysis, which represents attacks as a sequence of state tran
sitions of the monitored system [17, 6].

4. Key Stroke Monitoring, which uses user key strokes to determine the occurrence of
an attack.

These methods are summarized in the following sections.

2.1 Expert Systems

An expert system is defined in [7] as a computing system capable of representing and reasoning
about some knowledge-rich domain with a view to solving problems and giving advice. Expert
system detectors code knowledge about attacks as if - then implication rules. Rules specify the
conditions requisite for an attack in their if part. When all the conditions on the left side of a
rule are satisfied, the actions on the right side of the rule are performed which may trigger the
firing of more rules or conclude the occurrence of an intrusion. The main advantage in formulating
if - then implication rules is the separation of control reasoning from the formulation of the
problem solution. Its chief use in misuse detection is to symbolically deduce the occurrence of an
intrusion based on the available data.

3

The primary disadvantage of using expert systems is that working memory elements (the fact
base) that match the left sides of productions to determine eligible rules for firing are essentially
sequence-less. It is difficult to efficiently specify an order in which to match facts within the natural
framework of expert system shells.! Other problems include software engineering concerns with
the maintenance ofthe knowledge base [14] and the quality ofthe rules, which can be only as good
as the human devising them [14].

2.2 Model Based Systems

This approach was proposed in [4] and is a variation on misuse intrusion detection. It combines
models of misuse with evidential reasoning to support conclusions about its occurrence. There is
a database of attack scenarios, where each scenario comprises a sequence of behaviors making up
the attack. At any moment the system is considering a subset of these attack scenarios as likely
ones being experienced by the system. It seeks to verify them by seeking information in the audit
trail to substantiate or refute the attack scenario (the anticipator). The anticipator generates the
next behavior to be verified in the audit trail, based on the current active models, and passes these
behaviors to the planner. The planner determines how the hypothesized behavior will show up
in the audit data and translates it into a system dependent audit trail match. This mapping from
behavior to activity must be easily recognized in the audit trail, and must have a high likelihood of
appearing in the behavior.

As evidence for some scenarios accumulates, and decreases for others, the active models list is
updated. The evidential reasoning calculus built into the system permits the update of the likelihood
of occurrence of the attack scenarios in the active models list.

The advantage of model based intrusion detection is its basis in a mathematically sound theory of
reasoning in the presence of uncertainty. The structuring of the planner provides independence of
representation of the underlying audit trail syntax. Furthermore, this approach has the potential of
reducing substantial amounts of processing per audit record. It would do this by monitoring for
coarser-grained events in the passive mode and then actively monitoring finer-grained events when
those events are detected.

The disadvantage of model based intrusion detection is that it places additional burden on the person
creating the intrusion detection models to assign meaningful and accurate evidence numbers to
various parts of the graph representing the intrusion model. It is also not clear from the model how
behaviors can be compiled efficiently in the planner and the effect this will have on the run time
efficiency of the detector. This, however, is not a weakness of the model per se, but a consideration
for successful implementation.

2.3 State Transition Analysis

In this approach [17, 6] attacks are represented as a sequence of state transitions of the monitored
system. States in the attack pattern correspond to system states and have Boolean assertions

lEven though facts are numbered consecutively in current expert system shells, introducing fact numbering
constraints within rules to enforce an order makes the Rete match [3] procedure very inefficient.

4

associated with them that must be satisfied to transit to that state. Successive states are connected
by arcs that represent the events/conditions required for changing state. These conditions, or
signature actions, are not limited to a single audit trail event, but may be a complex specification
of conditions.

2.4 Keystroke Monitoring

This technique uses user keystrokes to determine the occurrence of an attack. The primary means
is to pattern match for specific keystroke sequences indicative of an attack. The disadvantages
of this approach are the general unavailability of user typed keystrokes and the myriad ways of
expressing the same attack at the keystroke level. Furthermore, without a semantic analysis of the
contents, aliases can easily defeat this technique.

2.5 Summary Characterizing These Four Approaches

All four approaches to misuse detection encode and look for specific attacks and use matching in
some form to detect them. If an attack is regarded as a set of steps, expert system rules permit the
encoding of sequentiality (and other dependencies) between the steps. However, because of the
generality of the match procedure of ascertaining firable rules, such dependencies are inefficient
to match directly. Model based systems consider 'models' of intrusion and seek to verify them by
looking for evidence to corroborate the model. This is done by using matching techniques on the
underlying event trail. State transition approaches can be construed as trying to match the sequence
of steps that lead a system to a compromised state. Each step in this sequence may, however,
require complex computation for determining its occurrence (typically using expert system rules).
Key stroke monitoring is the direct application of pattern matching to key stroke logs to match for
suspicious or undesirable patterns.

2.6 Benefits And Limitations Of Misuse Detection

A primary disadvantage of anomaly detection, the other major technique for intrusion detection,
is that statistical measures of user behavior can be gradually trained. Miscreants who know that
they are being monitored can train such systems over a length of time to the point where intrusive
behavior is considered normal. Misuse detection is immune to such training: if the signature
for an attack is carefully written, even major variations of the same basic attack scenario can be
detected. Moreover, the technique is simpler than anomaly detection. Within the framework of
misuse signatures, monitoring of system activity can be automated as well.

The primary disadvantage of this approach is that it looks only for known vulnerabilities, and is
of little use in detecting unknown future intrusions. However, we can look for known patterns of
abuse that might occur after a vulnerability is exploited; although the intrusion itself may not be
noted, the subsequent actions could be flagged.

5

3 Intrusion Detection Using Pattern Matching

Our pattern matching is based on the notion of an event. Events are auditable changes in the state
of the system, or changes in the state of some part of the system. An event can represent a single
action by a user or system, or it can represent a series of actions resulting in a single, observable
record.

We further specify events as having tags. Generally, monitored events are tagged with data. In
particular, the time at which the event occurred is of special importance because of the monotonicity
properties oftime. The events can have an arbitrary number (though usually a small number) of
tag fields. The exact number and nature of the fields is dependent on the type of the event.
Mathematically one can think of the events as being tuples with a special field indicating the type
of event. For example, one can think of the event a occurring at time t to be the tuple (a, t), where
a denotes the type of the event.

A fundamental requirement of applying pattern matching to intrusion detection is that matching be
done with follows semantics rather than immediately follows semantics. For example, with follows
semantics the pattern ab specifies the occurrence of the event a followed by the occurrence of
event b. It does not represent a immediately followed by b with no intervening event. This means
that any two adjacent sub patterns within a pattern are implicitly separated by an arbitrary number
(possibly zero) of events of any type. This assumption is appropriate in current systems: audit
trail generation and modern user interfaces allow users to login simultaneously through several
windows thereby generating overlapped entries in the audit trail.

Using follows semantics makes the field of discrete approximate pattern matching relevant to
intrusion detection. Three characteristics determine the kinds of theoretical bounds that can be
placed on the matching solution: 1) whether matching is off-line or online 2) whether signatures
can be dynamically added or deleted as matching proceeds and 3) whether all matches of the
pattern in the event stream are desired or whether finding a single match is sufficient.

Results in approximately matching various classes of patterns are summarized in fig. 1. These time
bounds hold for arbitrary values ofdeletion, insertion and mismatch costs, and are not optimized for
the requirements ofmisuse intrusion detection. The results are restricted to online matching because
we are primarily concerned with real time intrusion detection. RE stands for regular expressions
and sequence refers to a chain ofevents. The column rnatch denotes the type of match determined
by the corresponding algorithm. An entry of "all endpts" denotes that the algorithm detects all
positions in the input where a match with the pattern ends, but cannot reconstruct the match
sequence, "all" denotes that the algorithm can also construct the match. Finding all matches of a
pattern in the input is an all-paths source-to-sink problem and is computationally hard.

While approximate pattern matching is useful in misuse detection, the general problem cannot be
reasonably solved by current pattern matching techniques. For example, it requires matching of
partial orders, context-free and context-sensitive structures, and matching in the presence of time,
a notion inherent in audit trail generation and very important in specifying intrusions.

After studying common numerous UNIX vulnerability descriptions from such sources as the

6

Pattern Time Space Preproc Match Ref Comment

Sequence O(mn) O(m) 0(1) all endpts [23] Using dynamic programming.
Sequence O(mn) O(mn) 0(1) all [23] Using dynamic programminga .

Sequence O(n) O(m) 0(1) all endpts [1,24] Pattern fits within a word of the
computer. Small integer values
of costs.

RE O(mn) O(m) O(m) all endpts [16] Using dynamic programming.
RE O(mn) O(mn) O(m) all [16] Using dynamic programminga .

aDoes not include the time for enumerating all matches, which may be exponential.

Figure 1: Some Results from Pattern Matching Applicable to Misuse Detection

CERT security advisories, and those detected by the COPS [2] and TIGER [18] tools, we noted a
temporally-related partitioning. We were able to classify intrusion attacks on UNIX as follows:

1. Existence. The fact that something(s) ever existed is sufficient to detect the intrusion attempt.
Simple existence can often be found by static scanning of the file system. Examples include
searching for altered permissions or certain special files.

2. Sequence. The fact that several things happened in strict sequence is sufficient to specify the
intrusion.

3. Partial order. Several events are defined in a partial order, for example as in fig. 2.

4. Duration. This requires that something(s) existed or happened for not more than nor less than
a certain interval of time.

5. Interval. Things happened an exact (plus or minus clock accuracy) interval apart. This is
specified by the conditions that an event occur no earlier and no later than x units of time
after another event.

We believe that the vast majority of known intrusion patterns fall into categories 1 and 2. This
classification is not strictly a hierarchy as characteristics simple to match at lower levels of the
classification become intractable at upper levels. These classes can also be further subdivided into
finer categories; details can be found in [10].

3.1 An Overview of Our Model of Matching

We examined various regular methods of representing and matching our attack signatures. Regular
expressions can represent only the simplest types of attacks. Context-free and attribute grammars
are not easy to extend to approximate matching and do not lend themselves well to a graphical
representation. Regular expressions and context-free grammars do not permit matching to be
conditional on the value of specified expressions. Attribute grammars allow conditional matching
only in an indirect way. We settled on basing our model of matching on an extension of Colored
Petri Nets [9] as they suffer none of these problems.

7

Invariant: same_uid
--,

!cp Ibin/sh lusrlspool!mail!root i
:chmod 4755 I usrI spool!mailI root :
:touch x :
:mail root < x :
:IusrIspool!maillroot :
:_--------------------------------------~

write

this[PID] != 0 &&
true_name(this[OBJ]) =

true_name("/usr/spool/mail/root")
&&

FILE = this[OBJ]

chmod exec

----------------(this[OBJ! = FILE) true_name(this[PROG[} =

true_name{"/usr/ucb/mail"} &&
this[ARGSJ =- "\ \ <root\ \>"

Figure 2: Representing a Partial Order of Events

We refer to each signature represented as an instantiation of a Colored Petri Automaton (CPA).
The notion of one or more start states and a unique final state defines the set of strings matched by
the CPA. Matching begins with one token in each initial state. The pattern is considered matched
for each token that reaches the final state. Along the path to the final state tokens can merge or be
duplicated. Partial orders can be written with each trunk of the partial order starting at a different
start state. Tokens that are merged carry the merge information with them so the entire merge path
is stored.

Patterns are internally stored for matching as CPAs. Externally, a language can be designed
to represent signatures in a more programmer-natural framework, and programs in the language
compiled to this internal representation. The main differences between our model and CP-Nets
are the lack of concurrency in our model, absence of local transition variables, the notion of start
and final states, and the notion of pre- and post-conditions and invariants associated with patterns.
Moreover, nets in our model are not bipartite, unlike CP-Nets.

Our model is generic and applicable to any well-defined format of input events such as audit trail
records, network packets, or other abstractions. Our examples here, however, are taken from the
domain of misuse detection in the UNIX environment using audit trails as input.

Consider, as an example, the attack scenario in figure 2 [6]. Its CPA is translated verbatim from
the attack scenario for purposes of illustration only. 81 and 84 are the initial states of the CPA,
and 87 is its final state. A CPA requires the specification of ~ 1 initial states (each initial state
represents a trunk of the partial order) and exactly one final state. The circles represent states and
the thick bars the transitions. At the start of the match, a token is placed in each initial state. Each

8

state may contain an arbitrary number of tokens.

A CPA also has associated with it a set of variables. Assignment to these variables is equivalent
to unification. Each token maintains its own local copy of these variables because each token can
make its own variable "bindings" as it flows to the final state. In CP-Net terminology, each token is
colored, and its color can be thought of as an n-tuple of strings, where the pattern has n variables.

The CPA also contains a set of directed arcs that connect states to other states and transitions.
The arcs which connect places to other places are E transitions along which tokens flow nonde
terministically without being triggered by an event. Each transition is associated with an event
type, called its label, which must occur in the input event stream before the transition will fire. In
fig. 2 transition tl is labeled with the event write, t4 is labeled with the event stat and so on.
Nondeterminism can be specified by labeling more than one outgoing transition of a state with the
same label. There is, however, no concurrency in a CPA: an event can fire at most one transition.
A transition is said to be enabled if all its input states contain at least one token.

Optional expressions, or guards, can be placed at transitions. These expressions permit assignment
to the CPA variables. Example of these assignments include assignment of values to matched event
fields; evaluation of conditions involving equality, <, or >; and calling built-in and user defined
functions. Guards are Boolean expressions which evaluate to true or false. this is a special
operator which is instantiated to the most recent event. It may be empty in the case of E transitions.
It provides a hook into the event matched at a particular transition. Guards are evaluated in the
context of the event which matches the transition label and the set of consistent tokens which
enable the transition. Tokens are consistent when their variable bindings unify. The set of tokens
are unified before being passed to the guards for evaluation.

For example, in order for transition t 7 to fire, there must be at least 1 token in each of states
s3 and s6; the enabling pair of tokens (one from s3, the other from s6) must have consistently
bound (unifiable) pattern variables; and the unified token and the event oftype exec together must
satisfy the guard at t 7. A transition fires if it is enabled and an event of the same type as its label
occurs that satisfies the guard at the transition. When a transition fires, all the input tokens that
have caused the transition to fire are merged to one token, and copies of this merged token are
placed in each output place of the transition.

The process of merging resolves conflicts in bindings (i.e. makes sure that token bindings unify)
between tokens to be merged and stores a complete description of the path that each token traversed
in getting to the transition. Thus a token not only represents binding, but also the composite path
that it encountered on its path to the current state. The sequence of events matched by a CPA is the
sequence of events (or partial order) encountered at each transition by the token that has reached
the final state.

A CPA is also associated with a pre-condition, a post-condition, and an invariant expression. These
are similar to guards that must evaluate true to be successful. Patterns that have no transitions (e.g.,
verifying that root's. rhosts file is not world writable) can be specified using pre-conditions to
an empty pattern. Post-conditions are provided for symmetry and to allow the recursive invocation
of the same pattern.

9

The reason for having invariants associated with CPAs is more subtle. It seems syntactically
inconsistent to us to specify as part of patterns that they must not occur while another pattern
is being matched. That is, negative pattern specification in a CPA unnecessarily clutters the
description of the pattern. The other reason is that the semantics of some invariants cannot be
easily absorbed in the framework of transitions and guard expressions. It is more efficient to
provide them as primitives in the matching model than to attempt to subsume them within the
framework of matching.

As mentioned earlier, our model of matching is generic. It can easily be instantiated for misuse
detection for a system running the UNIX environment, for example. This would involve defining
the primitives supported in guard expressions. It might also include coding file test operations,
set manipulation functions, system interaction hooks, and other operations. The set of invariant
primitives supported in the instantiated model must also be defined. The overall structure of
matching remains unchanged.

4 Analysis Of Our Matching Model

There are several difficulties in intrusion detection using pattern matching. The dominant one is
the sheer rate at which the data generated by modern processors must be matched. We have some
confidence that a system as described in this paper can operate at a speed sufficient to operate in
near real time. Furthermore, because state is saved in the tokens and their tag fields, there is no
need to save (or re-process) extensive logs of the system.

The other major problem is the nature of the matching itself. An attacker may perform several
actions under different user identities, and at different times, ultimately leading to a system com
promise. Because an intrusion signature specification, by its nature, requires the possibility of an
arbitrary number of intervening events between successive events of the signature, and because we
are generally interested in the first (or all) occurrence(s) ofthe signature, there can be several partial
matches of each signature at any given moment. This can require substantial overhead in time
and space to track each partial match. In some scenarios, there may be weeks between events. In
others, different portions of an attack scenario can be executed over several login sessions and the
system is then required to keep track of the partial matches over login sessions. In other cases the
signature may specify arbitrary permutations of sub-patterns comprising the pattern thus making
the recognition problem much more difficult.

The complexity of matching in our model increases rapidly with increasing complexity of sig
natures. At the simplest end are patterns without guards, for which algorithms from discrete
approximate matching are applicable [fig. 1]. The introduction of guards and variables makes the
complexity of the matching problem exponential in the size of the CPA if the description of guards
is included in its size. Partial order matching takes super-exponential time. Matching can be
improved in some cases by exploiting the monotonic nature of event fields, like the time stamp of
the event. Evaluating guards can be optimized by defining a virtual machine for their evaluation.
By breaking the guard expressions into sequences of simpler instructions, common subexpression
elimination can be performed to reduce the size of the sequence. Such elimination can be done

10

across all the patterns. All these results and optimizations are described in [10].

Our model has several important advantages. It is very portable, in the sense that intrusion
signatures can be moved across sites without rewriting to accommodate fine differences in each
vendor's implementation. Signatures can also be transparently moved to systems with somewhat
different policies and ratings. An abstract audit record definition and a standard definition ofa virtual
machine to represent guards ensures that patterns pre-compiled to an intermediate representation
can be moved across systems with minimal overhead.

Signatures can be dynamically added in the matching engine while maintaining the partial matches
of signatures already present in it. The only disadvantage of doing this is that some optimizations,
like common subexpression elimination ofguards, may not be done for subsequently added patterns
with respect to patterns already compiled in the engine. Actions can also be associated with patterns
by incorporating them as expressions in the post conditions.

Signatures can be prioritized by considering each token as a thread of control. Each thread then
fetches events from an event manager and acts on them. By prioritizing certain threads, patterns
can be prioritized for matching.

5 Conclusions

The paper outlined a pattern matching approach to misuse intrusion detection. It proposed a generic
model of matching based on CP-Nets that can be adapted to different problem domains. We used
misuse detection using audit trails under UNIX as an example to illustrate the usefulness and
applicability of this approach.

The model is interesting and appealing from a theoretical standpoint. However, its true test is an
evaluation of its implementation running under "live" conditions. We will implement this model
and derive experimental results in the near future. Comparative performance results with other
approaches will be difficult because of the lack of standardized benchmarking vulnerabilities and
the unavailabilty of such data for other approaches. We hope that our prototype implementation
and benchmarking results will provide the necessary first step in this direction.

References

[1] R. A. Baeza-Yates and G. H. Gonnet. A New Approach to Text Searching. In Proceed
ings of the 12th Annual ACM-SIGIR Conference on Information Retrieval, pages 168-175,
Cambridge, MA, June 1989.

[2] Daniel Farmer and Eugene H. Spafford. The COPS Security Checker System. In Proceedings
of the Summer Usenix Conference, pages 165-170, June 1990.

[3] Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. In Artificial Intelligence, volume 19. 1982.

11

[4] T. D. Garvey and T. F. Lunt. Model based Intrusion Detection. In Proceedings of the 14th
National Computer Security Conference, pages 372-385, October 1991.

[5] L. T. Heberlein, K. N. Levitt, and B. Mukherjee. A Method To Detect Intrusive Activity in a
Networked Environment. In Proceedings ofthe 14th National Computer Security Conference,
pages 362-371, October 1991.

[6] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX. Master's thesis,
Computer Science Department, University of California, Santa Barbara, July 1992.

[7] Peter Jackson. Introduction to Expert Systems. International Computer Science Series.
Addison Wesley, 1986.

[8] R. Jagannathan, Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham, Caveh Jalali,
Hal Javitz, Peter Neumann, Ann Tamaru, and Alfonso Valdes. System Design Docu
ment: Next-Generation Intrusion Detection Expert System (NIDES). Technical Report
A007/A008/A009IAOIl1AOI2/AOI4, SRI International, March 1993.

[9] Kurt Jensen. Coloured Petri Nets - Basic Concepts I. Springer Verlag, 1992.

[10] Sandeep Kumar and Eugene Spafford. An Application of Pattern Matching in Intrusion
Detection. Technical Report 94-013, Purdue University, Department of Computer Sciences,
March 1994.

[11] Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse Intrusion
Detection. In Proceedings ofthe 17th National Computer Security Conference, pages 11-21,
October 1994.

[12] Carl E. Landwehr. Formal Models for Computer Security. ACM Computing Surveys,
13(3):247-278, September 1981.

[13] G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose and Framework. In Proceedings
of the 12th National Computer Security Conference, pages 495-504, October 1989.

[14] Teresa F Lunt. A Survey of Intrusion Detection Techniques. Computers & Security,
12(4):405-418, June 1993.

[15] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Alan Whitehurst, and Sherry Listgarten. Knowl
edge based Intrusion Detection. In Proceedings of the Annual AI Systems in Government
Conference, Washington, DC, March 1989.

[16] Eugene W. Myers and Webb Miller. Approximate Matching of Regular Expressions. In Bull.
Math. BioI., volume 51, pages 5-37, 1989.

[17] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transition Analysis - A
Rule-Based Intrusion Detection Approach. In Eighth Annual Computer Security Applications
Conference, pages 220-229. IEEE Computer Society press, IEEE Computer Society press,
November 30 - December 41992.

12

[18] David R. Safford, Douglas L. Schales, and David K. Hess. The TAMU security package: An
outgoing response to internet intruders in an academic environment. In Proceedings of the
Fourth USENIX Security Symposium. USENIX Association, 1993.

[19] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in Intrusion
Detection: A Case Study. In Proceedings ofthe 11th National Computer Security Conference,
October 1988.

[20] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth Aerospace Computer
Security Applications Conference, pages 37-44, Tracor Applied Science Inc., Austin, TX,
Dec 1988.

[21] Stephen E. Smaha. Tools For Misuse Detection. In Proceedings of ISSA '93, Crystal City,
VA, April 1993.

[22] Eugene Spafford. The Internet Worm Report. Technical Report 823, Purdue University,
February 1990.

[23] Robert A. Wagner and Michael 1. Fischer. The String-to-String Correction Problem. In
Journal of the ACM, volume 21, pages 168-178,january 1974.

[24] Sun Wu and Udi Manber. Fast Text Searching With Errors. Technical Report TR 91-11,
University of Arizona, Department of Computer Science, 1991.

13

	A Pattern Matching Model for Misuse Intrusion Detection
	Report Number:
	

	tmp.1307986960.pdf.eX9rd

