
A Pattern-supported
Parallelization Approach

Ralf Jahr, Mike Gerdes, Theo Ungerer

University of Augsburg, Germany

The 2013 International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM 2013)

Outline

 Motivation

 Parallel Design Patterns

 Pattern-supported Parallelization Approach

– Two phases

– Activity and Pattern Diagram

– Pattern Catalogue

 Case study: Unmanned Aerial Vehicle

 Summary

2013-02-23 A Pattern-supported Parallelization Approach 2

Motivation

 Multicore and manycore CPUs in embedded systems

 Goals:
– Faster execution of a workload

– Concurrent execution of multiple tasks

– Shorter reaction times

– Energy savings because of lower clock frequency

Need for parallel applications

 But, especially for embedded systems:
– Much legacy code

– Limited development resources

– Complicated testing and debugging

2013-02-23 A Pattern-supported Parallelization Approach 3

Parallel Design Patterns

 Design Patterns

– Idea initially in architecture

– Recurring problems best practice solutions

– Transfer to software engineering

– Mainly object oriented design, see “Gang of four”
– Standardized description: Pattern Catalogue

 Parallel design patterns

– Extended concept: design patterns providing parallelism

– Tradeoff: flexibility in design vs. development effort

2013-02-23 A Pattern-supported Parallelization Approach 4

 Starting point:

– Sequential program (“legacy code”)
– Pattern Catalogue with parallel design patterns

2013-02-23 A Pattern-supported Parallelization Approach 5

 Phase 1: Targeting Maximum Parallelism

– Create model to reveal parallelism

– Model consisting of sequential parts
and parallel design patterns

– Platform independent

 Phase 2: Targeting Optimal Parallelism

– Agglomeration of nodes,
definition of parameters

– Creation of threads and mapping
onto target architecture

– Platform dependent

Pattern-supported
Parallelization Approach

 The Pattern Catalogue:
– Basis for parallelization

– Contains all allowed parallel design
patterns

– Description according to meta-
pattern

– Description is textual, no reference
implementations

– Implementation examples are
optional

– Grows over time

 Example: “Our Pattern Language”
– http://parlab.eecs.berkeley.edu/wiki

/patterns/patterns

– Organized in multiple layers

2013-02-23 A Pattern-supported Parallelization Approach 6

Pattern Catalogue

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

Activity and Pattern Diagram

 Extension of UML2 Activity Diagram:

– Parallel design pattern is new node type similar to activity

– Activities: either sequential or encapsulate APD

– Parallel design patterns: Multiple activities in parallel

 Patterns are only way to introduce parallelism

 Advantages over inventing a new notation:

– Well known, easy to understand, tools exist

– Support for dependencies, branches, and nesting

2013-02-23 A Pattern-supported Parallelization Approach 7

Activity and Pattern Diagram

2013-02-23 A Pattern-supported Parallelization Approach 8

 Goal: Reveal sufficient parallelism for any platform as
Activity and Pattern Diagram (APD)

 Start with single activity, repeatedly apply two operations:
a) Replacement: apply parallel design pattern

b) Splitting: decompose into multiple activities

2013-02-23 A Pattern-supported Parallelization Approach 9

Pattern-supported Parallelization
Approach: Phase 1

 Transition from maximum to optimal parallelism by
agglomeration

 Similar to optimization problem:

– Global Objective: reduce execution time, energy
consumption, …

– Execution time influenced by e.g. communication/
computation ratio, cost for synchronization, etc.

– Side conditions: number of available cores/threads;
dependencies (control, data, timing), etc.

2013-02-23 A Pattern-supported Parallelization Approach 10

Pattern-supported Parallelization
Approach: Phase 2

Activity and Pattern Diagram Threads/Tasks Cores

„Agglomeration
and Mapping“

 Agglomeration is...

– Replacing a parallel design pattern by an activity, e.g.,
replacing pipeline by activity Reduction of parallelism

– Joining elements of parallel design pattern, e.g., multiple
pipeline stages to single one Reduction of overhead

– Defining parameters, e.g., concurrent workers for data
parallelism Tailoring design patterns to target platform

2013-02-23 A Pattern-supported Parallelization Approach 11

Pattern-supported Parallelization
Approach: Phase 2

 Mapping

– Find optimal mapping between code (APD) and
threads/tasks and cores/clusters

– Trade-off between optimal use of resources vs. parallelism

– Not in focus of parallelization, different research area

 Objectives for parallelization process

– Speedup/rough approximation of speedup

– Resource usage

– Energy consumption

– Implementation effort (e.g. number of patterns)

 If necessary: iterative application of process!

2013-02-23 A Pattern-supported Parallelization Approach 12

Pattern-supported Parallelization
Approach: Phase 2

Pattern-supported
Parallelization Approach

 Manual process with clear methodology
 Fast modelling of parallelism with Activity and Pattern

Diagram; derived from UML2
 Pattern Catalogue

– Easier implementation of parallel program
– Higher Documentation Quality

 Algorithmic skeletons for reduced implementation effort

2013-02-23 A Pattern-supported Parallelization Approach 13

Sequential Program /

Problem description

Pattern Catalogue
Model of Program

with Parallel Design

Patterns

Source Code

Maximum parallelism by

decomposition

Optimal parallelism by

agglomeration

Similar to Mattson

Similar to Foster

Example & Work in Progress:
Unmanned Aerial Vehicle (UAV)

http://www.oberwelzdesign.com/en/project/quadcopter01

http://www.oberwelzdesign.com/en/project/quadcopter01

The Software

 Autonomous flight over terrain
– Obstacle detection

– Automatic path planning (Laplace operator)

 Assumptions:
– Sequential software exists

 Overview of the software:
– Initialize system

– Loop until goal is reached:
 Determine position

 Mark obstacles

 Plan path

 Set course

2013-02-23 A Pattern-supported Parallelization Approach 15

Parallelization

 Phase 1

– Goal: Expose parallelism

– Finished, see paper

– Six instances of parallel design patterns

 Phase 2

– Goal: Tailor parallelism to target platform

– But: work in progress, no target platform yet defined

– Approximated speedup based on profiling: 7.8

 Enough parallelism for 2 to 6 cores

 Further work necessary for 8+ cores

2013-02-23 A Pattern-supported Parallelization Approach 16

 Pattern-supported parallelization approach

– Two phases:

 Reveal parallelism: architecture independent

 Agglomerate and map: architecture dependent

– Only parallel design patterns to introduce parallelism

– Parallel design patterns are described in Pattern Catalogue

– Supporting structure: Activity and Pattern Diagram, similar
to UML2 Activity Diagram

– Limited effort for parallelization and implementation of
parallel program

 Future work:

– Tool support for parallelization, especially Phase 2

– Extend parallelization process for hard real-time systems

– More case studies, different platforms gain knowledge

2013-02-23 A Pattern-supported Parallelization Approach 17

Summary

