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Motivation 

 Multicore and manycore CPUs in embedded systems 
 

 Goals: 
– Faster execution of a workload 

– Concurrent execution of multiple tasks 

– Shorter reaction times 

– Energy savings because of lower clock frequency 

 

Need for parallel applications 

 

 But, especially for embedded systems: 
– Much legacy code 

– Limited development resources 

– Complicated testing and debugging  
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Parallel Design Patterns 

 Design Patterns 

– Idea initially in architecture 

– Recurring problems  best practice solutions 

– Transfer to software engineering 

– Mainly object oriented design, see “Gang of four” 
– Standardized description: Pattern Catalogue 

 

 

 Parallel design patterns 

– Extended concept: design patterns providing parallelism 

– Tradeoff: flexibility in design vs. development effort 
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 Starting point:  

– Sequential program (“legacy code”) 
– Pattern Catalogue with parallel design patterns 
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 Phase 1: Targeting Maximum Parallelism 

– Create model to reveal parallelism 

– Model consisting of sequential parts 
and parallel design patterns 

– Platform independent 
 

 Phase 2: Targeting Optimal Parallelism 

– Agglomeration of nodes,  
definition of parameters 

– Creation of threads and mapping  
onto target architecture 

– Platform dependent 

 

Pattern-supported 
Parallelization Approach 



 The Pattern Catalogue: 
– Basis for parallelization 

– Contains all allowed parallel design 
patterns 

– Description according to meta-
pattern 

– Description is textual, no reference 
implementations 

– Implementation examples are 
optional 

– Grows over time 

 

 Example: “Our Pattern Language” 
– http://parlab.eecs.berkeley.edu/wiki

/patterns/patterns 

– Organized in multiple layers 
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Pattern Catalogue 

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns


Activity and Pattern Diagram 

 Extension of UML2 Activity Diagram:  

– Parallel design pattern is new node type similar to activity 

– Activities: either sequential or encapsulate APD 

– Parallel design patterns: Multiple activities in parallel 

 

 Patterns are only way to introduce parallelism 

 

 Advantages over inventing a new notation:  

– Well known, easy to understand, tools exist 

– Support for dependencies, branches, and nesting 
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Activity and Pattern Diagram 
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 Goal: Reveal sufficient parallelism for any platform as 
Activity and Pattern Diagram (APD) 
 

 Start with single activity, repeatedly apply two operations: 
a) Replacement: apply parallel design pattern  

b) Splitting: decompose into multiple activities 
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Pattern-supported Parallelization 
Approach: Phase 1 



 Transition from maximum to optimal parallelism by 
agglomeration 

 

 Similar to optimization problem: 

– Global Objective: reduce execution time, energy 
consumption, … 

– Execution time influenced by e.g. communication/ 
computation ratio, cost for synchronization, etc. 

– Side conditions:  number of  available cores/threads;  
dependencies (control, data, timing), etc. 
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Pattern-supported Parallelization 
Approach: Phase 2 

Activity and Pattern Diagram Threads/Tasks Cores 

„Agglomeration 
and Mapping“ 



 Agglomeration is... 

– Replacing a parallel design pattern by an activity, e.g., 
replacing pipeline by activity  Reduction of parallelism 

– Joining elements of parallel design pattern, e.g., multiple 
pipeline stages to single one  Reduction of overhead 

– Defining parameters, e.g., concurrent workers for data 
parallelism  Tailoring design patterns to target platform 
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Pattern-supported Parallelization 
Approach: Phase 2 



 Mapping 

– Find optimal mapping between code (APD) and 
threads/tasks and cores/clusters 

– Trade-off between optimal use of resources vs. parallelism 

– Not in focus of parallelization, different research area 

 

 Objectives for parallelization process 

– Speedup/rough approximation of speedup 

– Resource usage 

– Energy consumption 

– Implementation effort (e.g. number of patterns) 

 

 If necessary: iterative application of process! 
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Pattern-supported Parallelization 
Approach: Phase 2 



Pattern-supported 
Parallelization Approach 

 Manual process with clear methodology 
 Fast modelling of parallelism with Activity and Pattern 

Diagram; derived from UML2 
 Pattern Catalogue  

– Easier implementation of parallel program 
– Higher Documentation Quality 

 Algorithmic skeletons for reduced implementation effort 
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Sequential Program / 

Problem description

Pattern Catalogue
Model of Program 

with Parallel Design 

Patterns

Source Code

Maximum parallelism by 

decomposition

Optimal parallelism by 

agglomeration

Similar to Mattson 
 
 
 

Similar to Foster 
 
 
 
 
 



Example & Work in Progress: 
Unmanned Aerial Vehicle (UAV) 

http://www.oberwelzdesign.com/en/project/quadcopter01 

http://www.oberwelzdesign.com/en/project/quadcopter01


The Software 

 Autonomous flight over terrain  
– Obstacle detection 

– Automatic path planning (Laplace operator) 

 

 Assumptions: 
– Sequential software exists 

 

 Overview of the software: 
– Initialize system 

– Loop until goal is reached: 
 Determine position 

 Mark obstacles 

 Plan path 

 Set course 
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Parallelization 

 Phase 1 

– Goal: Expose parallelism 

– Finished, see paper 

– Six instances of parallel design patterns  

 

 Phase 2 

– Goal: Tailor parallelism to target platform 

– But: work in progress, no target platform yet defined 

– Approximated speedup based on profiling: 7.8 

  Enough parallelism for 2 to 6 cores 

  Further work necessary for 8+ cores 
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 Pattern-supported parallelization approach 

– Two phases: 

 Reveal parallelism: architecture independent 

 Agglomerate and map: architecture dependent 

– Only parallel design patterns to introduce parallelism 

– Parallel design patterns are described in Pattern Catalogue 

– Supporting structure: Activity and Pattern Diagram, similar 
to UML2 Activity Diagram 

– Limited effort for parallelization and implementation of 
parallel program 
 

 Future work: 

– Tool support for parallelization, especially Phase 2 

– Extend parallelization process for hard real-time systems 

– More case studies, different platforms  gain knowledge 
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Summary 


