
A Patterns based reverse engineering approach for
Java source code

Rui Couto, António Nestor Ribeiro and José Creissac Campos
Departamento de Informática/Universidade do Minho & HASLab/INESC TEC

Campus de Gualtar, 4715-057 Braga, Portugal

Email: {rui.couto, anr, jose.campos}@di.uminho.pt

Abstract—The ever increasing number of platforms and lan-
guages available to software developers means that the software
industry is reaching high levels of complexity. Model Driven
Architecture (MDA) presents a solution to the problem of
improving software development processes in this changing and
complex environment. MDA driven development is based on
models definition and transformation. Design patterns provide a
means to reuse proven solutions during development. Identifying
design patterns in the models of a MDA approach helps their
understanding, but also the identification of good practices during
analysis. However, when analyzing or maintaining code that has
not been developed according to MDA principles, or that has
been changed independently from the models, the need arises
to reverse engineer the models from the code prior to patterns’
identification. The approach presented herein consists in trans-
forming source code into models, and infer design patterns from
these models. Erich Gamma’s cataloged patterns provide us a
starting point for the pattern inference process. MapIt, the tool
which implements these functionalities is described.

I. INTRODUCTION

Paying more attention to the modeling phase during the

software development process has shown multiple benefits.

However, to achieve such benefits there are some prerequisites.

A necessary requisite, to allow correct system implemen-

tations, is to have the models as complete and correct as

possible. This results in time consuming modeling tasks and

usually, once written, a model is never updated again. This lack

of attention to the models makes them obsolete and therefore

useless [11]. So, the full advantages of the modeling process

are not attained. To overcome this issue, the Object Manage-

ment Group (OMG) proposed a new software development

methodology, the Model Driven Architecture (MDA) [10],

[12]. This methodology is based on the definition of models,

and their transformation into new models or source code.

Usually, on traditional approaches to software development,

the time spent writing models is considered wasted. This

happens because only code writing is considered software

production. The MDA turns the time “spent” writing models

into software production, by allowing code to be generated

from those models. It defines the standard way to develop

model based software solutions. The main objective of the

approach, is to raise the relevance of the modeling phase, and

even, to make the modeling process the only needed work to

create software solutions.

The growth of the number of languages, tools and platforms

(for example, for user interfaces development) is leading the

software industry to high levels of complexity. This is mainly

caused by the tools’ lack of capability to hide this complexity.

Raising the abstraction level has always been the solution

to the problem of dealing with complexity. Hence, MDA

appears as a solution to this issue in the broader area of

software engineering [10], [12]. Two specific types of models

are particularly relevant in this context: Platform Independent

Models (PIM) and Platform Specific Models (PSM). PIM

models are expressed at a level of abstraction that makes

them independent from any concrete deployment technology

or computational platform (e.g. J2EE or .NET). PSM models

are another kind of software model, with a lower abstraction

level than a PIM, closer to the final software. PSM models

are typically derived from PIM models and represent an

instantiation of the latter for a specific platform and technology

[15].

In a typical MDA driven project PIM models will be evolved

into PSM models and then into source code. However, for

existent projects, or when projects are updated directly in

the source code, tools are needed that are able to generate

models based on their source code. The OMG, however, does

not define the reverse process from code to models. It only

defines the models to code process. In order to address this

limitation, we have started studying a reversed MDA process.

Hence, the MDA process on the reverse form will be this

paper’s focus. With it, it is possible to easily create, evolve

and migrate software on a model based approach setting.

Having the reversed models, other kind of operations may

be performed on them. Of particular interest is the ability to

support the understanding of the proposed solution.

Christopher Alexander described a design pattern as the core

of a solution for a given recurrent problem. Thus, they may

be used to solve a problem multiple times, without repetition

[5]. Although the original definition was relative to buildings,

it is also considered to be valid for software engineering. A

design pattern describes a simple and elegant solution to a

well known problem. Their importance having been proved, it

is relevant to use them for software development.

Having reverse reengineered the models, an approach to

infer patterns was developed. We have started with Erich

Gamma patterns [5] as we wanted to develop an approach

that could be as generic as possible, but other collections may

be adapted later (for example, [1], [4]). Hence, this work’s

main objectives may be summarised as follows:

2012 IEEE 35th Software Engineering Workshop

1550-6215/13 $26.00 © 2013 IEEE

DOI 10.1109/SEW.2012.21

140

1) Generate high level models (cf. PSM) in the Unified

Modeling Language (UML) from Java source code;

2) Infer design patterns on those models;

3) Abstract PSM into PIM.

As result, a tool (MapIt) which implements these functionali-

ties was developed.

The remaining of the paper is organized as follows. Section

2 presents some of the work already done on this area. Section

3 presents the expected challenges. In section 4 the achieved

tool will be presented. The achieved tool implementation and

a case study will be discussed on the section 5. Finally, section

6 concludes the paper.

II. STATE OF THE ART

Models’ definition and transformation are the essence of

the MDA process. To have these models, we need a standard

way to define them. This is achieved through a metamodel.

The metamodel is a “well defined language” which allows

us to create both PIM and PSM models. We are particularly

interested in PIM and PSM because of their distinct abstraction

levels. The standard modeling language adopted to create these

models is the UML, but that is not a restriction. Having

these models, the transformations are the next step. Then,

having transformation definitions, it is possible to transform

one model into another at a different abstraction level. By

reversing these rules, we may expect reverse transformations.

A MDA transformation tool is what transforms a PIM model

into one (or more) PSM models. From that PSM, and using a

tool (either the same, or another) it should be possible to create

compilable source code. These model transformations are

MDA’s essence, and tools the technology which implements

them.

A transformation definition is a set of transformation rules.

The information about how a model element (a PIM element,

for instance) should be represented in another model (a PSM,

for instance) consists in a transformation rule. In the direct

way, PIM to PSM as defined by the MDA, these rules intent

to lower the abstraction level. These rules may have reverse

representations, which allow reverse transformations and raise

a model’s abstraction level.

A. Reversing the MDA process

Several MDA implementations have already been proposed

by some authors, resulting in tools and algorithms to go from

models to code [10], [7]. As already mentioned, reversing

the MDA process is very useful, not only to include existent

software in the MDA process, but also to keep consistency

between source code and models. However, the OMG does not

define the reverse process from code to models. The reverse

MDA process has already been object of study, but usually in

a simple way. For example, via the integration of an existent

system into another under development by considering the first

as a “black box” which exposes some of its particularities to

the outside. A complete integration of the two systems would

be more useful, and some authors have also studied this issue.

To start the reverse MDA process there are two possible

approaches. The first one consists in a static analysis which

mainly extracts the structural aspects, producing PSM and PIM

models. The second approach analyses software behavioral

aspects, which provide another kind of information about the

software comportment.

The most common methodologies suggest the following

approach: first, the source code must be analyzed (be it text or

bytecode); second, relevant information must be extracted to

create an intermediary representation (for example, a syntactic

tree or a graph) [16]; finally, as these representations contain

a high level of detail, they must be simplified [13], [3]. This

approach allows not only the integration of existing software

into the MDA process, but also the execution of high level

operations over the models. For example, carrying out pattern

inference over the models to better understand the rational

behind the implementation.

The tool presented here is based in the static approach just

described. Performing the basic structural analysis was a rela-

tively simple task, because it relies only in the (textual) source

code. On the other hand, inferring the relation between the

model elements was the hardest task (apart from the dynamic

information). Some studies stated that while binary associa-

tions can be directly extracted from source code, n − ary
associations require more work to infer. In the presented tool,

only the “zero or more” (0..∗) multiplicity was considered.

This multiplicity has shown to be sufficient to achieve the

proposed objectives. The static analysis process allows the

creation of (possible incomplete) UML class diagrams. To

understand this process’ difficulty, one of the most precise

recovering tool (according with the author), is capable of

extracting only 62% of UML elements [6].

There were two possible starting points for the analysis

process. One was to start from the textual source code, as

programmed by the developer. The other was to start from

the Java bytecode. The chosen approach was the first one, the

second being considered less suitable for the tool’s proposed

objectives. Indeed, the textual approach has shown to be

more adequate in this context. First, the source represents

the system without compiler optimizations. Second, if the

developers resort to obfuscation techniques, some details may

be lost. Also, by using the textual source code, it is possible

to integrate this tool in the development process, providing the

functionalities while creating code.

B. Pattern Inference

The importance of design patterns is demonstrated by the

number of patterns found on software developed nowadays.

Some of the advantages their use offers include the fact that

they allow a higher abstraction level vision of the software, and

that they can be used as quality (or lack of quality) measures.

When patterns are not documented in a software, an inference

process is needed to retrieve them [6].

A pattern inference functionality offers multiple advantages.

By offering a higher level view of a system’s implementation,

it makes it easier to understand it. It provides measures of

141

the quality of an undocumented implementation, support for

defect detection, and it is useful on the project’s maintenance

phase. The second component proposed for our tool is the

pattern inference capability. After reversing source code into

PSM and PIM, the tool should be able to infer patterns, based

on these models.

Existing studies on pattern inference provide some guide-

lines about how to implement this functionality [10], [12], [7].

The suggested approach is the following: a given software

should be analyzed and mapped onto an adequate, and pre-

viously defined, metamodel. This metamodel should contain

static and structural information, along with some dynamic

information (such as method invocation). From this repre-

sentation, a knowledge base of facts and rules representing

the system information will be extracted into an external

format. Then, these facts will be analyzed, searching for design

patterns. A set of rules representing design patterns should

be defined beforehand, to allow pattern searching. Basing the

pattern inference process in a previously obtained knowledge

fact is not a new approach. For instance, a similar technique

was presented as viable by Roel Wuyts [17].

The intermediary data representation used differs from

approach to approach. These intermediary representations

may be organized according to the notation used to express

them: graphs which preserve the elements’ hierarchy, matrices,

markup languages, or programming languages (such as Pro-

log). Having this intermediary representation defined, it is then

possible to start the pattern inference process. This process

consists in the comparison of the intermediary representation,

against previously defined patterns, in the same language.

C. Available tools

We analyzed some of the tools in the MDA context, and

we present some of the most relevant conclusions. First, these

tools may be categorized in “round-trip” and “reverse engi-

neering”, depending on their objective. Some offer Integrated

Development Environment (IDE) capabilities, allowing some

degree of code and model manipulation to develop software

(such as ArgoUML and Fujaba [8]). Other tools are focused

on a more efficient analysis, offering higher level operations

on the models (like Ptidej [6]). Still other tools combine both

functionalities (for instance Together and Visual Paradigm).

The Ptidej tool claims to be the most precise tool, being able

to recover the highest level of UML elements [6]. Regarding

pattern identification, the most relevant tools are Reclipse

[16] and Ptidej. Both are able to infer patterns on UML

models. Only Fujaba and Ptidej are able to perform higher

level operations on the models.

Despite these tools’ utility, none of them were able to

combine, in one development environment, the three proposed

functionalities: to obtain PSM models from source code, to

infer patterns in those PSM models and to abstract PSM

models into PIM models. The tools closer to that objective are

Ptidej, Fujaba and jGrasp. Being these tools an “incomplete”

solution, the proposed tool tends to be the integration of the

spare functionalities in a single environment.

III. TRANSFORMATIONS

The topics discussed above can be reduced to the three main

functionalities that the tool should implement (see Figure 1).

They are resumed as: the reverse MDA process from source

code into PSM, the design patterns inference on a PSM, and

the reverse MDA process from PSM to PIM. These approaches

are meant to be used in separate accordingly to the needs of

the developer.

A. Source code to PSM

The first functionality corresponds to the source code to

class diagram (PSM) abstraction, represented in Figure 1 on

the left. The process to do such should start with the analysis

of the project’s source code. This requires a project’s structural

analysis, analyzing then each of the Java files. To achieve such

goal, a semantic analysis is used on the source code, by using a

Java parser. The extracted information must be mapped onto an

intermediary representation. An adequate way to represent it is

by means of a metamodel. This metamodel must be complete,

accurate and at the same time not overloaded with useless

information. But, even if not all of the software information

is needed for the proposed objectives, the metamodel should

be ready for future functionalities.

Another tool requirement is a visual representation for this

metamodel. The metamodel elements are mapped onto UML

elements: for each metamodel element, there will be a visual

UML element, shown to the user. It is also required for this

diagram to be interactive.

In conclusion, a relation between the metamodel elements,

the UML entities and a visual representation needs to be

specified. This allow us to define how each Java element will

be represented and displayed to the user.

B. PSM pattern inference

Pattern inference on models allows us to extract a higher

level information representation of the original model. This

process, represented in Figure 1 on the top right, occurs over

previously reversed information. That information may also be

used for other purposes, in this case, to generate the PIM (see

below). Not only the inference process needs to be specified,

but also how to customize it. It is required that this process

be parameterizable and easily extensible.

The pattern inference process starts with the knowledge

base creation. This process depends on two major factors.

First, it depends in correctly defining the patterns used in

the inference process. Second, it depends in achieving an

appropriate knowledge base, representing correctly all the

system information. Creating the knowledge base must be

a careful step, since overloading the knowledge base with

useless information will slow down the inference process.

It is easy to understand that the intermediary representation,

the knowledge base, and the patterns are somehow associated.

Such relation is the possibility to achieve transformations

between them, on the presented order. To start, a knowledge

base, based on the source code is created. To handle such

142

Fig. 1. Representation of the tool functionalities.

representation, the use of an external technology will be con-

sidered. So, a tool which implements information mapping and

exchanging with that external tool needs to be implemented.

We may only expect to achieve good results with this

process, if we have a standard and well defined way to

represent a design pattern. Also, it should be possible to

interpret an external pattern definition, and use it on the

analysis process, to make this process parametrizable. These

representations should then be used on the external tool, which

should contain the knowledge base. This external definition is

called the “pattern catalog”. It consists in a set of user defined

design patterns. With this approach, a customized set of rules

may be created and used to identify those patterns on a model.

The implementation of the catalog is achieved by means of an

external file, defined by the user.

It would be easier to understand the visual representation of

the patterns, if the diagrams follows the same representation

as the PSM. As such, it would be interesting, for instance, to

highlight the inferred patterns in that model.

C. PSM to PIM

The model abstraction process is usually related with in-

formation simplification or reduction. So, this process mainly

consists in reducing the elements information, quantity, or even

change their information. As result, a PSM is transformed into

a more generic model, the PIM. This is represented in Figure

1, on the bottom right.

Regarding the models, the abstraction process can be treated

as model filtering or as a model transformation. This process

produces also a model, and as such, a visual representation is

needed. Since we consider this process as a transformation

process, the possibility for future improvements should be

taken into account. This process will be based on the MDA

Explained book [7] approach. That book presents a set of

transformation rules, in the direct way. Their reverse form

will allow a fully automated reverse transformation. For each

metamodel element, a transformation rule will be defined, such

that the rule will transform that element considering the whole

application context.

IV. THE MAPIT TOOL

We have completely defined the mapping process needed

to achieve source code into PSM transformations. To start, a

parser analyzes the source code, and preserves the extracted

information in a metamodel. This metamodel has a representa-

tion for each Java element, as well as the information needed

to preserve their hierarchy.

The concept of Java element was created to represent Class

and Interface abstractions. The used metamodel contains a

mapping for each Java attribute and method which is part of

a Java element. Java Classes and Interfaces have a respective

mapping as well. All these elements are assembled in a Java

package representation.

Inferring the cardinality of relationships is widely recog-

nized as difficulty. Hence, for simplification purposes, only

two different relationship cardinalities were considered. Asso-

ciation will then be considered as “one-to-one” relations (1..1).

Composition/aggregation as “one-to-many” relations (1..∗).
Additionally, method invocation information, from which class

and to which class (or interface) invocations are made, was

considered as relevant and included in the metamodel.

As the result of the static analysis, a set of Prolog facts are

produced creating the knowledge base. The knowledge base is

achieved by parsing all the elements and filtering them. These

facts will be used on the pattern inference process.

We may also achieve incomplete patterns inference, by

resorting to Prolog anonymous variables. To do such, for

a given pattern, each of its arguments may be replaced by

an anonymous variable, in its representation. Making all the

permutations among all the pattern elements, all possible

incomplete patterns will be found.

A. PSM to PIM abstraction

The PIM consists in a model which has no relation with

the target platform details. However, the PIM models obtained

with this tool are not true PIM, since they may contain

some (Java) platform details. However, those models’ objective

remains the same — to raise the abstraction level.

To achieve PIM from PSM, a set of transformation rules

is needed. Only by having both PIM and PSM completely

specified can transformations from PIM to PSM be defined.

143

Fig. 2. Example of identified pattern in a PSM diagram.

To achieve this, they are both modeled in UML. In short, it is

possible to say that PIM models derive from PSM models by

removing the Java platform specific elements from the PSM.

As described in MDA Explained [7], the models transfor-

mations are achieved by applying well defined rules on model

elements. These rules describe how elements from one model

are mapped into another model, at a different abstraction level.

That book presents a set of rules to achieve PIM into PSM

transformations. A suggested approach is to define the book

rules on the reverse form. The transformation process is then

defined as the process of removing or filtering elements for

a given model. All of the PSM elements will be processed

and transformed into higher level elements, resulting in a PIM

model

The used transformation rules are encoded in Java methods,

and for each element, it should exist a different rule. Each

method (for each PSM element) receives as argument not only

the information about the element being processed, but also

the information about all their hierarchical superior elements.

This way, we may achieve model-wide transformations.

B. PSM pattern inference

In the pattern inference process, the PSM is analyzed, and

the relevant structural information is extracted. This informa-

tion is preserved in an internal representation, the basis for the

pattern inference process. The representation is handled by a

Prolog interpreter, which creates a knowledge base from the

information therein.

Here, the suggestion is to include the Prolog technology to

handle these representations. Thus, the Prolog knowledge base

will keep all the software facts, extracted from an intermediary

PSM representation. There are a set of facts that are generated

from the software representation, described as Prolog facts.

A prolog fact is described as name/arity, where arity

means the number of arguments of the fact. A class existence

information will be expressed in a class/1 fact. For an

interface, the same approach is taken with interface/1.

Aggregation, composition or association information is rep-

resented as contains/2, between two classes or a class

and an interface. Heritage relationships are represented with

the extends/2 fact. Implementation properties are also

considered, as implements/2. Invocation information is

represented with the fact calls/3, between two classes (or

a class and an interface) and one method.

Once the Prolog knowledge base is populated, it can be

questioned for patterns. As soon as the pattern catalog is

parsed, this module will interact with the Prolog tool to

search matching patterns with the provided catalog rules. It is

possible to conclude that this might be considered a property

satisfaction problem, for a selected rule, on a given knowledge

base.

Figure 2 illustrates the identification of a pattern in a

PSM. In this figure (generated by the MapIt tool) the

composite pattern was inferred, where OnlineEvent and

ComplexEvent extend Event. ComplexEvent contains

one-or-more Events, creating then the composite pattern

among these classes.

The rules’ precision level will define the results’ quality.

A lenient rule will find more patterns with a lower precision

level. A more strict rule will find less patterns, but with more

precision.

C. Implementation

The parsing process is composed by two phases. First,

the information is extracted as represented from the source

code, and converted in metamodel elements. Only then it is

possible to establish the relations between the elements. The

information extracted from the parser is then mapped into an

adequate metamodel, since metamodels are recognized to be

the best information representation for pattern inference [6].

144

The Prolog integration uses the GNUProlog interpreter and

engine to handle the knowledge base. The two previously

presented functionalities are abstracted by a module which

handles interaction with the interpreter, and loads also the

pattern catalog.

The presented pattern catalog is a textual file, contain-

ing a set of Prolog rules (in a specific format). Each

line of the file should define a rule using the following

format: pattern_name/arity#(prolog_rule), were

pattern_name is the design pattern’s name, arity is

number of arguments of the rule, and prolog_rule is the

Prolog rule, representing the design patten. Figure 3 depicts

an example of a Prolog rule (for the Composite pattern).

The final user interface, enabling access to the function-

alities presented above, is provided by a NetBeans plugin.

With this approach, a development process supported by the

MapIt tool is done in the same environment already used

by developers. This way, the user may take advantage from

the IDE functionalities while using the tool. An effort was

made to make the Prolog module as generic and reusable as

possible by all the functionalities, so they may be improved

or changed with less effort. This was mainly achieved due to

the metamodel capability to express both PIM and PSM, so

only one metamodel representation was made.

The last implemented functionality was the models trans-

formation automation. This required a set of transformation

rules to be fully specified beforehand (these rule may be easily

extended). These rules were implemented as follows. A Java

class is mapped onto a PIM class. Also, a Java association is

mapped on a PIM association. For a Java public attribute, a

PIM public attribute is created. A Java method is transformed

onto a PIM operation, in an adequate way. A private Java

attribute which contains the correspondent getter and setter,

is transformed into a public PIM attribute. Also, for each

element, properties such data type should be removed or

adjusted. Absent PIM elements such as Java interfaces or other

project files (Extensible Markup Language (XML) files, for

instance) will not exist in the PIM.

By following the approach detailed above, we were able to

achieve a fully working tool. In several tests, it was possible to

successfully generate models for multiple kinds of software.

On some of those models, we were also able to infer design

patterns (some documented patterns, other developed by us).

Finally, we successfully raised the abstraction level of the

analyzed systems, with the achieved PSM.

V. DISCUSSION

We have used two distinct softwares in order to test the

achieved tool. A smaller software was used for a more detailed

analysis, and a bigger software to test a more complex case.

The smaller software consists in an agenda which allows

events and participants management. It has some inferable

design patterns and at the same time does not have a large set

of classes. With this software it was possible to make more

accurate tests. The more complex software was JHotDraw.

Apart from this software functionalities, there are some facts to

justify its choice. First, it is an open-source software, available

to the general public. Second, this software has an considerable

size, with about 160 classes and 9000 lines of code. This

makes it a good study case. Also, this software has the property

of being developed by a team which includes Erich Gamma.

This results in a design pattern based software. Hence, this

software allowed us to test the tool behavior in a more complex

environment.

Both source code to PSM and PSM to PIM functionali-

ties produced the expected results. They generated diagrams

containing the Java elements and their relations. Also, both

functionalities are fully automated as proposed, with no soft-

ware size restrictions, working in the same way for both

projects. The code to PSM functionality produced an UML

class diagram as expected. All the predicted UML elements

and their relations were represented, based on the metamodel

instance. Also, this process does not require user interaction

(apart from selecting the desire functionality), as proposed.

As expected, the JHotDraw software analysis resulted in

a larger number of elements shown in the PSM diagram.

As the representation is interactive, it allows adjusting the

elements position. This functionality eases the analysis of

larger softwares diagrams, meaning there are no restrictions

for to the maximum size of the analyzed software. Another

functionality developed to facilitate the analysis process allows

to simplify the diagrams, by representing the metamodels

elements only by its name. The PSM to PIM module produced

similar results, producing a higher lever UML class diagram.

This model is obtained by applying previous defined rules to

the PSM elements. Here again, the software dimension is not

a restriction to this use this functionality, and the produced

results are similar.

When using the pattern inference functionality, the user

must select if he/she wants to use the embedded pattern catalog

or, otherwise, select an external pattern. Once again, this

functionality is software size independent. All the inferred

patterns are identified and listed to the user. The higher

the number of patterns in a software, the more useful this

functionality becomes. Some of the analyzed tools presented

all the patterns at once. That makes it hard to understand

the patterns arrangement. The achieved results proved the

viability to include the pattern inference functionality on a

model analysis tool. Also, this shows how it is possible to

include an external technology (Prolog) in this process, taking

advantage from the language’s capabilities.

All the functionalities were implemented in a NetBeans

plugin. An effort was made to integrate the tool in the IDE,

allowing it to be used during the development process. When

comparing the resulting tool, against the proposed objec-

tives, we can make some considerations. Firstly, the proposed

functional objectives were achieved overall, and the viability

of the approach is considered as proven. Then, other non-

functional objectives such as usability improvement (against

other tools), or facilitating the tool’s installation and usage

were also addressed by resorting to Netbeans. This IDE is a

widely known tool, so installing and using the plugin will be

145

Fig. 3. Prolog rule representation for the Composite pattern.

familiar to developers.

As presented here, integrating the proposed functionalities

into one single tool was overall an achieved objective. We

were able to successfully create a tool, satisfying the presented

requirements. We have made an effort to make the Prolog

module reusable in other contexts, since it offers an interaction

with Prolog, by allowing to assert facts and questions. Also,

we tried to provide an efficient way to easily extend both the

Prolog and the parsing module for changes in further work.

When comparing the obtained results against the other

tools’ results, some considerations can be made. Comparing

the achieved models’ details, the other tools’ models were

generally less detailed. Even if all the tools (apart from

Reclipse/Fujaba) were able to recognize all the Java elements

(classes and interfaces), many of them were not able to

correctly recognize their relations (specifically ArgoUML,

jGrasp and Ptidej). The Reclipse/Fujaba tool was able only

to represent the inheritance relationship, and the Ptidej tool

missed some relations. Once again it was possible to conclude

that collection inference is hard to achieve, since all these tools

showed difficulties when performing this task.

Regarding relations between elements in the models, Ar-

goUML and Reclipse were not able to recognize typed collec-

tions. In the presented tool, none of these problems is present,

so the results concerning models’ elements and their relations

are considered satisfactory.

The models elements’ quality was also compared in the

obtained models. Only two tools achieved satisfactory results,

producing models’ elements in UML notation, being them

Reclipse/Fujaba and Ptidej. It was possible to conclude that

Ptidej achieved the best results. Even if Fujaba/Reclipse rep-

resented detailed diagrams, some information (about relations)

was missing. Also, even if the Ptidej tool achieved the best

results, the produced diagrams are static (making it impossible

to rearrange the elements on the screen). Only a few analyzed

tools were able to infer patterns in the diagrams, specifically

Reclipse/Fujaba and Ptidej.

The pattern inference (and representation) process occurred

over the obtained models. Tools supporting this step also

allowed the use of external catalogs to define the patterns to

infer. However, these tools used hard coded representations,

such as, for instance, representations in Java code. In the

tool presented herein a more flexible format is adopted (by

using Prolog rules), making it simpler to extend the patterns

catalogue. Since the Model and Pattern Inferring Tool (MapIt)

tool used a similar approach in the pattern inference (apart

from the issue of patterns representation), similar results were

achieved.

None of the analyzed tools have the model abstraction

functionality, so it is not possible to compare it. However,

regarding the examples presented in the MDA Explained book,

it is possible to conclude that the obtained models have a

higher abstraction level, close to a PIM (as expected).

VI. FUTURE WORK

We are now able to generate UML models, as well as

identify architectural patterns on those models. However, there

is room for further work both in terms of the development of

the tool, and in terms of its use and the type of analysis it

might support.

Regarding the tool, a number of improvement should be

addressed. The pattern inference module may be improved

expanding the pattern catalog, simply by adding new rules.

The fact that the pattern collection is represented as a Prolog

knowledge base means, however, that we are not tied to any

specific collection of patterns. The model abstraction module

can handle different implementations for the transformation

process, requiring these transformations to be written at the

code level. Changing the language supported by the tool may

have one of two consequences: changing the parsing module,

or, changing the parsing module and the metamodel (if the

new language does not match with the metamodel).

Regarding the information obtained with the tool, we can

consider, for instance, the possibility to perform qualitative

measures with that information. We can also consider what

type of systems might be analyzed with this approach.

One particular area that interests us is that of the analysis

and reengineering of user interfaces. UML, while a de facto
standard in object oriented modelling, is not especially targeted

at user interfaces. There are a number of approaches that

146

address this (see [14] for an overview), but we would like

to consider a different approach and study the possibility of

applying a transformation on the UML model to generate

a new type of model on a user interface specific modeling

language (e.g. UsiXML [9]). This way, we would avoid

using specific UML profiles, and would use instead the more

appropriate language for each task.

A similar approach to the reverse engineering performed

here was used in the GUIsurfer tool [2]. GUIsurfer is capable

of reverse engineering the user interface layer of JavaSwing

applications. However, from the experience of developing and

using the tool, a number of issues were identified. The tool

uses an ad hoc language to represent extracted models. Ideally

it should use well known modeling approaches and languages

to ease, not only communicating the models to third parties,

but also the use of models by third party tools. The models

cover the user interface layer of the system only. This is a

limitation in that in many cases the logic of the interface is

governed, or at least influenced, by the business logic. In this

context, the use of architectural design patterns is considered

as a promising approach, and one that can help bridge the gap

between the user interface and business logic layers.

VII. CONCLUSION

In this paper the reverse MDA process and a pattern

inference process were approached. Three distinct function-

alities to support these processes were analyzed, detailed, and

implemented on the presented tool. The first functionality was

the code based (UML) diagram generation. The second was

the inference of design pattern in the generated models. The

third and last functionality was the PSM into PIM model

abstraction.

The presented tool’s major purpose is to help in two distinct

scenarios. The first one is to help in the maintenance of legacy

systems, by easing software analysis. The second purpose

is to help model oriented software migration, by integrating

software in the MDA process, always resorting to high level

data.

During this work, some tools were analyzed and it was

possible to conclude that some of them tried to implement

the presented functionalities. As described, available tools

presented several shortcomings, where our tool is able to

produce adequate results. They fail (as described) on may

points, where the MapIt tool is able to succeed. The use of

Prolog (and the catalog customization) to help the pattern

inference process, in particular, improved the achieved results.

Support for other languages (such as c#, c++, etc) is left

as future work. Also, extending the pattern catalog (by using

other pattern catalogs) is suggested. Migrating the plugin to

other IDEs (such as Eclipse) will allow more users to have

access to it, and is considered as future work as well. The

integration of the Prolog inference engine on the plugin should

also be considered. The Prolog knowledge base provides a

source of qualitative data. Now that we are able to achieve

such representations of the systems, we must analyze what

kind of operations are we able to perform over such data.

The work reported can be seen as a first approach to pattern-

based reengineering of software systems taking an holistic

approach to code. We have focused on well know patterns

from software engineering, as that enabled us to develop the

technology. At this stage a fully working tool was achieved.

We aim to extend this approach to other areas such as user

interfaces analysis and migration, among other possibilities

ACKNOWLEDGMENTS

This work is funded by ERDF - European Regional De-

velopment Fund through the COMPETE Programme (opera-

tional programme for competitiveness) and by National Funds

through the FCT Fundação para a Ciência e a Tecnologia

(Portuguese Foundation for Science and Technology) within

project FCOMP-01-0124-FEDER-015095.

REFERENCES

[1] Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommer-
lad. Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[2] J.C. Campos, J. Saraiva, C. Silva, and J.C. Silva. GUIsurfer: A
Reverse Engineering Framework for User Interface Software. In A.C.
Telea, editor, Reverse Engineering - Recent Advances and Applications,
chapter 2, pages 31–54. InTech, 2012.

[3] James Corbett, Matthew Dwyer, John Hatcliff, Shwan Laubach, Corina
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state
models from Java source code. In Proceedings of the 22nd international
conference on Software engineering, pages 439–448. ACM, 2000.

[4] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] Yann-Gaël Guéhéneuc. Un cadre pour la tra caabilité des motifs de
conception. PhD thesis, Université de Nantes, 2003.

[7] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained - The
Model Driven Architecture: Practice and Promise. Addison-Wesley,
2003.

[8] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zundorf. A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. In Proceedings of the Ninth Working Conference
on Reverse Engineering (WCRE’02), pages 22–. IEEE, 2002.

[9] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon, and Vctor Lpez-Jaquero. UsiXML: a Language Supporting
Multi-Path Development of User Interfaces. In Engineering Human-
Computer Interaction and Interactive Systems, volume 3425 of Lecture
Notes in Computer Science, pages 134–135. Springer-Verlag, 2005.

[10] Stephen Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley, 2002.

[11] Naouel Moha and Yann-Gaël Guéhéneuc. PTIDEJ and Décor: identifi-
cation of design patterns and design defects. In Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems
and applications companion, OOPSLA ’07, pages 868–869, New York,
NY, USA, 2007. ACM.

[12] Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in
Practice. Springer-Verlag, 2007.

[13] Tarja Systä. Static and Dynamic Reverse Engineering Techniques for
Java Software Systems. University of Tampere, 2000.

[14] Hallvard Trætteberg. Model-based User Interface Design. Phd thesis,
Norwegian University of Science and Technology, May 2002.

[15] Frank Truyen. The Fast Guide to Model Driven Architecture - The Basics
of Model Driven Architecture. Object Management Group, 2006.

[16] Markus von Detten, Matthias Meyer, and Dietrich Travkin. Reverse
engineering with the reclipse tool suite. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pages
299–300. ACM, 2010.

[17] Roel Wuyts. Declarative Reasoning about the Structure of Object-
Oriented Systems. In In Proceedings of the TOOLS USA ’98 Conference,
pages 112–124. IEEE, 1998.

147

