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ABBSTRACT

The effective coupling constant for
T-O—% YY should vanish for zero pion mass in
theories with PCAC and gauge invariance. It
does not so vanigh in an explicit perturbation
calculation in the ¢ wmodel., The resolution
of the puzzle is effected by & modification of
Pauli-Villars-Gupta regularization which res-

pects botn PCAC and gauge invariance.
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1. INTRODUCTION

The invariant amplitude for Tfo—» Y Y is obtained by con-

tracting the polarization vectors of the photons with a tensor

T (ky) = €77 g, T(RY)
f (1.1)

where p and q are the photon momenta, which we shall always take to be

on their mass shell p2==0==q2. The pion momentum is k( =p+q); we shall

be interested in off-mass-shell values, as well as physical values kgzzikz.

The above general form of T "% is dictated by Lorentz invariance and

parity conservation. Gauge invariance (pALTA‘V =7 MY g  =0) and Bose

14
symmetry (T MY (p,q) =T ¥* (q,p)) are seen to hold.

Steinberger 1) calculated T(kz) in perturbation theory from
the diagrams of Fig, 1 representing the virtual disscciation of the
neutral pion (dotted line) through the interaction g EPY% 414> into a
proton-antiproton pair (solid lines), which then radiate the photons (wavy
lines). This gives in particular
P
"T“@g) = a b 0m
(1.2)

where m 1is nucleon mass. The physical value T(}kz) is only slightly
2

different, by quantities of order (M/m)°.

On the other hand it has been shown by Veltman and Sutherland 2)
that when the off-mass-shell continuation is made with a pion field that is

the divergence of the axial current (PCAC), then

T) = O

(1.3)
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Now it happens that in the ¢ modsl which has PCAC built in as an operator

i I in lowest order is just that of

equation, the calculation of
Steinberger. Wo then havs to reconcile (1.2) and (1.3). This is our

puzzle.

The problem of coursge is in the same tradition as that of the
5)34),5)
L)yl s

photon mase, non-caronicel terms in commvtators - "Schwinger terms!

. . . g ) N
and violations of the Jecobi identity /. It will be seen that the resolu-

tion of the puzzle lies in a proper definition of time ordered products
which goes beyond the naive notion of nmultiplying by step functions, How-
ever in the present case the usual Pauli-Villars regularization 6), already
considered by Steinberger, does not resolve the problem. This can be traced
to the fact that it simply does not respect PCAC. We develop a variation
which does respect PCAC, as well as Lorentz and gauge invariance, and find

that indeed the explicit perturbation calculation also then yields T(0) =0.

The purpose of our cxercise is not so much to point out and
correct the limitations of the unregulated c model,; which has little
physical relevance to the process in question, but rather to demonstrate
in a very simplc example the unreliability of the formal manipulations
common to current algebra calculations: definition of T products, Ward

identities, eotc. 4).

In Section 2 we present thes PCAC argument relevant to our

problem., In Section 3 the perturbation calculation is performed. Section 4

is devoted to the definition of the proper regularization procedure.

2. PCAC ARGUMENT

We review briefly the PCAC argument for T(0) =0. Using the

divergence Tor the axial currcnt

MM 2 _ -
fE%A f% - Fh}L' VL (2.1)
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which (in the case of the neutral current) is supposed to remain true even

in the presence of electromagnetic fields, we have

broy| o>

T = { /L‘«,)" - }xL) < Y, FM:} \(f% Y
=< ( F/ﬁ)ﬂ‘ (/U"/L‘ ) \Y\*:L <Y_‘3 bﬁ" > Y’ﬂt/’ AT ) O>

(e (i ) ke FY ()

(2.2)

W ALY

- 2
Now, if (¥ M,z) 1( W —kZ)F (p,q) is expanded in powers of p and g,
bearing in mind parity conservation and Bose symmetry and working to lowest

order in clectromagnetism, the expansion starts with

XMV A (p-%%uc

where € 1is a comstant. Then from (1.1) and (2.2)

Ty =-2C+---

2
where the additional terms are of order Kk and higher. However, we also

have gauge invariance (again it is essential that the current is neutral)

o ALV -~ AV
PM F ” = O{/V }. = O

(2.3)

This requires C=0; so T(0)=0.

For the subsequent discussion it is useful to note the

following general form for FD(M‘/ , which is required by Lorentz invariance,
g g J

parity conservation, and Bose symmetry
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oL AK vV M dp 2" LT
P (pa) = €7 R g, N ()

4»(&?-"‘"""‘"‘”“*’4’%"/ VXL TR qy P (1)

4

PN e gy B (1)

+_ é c,;/,u Vo ( i:} o C"/ h}) FL*. ( }Ql)

(2;4)

The F, possess no kinematical singularities. The gauge invariance
‘constraint is
. \ 7
- - 4,
& *LE’ |
(245)

Actually there exists a linear relation between the four tensors in the

above decomposition; we could eliminate one of them; but it is convenient

not to.
Note also that
k:x FN/AV - C_.MV‘*\)A?‘ Pd«_}%c‘} (\'2\' Fd -2 Flf) .
‘ (2.6)
so that from (2.2) and (1.1)
d 2 2y 'y -~
T(k) = FATHp= ) (K F -2 7y A
(2.7)
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Gauge invariance then gives

* £ . --'\ . LT - .
TWY = (Fe) O k) k(7 R
(2.8)

Since we are working to lowest order in electrcomagnetism F does not

~-F
5 173
possess a dynamical singulariiy at kX =0, and therefore we recover the

result T(k°) = 0%°.

3. PERTURBATION THEORY ARGUMENT

The formal reasoning of the previous Section should be
varifiable by explicit perturbation calculation in & model with PCAC and
gauvge invariance. We considexr the U model interacting with the electro-
magnetic field au oemitting the charged pion and the neutron fields,

which are not necessary for our problem. The Lagrange density is 7)
_ Vo M
L= 12,0,

ﬁ~{P[}¢ﬁ—@%/”Yﬂ + 9 (¢ + ¢Y%)]\y

LR o) L g L (W 7}) o’

(3.1)

Here f=g/2m and >\ is of order gz. The axial current is

Al = Ty +2(co4-4ou0)- £ o

(3.2a)
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i

o pM
3 A

b

i.es, we have F::f—1:=2m/g in (2.1).

(3.2b)

To lowest order in g, the relevant diagrams for m MV ang
chﬁkv’ are given in Pigs. 1 and 2 respectively, where the X represents

the axial current. The diagrams have the following representation

—_ - el R - ) -
I-—-,M!/(P) Ol/) - }ajotur }H’ACQ Y"’L*{Jr ¥ - W'J YM Lr/_,v\q] ! YV[:F'%/— W\] !

(3.3a)
T/L‘V(P,g” = FNV(PW(/) + i—--“»vyu‘(%)‘ &J) (3;3b)
() = 1[0 e 8 [ el Vgl

-y, X

of < of A1 : VM, _W'q k
- NV("’CL') - Ew(h%) J’”fwxw(q)i’)* i)~ TMV(P’ ) (3.4b)

One can verify that PCAC is satisfied,

R 7 fe) = {00 T V¥ Lo Lo =] 7 v 1 L]

(3.5a)
Decomposing F+4 into 2m+(ﬁ%f—m)-(%—g+m)9 we have
- L : £ ar =\ _ Nl
kR, (pya)= 2mg T4+ 'njd*ﬂme YL Y=g w
o 5 . R - ol
_ijd@y frace ¥ [F»;f+m)i_,‘4+)f—mj Y“[{-m]‘('/[f«%—m—}
| (3.5D)
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[
In the last integral, F-g+m may pe taker through the Y ~, +thus changing
the sign of m, and then transposed to the cend of the expression, cancelling

the propagator.
[ AV -1, g - S r =\ -
kT (byq) = 2M4 f”“’-+|§d*r1&neY Y“Lyawd (Vﬂyzﬁgwml

- =

S . e i 2 /
+ ) g(/“"( TFM((' Y~ Hg“? f—'w\& YM LF wmi Y ’

1

(3.5¢)
It is now seen that each integral must vanish since it is impossible %o
form a two-index pseudotensor which depends on only one vector. We find

therefore

-1 R
DMV amg M M
o B (4] = — 2L T2 (5 )
(3.54)
Note that this verification of PCAC does not require any shifts of integra-~

¥ A

tion. Gauge invariance of F cannot be established in the same

fashion.

The integrals are superficially linea.ly divergent. Hevsever

when the trace is taken in (3.3a), no powers of r survive in the numerator

and '™ is manifestly convergent. Tu the notation (1.1), we find
N " 1 n i 8 il - 2 =~
TORY) = gmmq |dx ooy Ltk %y 4
o o (3.6)
and
T(e) = T 8 /m % 0 |
(3.7)

This contradicts (1.3) and shows that T Y (p,q) cannot be the divergence

of a gauge invariant pseudotensor.
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To expose the reason for this, we cvaluate Fcyﬁﬁ}/ « When the
trace is taken in (3.4a), the integral remaing linearly divergent, and care
nust be taken to obtain an unambigous result. The method of calculation is
outlined in the Appendix. A finite result is found, which in the notation
(2.4) is

i { X

~ o T L owa
N S .
dxg dy LW‘WYKXYE LX*”/”'(X“Y§"‘ a 1]
o

: b X

,3*8_47 [makfxyyl[“*“Y]Lx*7J

(-

”“Fl - Fé:'4jéj

7

— @ - =% it . . 1 -
Py = LW ﬁ‘“‘“ % Ay [ wm Ky -2 i Kx) +5 K (\-X\-\/)(X‘r\/)j
i R .

)
(3.8)
It can be verified that PCAC has been maintained.
—_ 1
20U A e . - R
—_ v.__‘{,,..'l.,.;m_,z: P (R ) s T L -2 l-- 4
K- A (3.9)
However gauge invariance hasg been lost
o v .K."' o
} 4 T‘: o !: 3
” (3.10)
It is seen that an extra term in F4
) - X - o 2
3 . 7 R 2 t - ! —_— o
Jo
7 (3.11)

violates gauge invariance. However that term is necessary for PCAC, (3.9).
It is remarkable that the calculation of P 7~  yields a
finite expression. However it is seen from the evaluation that the finite-
ness of F ald is a consequence of the cancellation of infinite quantities,
and this is the reason that a gauge non-invariant term has crept in. To
exhibit this explicitly, we may contract fﬂw(p,q) with P Decomposing

f into (f+f-m)-(#-m) yields from (3.4a)
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b XAy [ T S Uy
AN A E N ER IR T A ST gever A

-

419 5d%r lrace Y“b L ~wd Y QV Q’ W
{3.92z)
The second term vanishes as in {(3.5c). A similar expression may be given

for P {7‘*Vfl (q;p). Straightforward calculation then results in

{ -7

%¢(&qrgUYMY5(XFY‘O|r_Nﬂ +.;py5

P/A. Fu/uu({;)%) _ ‘gieas/w@

{ ~

4 —

S .Tl ¢ - y ) e % . i
-3 € {!J. +9,) ga"rjgxxdy NOGHy-1) [( rEpr-gy) =M+ Ky,
(5-12by

If one could shift variables in the second integral, symmetric integration
. . ; ALY .
would render it equal fto minuc the first cone, and pM,F ﬁ would vanizh.

A

However, since that integral is lineariy divergent, & surface term i, picked

up when the shift is performed. The surface term comtribution is

Mo [ o

; ,‘_:TQ('/LRV/ | . 7“‘1, X w2 N .
S A I S L S A NE 5z

°

—3

N
N

rD
‘.l

It can be verified that ().120) is exactly what is got from the expli
formulae (2.4) and (3.8).
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4. REGULARIZATION

It is convenient to introduce F'®MVY . defined by omitting
the pion pole term [%he last in (3.4bil in P ¥4Y | The PCAC requirement

is then

In the theory and approximation under consideration, P! XMV and T MV

are the Fourier transforms of time ordered products

}
— ’.'y};} v

{ by 19 , Co
“SiFY = \dxd\/ €1P> é‘i ‘/<~‘O!T (A o 140 ] V(y)){ O>
THY = ded‘/ P T\ T (1.0 M) g ”(y)} o

where

j,,ui - [; ?(NL 4/
A

11

and the \k 's are free fields. From the free field equations of motion

Ti (4.3)

o, A* = =g
\ gj
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The desired (4.1) then Tollows vy the ususl partial integration in (4.2),

provided the equal time commutator is zero:

N

(ATGY 46| = o

3 ot

It is indeed zero when evaluated from the conventional formula, obtained by

simple-minded manipulation of canonical anticommutation rules,
(V6 A VR, v o) B 4]

— .#”** . - -3 4 —

= Y &) LA, B] Yk s(x-Y)

(4.4)

where A and B are any 4x4 matrices.

The gauge invariance conditiouns

S0V B . X AV B
P.F7 = 9 F = 0 (4.5)
—~— /\;_\/ . - A —~
P - Gy ! ©
(4.6)

follow in the same way from the vanishing of equal time commutators involving
5° with 3%, a*, and Sy

Corresponding to the above formal arguments leading to (4.3),
(4.5), (4.6) there are manipulations of the integrands for the relevant
cloged loop diagrams. However these manipulaticons may fail if the integrands
do not converge well enough. We saw explicitly that the verification of
(4.5) required a shift of integration variable which introduced a surface
term. It was for such situations that the Pauli-Villars regularization wasg
devised. Here we follow the approach of Gupta 8),9) .
dictated by PCAC-

;, with a modification
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We are concerned with integrals

&dﬂg T{w, k)
which depend on the fermion mass m through the fermion propagator. The
convergence 0f the integral is improved by the replacement

Ll r) = Iﬁq{vm)k)

IM { v ) K) = 1 { Wi, l’() -1 ( Wi+ ™M K)

where M 1is supposed to have some large value. The convergence can be

further improved by a second step

[ (m,e) = IMM(W\,k)

M

1- MM {M)K\ = IM(M)P{}“' ‘[M

and so on till the required degree of convergence is obtained. The integrand

(WH—M ) k)

is finally of the form

< () T wy )

) (4.7)

where 1=0 1s the original term, and where mi==m+niM, and the n, are
integers. According to Gupta this can be interpreted as follows. The

original curreuts have been replaced by more complicated structures; e«ge,

Y ivuYs o S,; Vi s W, (4.8)
where the extra terms involve extra auxiliary fields q/i, i#£0. To get the
sign change of some of the terms in (4.7), certain of these auxiliary fields
are guantized with commutators rather than anticommutators - remember that
with ordinary fermions a factor (-1) for each closed loop arises from the
anticommutation. Of course the Bose quantization of the spin —% fields
involves the introduction of an indefinite metric.

68/871/5
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In the present example the introduction of just one auxiliary
/ .
mass (m+M) restores the gauge invariance of pr M or PUIML
In fact we saw in (3.11) that the remainder in the attempted verification

was of the form
7 R
Fo = 2 RF = — 4T

and this, being independent of m, is immediately removed by the subtraction.
However the PCAC condition (3.70) is now spoiled, if T MY is treated in a
uniform way. In fact the contributions from the two mass values separately
satisfy the equation (4.1) but with different coefficients m/g and

(m+M)/g respectively. The remedy is simple; to preserve PCAC the

coupling constants as well as the masses must be varied for the auxiliary

fields, in such a way that
Wi, /&\11 = VV\/Cj = c¢oustaut

So we take, instead of (4.8), for g

(4.9)

QYT Y > GYGY + i%Z%f\Piy;\vi

with gi/mi:=g/m. The PCAC is then preserved by the regularization which
has secured gauge invariance, and we would expect the formal consequence

7(0) =0 ‘to be realized. Indeed it is. From the unregulated value

Te) = 1 g/m

(4.10a)

we contract the regulated value

Ty @ = v (5= W)= 0
(4.10D)
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| : o -
PXNV(Pﬁﬂ +'PjVﬁi(%)P>:: T‘EJX B&y Lwc~¢£X71
W

{26““”*’5(\9-‘%)& (2wt e i (s viti- ) =20 | 4+

%F%%Y[(“ﬂ“YKX+VNG%%”M€WVﬁY+_u%q)VENMFY) "
e ™ P (s v - (x—-Y)"L)“ +

g/ l‘ éb())mk//.‘; g ()“ "’ { L F"!r'isw ' ‘ +
- [+ i~ WL (r-9) = m]

! . { - X iy S

-9,

J9% 847 — b L !
o o E r ' -— W k'j:& P \/ j(, f

(A.3)

It remains to perform the remaining integrals which appear to be linearly
and logarithmically divergent. The first of these may be parametrized as

follows

[

: L ov b oo N 2 4 -2
! jdhr &ﬁ”‘&/ 55"‘Y~%) H%L(rﬁbx-%/)uth+»k?xyik

(A.42)
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Since the integral is linearly divergent, a shift of variable picks up a

surface term. Thus we find, after symmetric integration for (A.4a)

¢ 5
e (andy sty ST
‘ g rey blxsy=1), [ m' + K xy)” 4 (‘ ¢ Lﬁ)

(A.4D)

Combining (A.4b), with the second divergent integral in (4.3), we perform all
the integrals over y and find for the last two terms of (4.3)

I N A L x o
[=-ame F(Vﬁ“%@) + i€ »VF<W‘“L)ﬁ

|

ar W Bt er)
‘o (r=w %Y(rwx» (r1~wﬁ)

(4.5)

Frequent use has been made of the transformation x—-1-x. The 1r integral
is now convergent, and may be evaluated with the aid of another Feynman

parameter. The result, after integration over that parameter is

I = -*ZT\'” cm e (Pp 1’ ) ;—T faz/uzla (P@"' CM@)

&Ax[@~wﬂ + ;:‘ Loq <- iix(i~xﬁjk

o
(A.62)
This may also be writien as
T=-2m e P (p-9,) + #1 € (py-9q,)
| % | _
gydx g Ay [wf-ﬁxy} ¥§7ﬁy
° e (A.6D)

When this is combined with the remaining terms in (A.B), and use is made of
the definitions (3.4b) and (2.4), one obtains (3.8).
68/871/5
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These authors observe that the commutators as calculated by

Johnson and Low depend orn the orxrder in which certain limits are performed.

5)

different applications,

It was explained in that different orders are appropriate for

J.S. Bell, Nuovo Cimento 47, 616 (1967).

5h

The author of this paper :it will be referred to below as ~ 7| takes
the opportunity to refute a criticism of it. It was observed in 5) that
even when certain sum rules iovolve "effective values for certa.n com-
nutators, the "canonical! values remain apvoropriate for certain pro-
pagator identities or zerc energy theorems., This depends on defining the
propagators as limits of those in & suitably cut-off theory. It was also
noted that other objects, referred to as "mutilated" propagators, dif-
Tering from the originals by contact terms, satisfy identities involving
the "effective" non-canonical commutators, Brandt and Orzalesi 10)
consider a third way of defining propagators - let us refer to it as
"smearing". In the disputed example (and indeed rather generally)
"smearing" is found to be equivalent to "mutilation". The contention of
Brandt and Orzalesi is that only the 'smeared" propagators have physical
interest. Their reasons appear L0 be a). a legitimate dislike for
cut-offs, and b). a preference for quantities "carefully defined from
a distribution theoretic point of view'". With regard to a)., everyone

will agree that it would be better to avold cut-offs if possible.
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6)

Brandt and Orzalesi belileve that a relevant no-cut-off formulation of

the model in question was givenu by k. Haag and G. Luzatto L_uovo

o

=)
‘‘‘‘ But the final formulation of the latter authors
involves as coupling parameter ounly the renormalized coupling constant,

and it reduces trivially to free fields when this quantity is zero -
s s I o .5y S .
as it is in the limit studied in ~’/. It is to be conjectured therefore

that Brandt and Orzalesi also obtained their basic material (matrix
elements of products without time ordering) not from the.Haag-Luzatto
formulation but from the appropriate limit of the cut-off theory. With
regard to b), it is rather well kunown that arbitrarily defined T
products may differ from physical amplitudes by contact terms; see for
example the discussion of Bjorken referred to in 5). The positive
reasons for taking some interest in the limiting propagators, without
mutilation or smearing, were clearly stated in 5>. They are defined

(and how else could one find quantities of "physical® interest in such

a model?) in analogy with quantities of interest in more serious theories.
Explicit reference was made to Pauli-Villars regularization of +the vacuum
polarigatvion tensor of electrodynamics. The present paper provides

another example.
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M. Gell-lMann and M. Lévy, Nuove Cimento 16, 705 (1960) .

S«l. Gupta, Proc.Phys.3cc. AG6, 129 (1953).
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