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Abstract— We present a new control approach to regulation
tasks for robots with elastic joints in the presence of gravity.
The control law combines a term that cancels the gravity effects
on the robot link dynamics with a PD-type error feedback
on the motor variables. The first control component follows
from the feedback equivalence principle when imposing to the
link variables the same dynamic behavior as if gravity were
absent. The PD component can then be designed in a rather
straightforward way. Global asymptotic stability is shown via
Lyapunov analysis, without the need of strictly positive lower
bounds neither on the proportional control gain nor on the
structural joint stiffness. The control approach is also extended
to the case of robot joints with nonlinear stiffness.

I. INTRODUCTION

Set-point regulation of robots is usually achieved by a
linear, decentralized PD control law at the joints with some
form of gravity cancellation or compensation [1]. Perfect
cancellation of gravity is trivial for fully rigid manipulators.
In fact, for the standard dynamic model

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ ,

the choice

τ = τ g + τ 0, τ g = g(q)

removes gravity from the picture (both statically and dynam-
ically), thanks to the collocation of gravity and input torques
(and full actuation of the system). For regulation tasks to a
constant qd, it is sufficient to set τ 0 = KP (qd−q)−KDq̇,
with (diagonal) positive definite gain matrices KP and
KD. Global regulation can also be obtained with a gravity
compensation scheme, where τ g = g(qd) is the constant
gravity term at the desired configuration qd and τ 0 is again
a PD control law. The only additional requirement is that
the proportional gain KP should dominate the norm of the
gradient of the gravity vector.

Here we are interested in the problem of global regulation
of robots with flexible joints under the weakest possible
control assumptions. One main motivation comes from the
domain of physical Human-Robot Interaction (pHRI), where
achieving zero-gravity operation [2] avoids biasing the robot
reaction to collisions along the gradient of the gravita-
tional potential, with a safer robot behavior in its whole
workspace [3]. Robots intended for pHRI have lightweight
but rigid links, and include compliant elements in their
mechanical construction in order to reduce the possibility of
injuries due to unexpected collisions. Compliance is typically
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concentrated in the transmissions at the joints, by using either
harmonic drives with constant or nonlinear stiffness [4],
[5] or variable and independently actuated nonlinear stiff-
ness [6], [7].

We shall consider robot manipulators having n elastic
joints of constant stiffness and n driving motors. Let q and
θ be the n-dimensional vectors of link and motor variables.
Under the simplifying modeling assumption of Spong [8],
the dynamic model takes the form

M(q)q̈ + C(q, q̇)q̇ + g(q) + K(q − θ) = 0 (1)

Bθ̈ + K(θ − q) = τ , (2)

where M > 0 is the robot inertia matrix, the diagonal matrix
B > 0 contains the motor inertias (as reflected through the
gear ratios), Cq̇ are the centrifugal and Coriolis terms, g
is the gravity vector, and K > 0 is the diagonal matrix of
constant joint stiffnesses. In (1–2), the actuation torques τ
appear on the motor side of the elastic joints, while gravity
loading g(q) affects primarily the dynamic behavior of the
link variables. This non-colocation is a major problem for
control. For regulation tasks, when the link position q has to
be asympotically stabilized to a desired constant value qd,
different gravity compensation laws have been proposed. A
first solution is based on motor PD feedback with constant

gravity compensation [9]

τ 0 = KP (θd − θ)−KDθ̇, τ g = g(qd),

where θd = qd + K−1g(qd) and KD > 0. Indeed,
this compensation cancels gravity only in the final steady-

state condition. In order to show global asymptotic stability
by Lyapunov arguments, the proportional gain matrix KP

should be chosen larger than a positive constant related to
gravity —similarly to the rigid case. This can always be
achieved, provided that the joint stiffness matrix K domi-
nates in turn the gradient of g(q) (a structural assumption).
In order to improve the transient performance, an on-line

compensation has been proposed in [10], evaluating g in τ g

with a gravity-biased measure of the motor position

τ g = g(θ̃), θ̃ = θ −K−1g(qd).

However, the theoretical restrictions on KP and K could
not be relaxed in the analysis. A better result was achieved
in [11], with a gravity compensation term of the form

τ g = g(q̄(θ)),

where q̄(θ) is computed by numerically solving the quasi-

static relation g(q)+K(q−θ) = 0, for any measured motor
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position θ. This variant eliminates the need of a strictly
positive lower bound on KP and asymptotic stability can
be shown through a modified Lyapunov function. Nonethe-
less, the structural assumption concerning the joint stiffness
should still hold.

All the above control laws have the merit of using only
feedback from the motor variables θ and θ̇. A practical
solution for compensating gravity in elastic joint robots has
been proposed also in [12], based on the availability of
joint torque sensors. The use of this additional sensor can
be interpreted as involving also the link position q and its
derivative in the control law. On the other hand, none of the
control laws proposed so far is able to remove completely
the effects of gravity, especially in highly dynamic tasks:
only a partial compensation, and not a cancellation, of the
gravitational load acting on the robot link motion is obtained.
In the context of robot reaction to unintended collisions,
dynamic operation is the most critical condition, e.g., for
an impact occurring during the transient phase of a fast
regulation task. Therefore, the possibility of shaping the
robot response by getting rid in full of the gravity effects
on the moving links is an interesting feature.

In this paper, we present a global regulation control law
for robots with flexible joints that addresses the above open
problems. The state feedback controller includes a gravity
cancellation term so as to accurately match, in any dynamic
condition, the behavior of the links as if they were moving
in the absence of gravity (Sect. II). This result is obtained
using the general principle of feedback equivalence [13]. It
is well known that all robots with elastic joints modeled
by (1–2) can be exactly linearized by means of a static state
feedback [8]. This control property is used to derive the
dynamic gravity cancellation torque τ g , without resorting to
the full complexity of a feedback linearization control law.
On top of this, a PD-type law is defined for the stabilizing
control term τ 0 and global asymptotic stability is proven via
the Lyapunov technique (Sect. III and Appendix). Illustrative
simulation results are reported in Sect. IV. Finally, the
analysis is extended to the case of joints with nonlinear
flexibility in Sect. V.

II. CANCELLATION OF GRAVITY IN ROBOTS WITH
ELASTIC JOINTS

Our control goal is to define a nonlinear state feedback
law τ = τ (q,θ, q̇, θ̇, τ 0) in (2) such that the behavior of
the compensated system matches in suitable coordinates the
one of an equivalent model without gravity, i.e.,

M(q0)q̈0 + C(q0, q̇0)q̇0 + K(q0 − θ0) = 0 (3)

Bθ̈0 + K(θ0 − q0) = τ 0, (4)

where a subscript 0 characterizes the variables of the robot
in the absence of gravity.

System (1–2) with gravity and system (3–4) without
gravity are both exactly linearizable by means of a static
state feedback into decoupled chains of four integrators, with
the link positions and their first three time derivatives being

the linearizing coordinates. Therefore, thanks to the feedback
equivalence principle, imposing the equality

q(t) ≡ q0(t), ∀t ≥ 0, (5)

we should obtain the desired result. The validity of this
simple idea can be verified as follows.

Differentiating eq. (1) w.r.t. time yields

M(q)q[3] + (Ṁ(q) + C(q, q̇)) q̈ + Ċ(q, q̇)q̇
+ ġ(q) + K(q̇ − θ̇) = 0,

with the notation q[i] = diq/dti. Differentiating once more
and substituting θ̈ from (2), we obtain

f(q, q̇, q̈, q[3], q[4]) = KB−1 (τ −K(θ − q))−g̈(q), (6)

where

f = M(q)q[4] + (2Ṁ(q) + C(q, q̇)) q[3]

+ (M̈(q) + 2Ċ(q, q̇) + K) q̈ + C̈(q, q̇)q̇

is a function of q and its first four derivatives only. Repeating
the same derivation on the gravity-free model (3–4) leads to

f(q0, q̇0, q̈0, q
[3]
0 , q[4]

0 ) = KB−1 (τ 0 −K(θ0 − q)) . (7)

By imposing (5), the left-hand sides of (6) and (7) are equal,
and thus

τ −K(θ − q)−BK−1g̈(q) = τ 0 −K(θ0 − q). (8)

To eliminate from (8) the motor variable θ0 of the gravity-
free model, we equate the left-hand sides of (1) and (3), and
use again (5). This yields

θ0 = θ −K−1g(q). (9)

Replacing eq. (9) into (8), the solution of our problem is
given by the control law

τ = τ g + τ 0 (10)

with
τ g = g(q) + BK−1g̈(q), (11)

where

g̈(q) =
∂g(q)

∂q
M−1(q)

�
K(θ − q)−C(q, q̇)q̇−g(q)

�

+
n�

i=1

∂2g(q)
∂q ∂qi

q̇ q̇i.

As a result, under the action of the control law (10–11),
the link evolution of the gravity-loaded system (1–2), for all
times t ≥ 0 and any command τ 0, will be the same as that
of the gravity-free system (3–4) initialized at

q0(0) = q(0)
q̈0(0) = q̈(0)

q̇0(0) = q̇(0)
q[3]

0 (0) = q[3](0).
(12)

In static conditions (q̇ = q̈ = 0), the gravity cancellation
torque (11) becomes τ g = g(q) as expected. Instead, in
dynamic conditions τ g includes a term that is proportional to
the inverse of the joint stiffness K. Thus, the more rigid are
the transmissions the less extra dynamic torque is needed for
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gravity cancellation. For K → ∞, we recover the standard
gravity cancellation torque of the rigid case.

It should be stressed that, despite of the need of inverting
the robot inertia matrix M(q), the gravity cancellation
torque (11) is much simpler than the expression of a feed-
back linearization control law, which involves also the time
derivatives of the model terms M(q) and C(q, q̇) up to the
second order [14].

Finally, we note that there are still differences in the state
behavior between the gravity-free system and the original
gravity-loaded system under the gravity cancellation control
law (10–11). While the two systems will evolve in an identi-
cal way when looking at the linearizing link coordinates, the
inverse mappings of this evolution in terms of the respective
motor variables will be different, as dictated by eq. (9). This
should not be surprising from a physical point of view: the
gravity-loaded robot needs the presence of a deformation
q − θ �= q − θ0 that balances the gravity on the link side.
The control law (10–11) will only cancel the dynamic effects
of gravity on link motion, while the term τ 0 in (10) is left
for further control design.

III. A PD-TYPE REGULATOR FOR ROBOTS WITH
ELASTIC JOINTS

Consider again the gravity-loaded system (1–2). We ad-
dress the problem of asymptotic stabilization of a desired
(closed-loop) equilibrium state

q = qd, θ = θd := qd + K−1g(qd), q̇ = θ̇ = 0. (13)

The desired motor position θd is dictated by static analysis
(for q̇ = q̈ = 0) of eq. (1) at the desired link position qd.

Taking advantage of the dynamic gravity cancellation
law (11), a regulation controller realizing the task can be
defined as

τ = τ g + τ 0, (14)

where τ g is given by (11) and τ 0 is the PD-type law

τ 0 = KP (qd−θ+K−1g(q))−KD(θ̇−K−1ġ(q)). (15)

The following result holds.
Theorem 1: The desired state (13) is the unique equilib-

rium state for closed-loop system (1–2) with control law (14–
15). Moreover, if

KP > 0, KD > 0,

the desired state is globally asymptotically stable.
The proof of Theorem 1 is given in the Appendix. Some

remarks are in order:
• The stabilizing control law (15) is logically derived from

a pure PD scheme on the motor variables θ0 and θ̇0 of
the gravity-free system,

τ 0 = KP (θd0 − θ0)−KDθ̇0

= KP (qd − θ + K−1g(q))−KD(θ̇ −K−1ġ(q)),

using the relation (9) between motor positions of the
gravity-free system and of the gravity-loaded system

under the dynamic gravity cancellation torque (similarly
for motor velocities). The motor reference for the PD is
θd0 = qd, since gravitational effects on the links have
been canceled by τ g .

• As stated by Theorem 1, there is no need of a strictly
positive lower bound on the joint stiffness K, contrary
to all previous literature [9]–[11]. While joint stiffness
typically dominates the gradient of gravity torques in
industrial robots with elastic joints, this relaxation can
be of interest for systems with variable stiffness actu-
ation, where very low stiffness values are desirable for
limiting injuries due to collisions.

• Both the PD term (15) and τ g require feedback from the
full state of the robot. While this is the same requisite of
a feedback linearization law, gravity is eliminated here
without a complete cancellation of the dynamics of the
elastic joint robot, which is considerably simpler.

• From the proof of Theorem 1, it is easy to see that the
desired state would still be the unique equilibrium for
the closed-loop system when reducing τ g just to g(q).
However, a proof of global asymptotic stability with
such a reduced term added to a PD law is not available.

• The control law (14–15) bears strong similarities with
the one independently obtained in [15, p. 119], which
involves also a motor inertia shaping and is derived from
a passivity approach. However, the present framework
allows to explicitly discard the structural assumption
on K and provides the more general feature of exact
reproduction of link motion as in the gravity-free case.

IV. SIMULATION RESULTS

To illustrate the typical behavior obtained under the action
of the PD-type control law (15) with dynamic gravity can-
cellation (11), it is sufficient to consider a single link with
an elastic joint in the absence of gravity and under gravity.
In this case, the link inertia is a constant scalar M and the
gravity term is g(q) = mdg0 sin q, where m is the mass of
the link, d the distance of its center of mass from the joint,
and g0 the gravity acceleration. The term τg is

τg = mdg0

��
1− B

K q̇2
�
sin q − B

M
mdg0

K sin q cos q

+ B
M (θ − q) cos q

�
.

(16)

while the PD term τ0 is

τ0 = KP

�
qd − θ + mdg0

K sin q
�
−KD

�
θ̇ − mdg0

K cos q q̇
�

(17)
Using as data M = B = 0.9333 [N·m·s2/rad], m = 10 [kg],
d = 0.25 [m], and K = 100 [N·m/rad], we simulated the
two systems starting at rest from the downward equilibrium
q = θ = 0. The link position is commanded to qd = π/2.
The PD gains were chosen as KP = 25 and KD = 10. These
values were conveniently tuned in the absence of gravity.

Figure 1 shows the evolution of the relevant variables in
the two cases of no gravity and presence of gravity with its
dynamic cancellation. The link motion in Fig. 1(a) is exactly
the same (plots are superposed). The motor position has a
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Fig. 1. Comparison of link variables (a) and motor variables (b) without

gravity under PD control [dashed, blue] and with gravity under the PD-
type control law with dynamic cancellation (16–17) [solid, red], when the
stiffness is K = 100

different evolution in the two cases (Fig. 1(b)), due to the
need to charge the elastic joint for dynamically balancing
gravity on the link. Figure 2(a) compares the total control
torque in the two cases. The applied torque is different, since
it vanishes at steady state when gravity is absent whereas it
provides the static gravity torque at the goal in the other
case. The contributions to the total torque τg + τ0 are shown
in Fig. 2(b), namely the PD term (τ0), the static gravity term
g(q) = mdg0 sin q, and the remaining dynamic part of the
gravity cancellation term (τg − g(q)). The PD term of the
proposed control law is exactly the same as the PD action
in the absence of gravity.

The control law is able to regulate the link position even
when the joint stiffness is extremely small. Figures 3–4
show the results for the same previous PD gains but with
joint stiffness smaller than the maximum gradient of the
gravity term: K = 20 < 24.525 = mdg0 (the structural
condition is violated). The behavior is still satisfactory,
although the transient is longer. The larger overshoot and the
small oscillation experienced by the link while approaching
the goal are due to the poor transient performance achievable
by a motor PD feedback (with the chosen gains) in the
absence of gravity.
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Fig. 2. Comparison of control torques (a) without gravity under PD control
[dashed, blue] and with gravity under the PD-type control law with dynamic
cancellation (16–17) [solid, red], when the stiffness is K = 100. Torque
contributions (b) in the proposed law: total [solid, red], PD term τ0 [dashed,
blue], static gravity term g(q) [dashed-dotted, green], dynamic cancellation
term τg − g(q) [dotted, magenta]

V. JOINTS WITH NONLINEAR FLEXIBILITY

In this section, we extend the analysis of Sects. II–III to the
case of transmissions with nonlinear flexibility [16]. For the
sake of simplicity, only a single dof will be considered, but
the generalization to multi-dof systems is straightforward.

For the flexible joint, a potential energy Ue(φ) ≥ 0 is
associated to the joint deformation φ = q − θ so that the
flexibility torque τe = ∂Ue/∂q = τe(φ) is a nonlinear
function of φ and the stiffness σ = ∂τe/∂q = σ(φ) will
be non-constant. Without loss of generality, we assume that
τe(φ) is a strictly increasing function for φ ∈ (−∞,+∞)
and that τe(−φ) = −τe(φ). The dynamic model of a single
link moving under gravity and driven through this (non-
dissipative) flexible transmission is

Mq̈ + g(q) + τe(φ) = 0 (18)

Bθ̈ − τe(φ) = τ. (19)

A. Gravity cancellation

We define a feedback law τ = τ(q, θ, q̇, θ̇, τ0) in (19) so
as to match the behavior of the link variable q with that of
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Fig. 3. Comparison of link variables (a) and motor variables (b) without

gravity under PD control [dashed, blue] and with gravity under the PD-
type control law with dynamic cancellation (16–17) [solid, red], when the
stiffness is K = 20

the link variable q0 of the model without gravity

Mq̈0 + τe(φ0) = 0 (20)

Bθ̈0 − τe(φ0) = τ0. (21)

It is easy to verify that both nonlinear systems (18–19)
and (20–21) are feedback linearizable to a chain of four
integrators, with the link positions and their first three time
derivatives as linearizing coordinates. Therefore, the two
systems are feedback equivalent, and the solution to our
problem is found by imposing q(t) ≡ q0(t) for all t ≥ 0. In
particular, from q[4] = q[4]

0 we obtain

τ = g(q) +
B

σ(φ)
g̈(q) +

σ(φ)− σ(φ0)
σ(φ)

(B + M)q̈

+
B

σ(φ)

�
∂σ(φ)

∂φ
φ̇2 − ∂σ(φ0)

∂φ0
φ̇2

0

�
+

σ(φ0)
σ(φ)

τ0

= τg + αgτ0,

(22)

where q̈ (to be used also in g̈(q)) is computed from (18) as

q̈ = − 1
M

(g(q) + τe(φ)) .

Under (22), the link evolution of the gravity-loaded system
will coincide with that of the gravity-free system, initialized
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Fig. 4. Comparison of control torques (a) without gravity under PD control
[dashed, blue] and with gravity under the PD-type control law with dynamic
cancellation (16–17) [solid, red], when the stiffness is K = 20. Torque
contributions (b) in the proposed law: total [solid, red], PD term τ0 [dashed,
blue], static gravity term g(q) [dashed-dotted, green], dynamic cancellation
term τg − g(q) [dotted, magenta]

at t = 0 with the matching conditions as in (12). For a trans-
mission with constant stiffness σ = K, the expression (22)
collapses to (10–11). However, differently from the case of
linear elasticity, the control law contains terms that require
the knowledge of the deformation φ0 = q − θ0, and of its
rate φ̇0, pertaining to the model without gravity. Also, the
torque τ0 applied in the gravity-free case is now scaled by
the factor αg = σ(φ0)/σ(φ).

The value φ0 to be used in (22) is obtained by compar-
ing (20) with (18), under the identity q(t) ≡ q0(t). This gives
the nonlinear equation

τe(φ0) = g(q) + τe(φ) = a(q, θ). (23)

Equation (23) needs to be solved numerically at each time
t ≥ 0, as a function of the current configuration of the
gravity-loaded system. In some cases, a closed-form solution
can be obtained. As a representative nonlinear example, con-
sider a flexible joint transmission with associated potential
given by Ue = 1

2Kφ2+ 1
4Kcφ4, with K > 0 and Kc > 0 [5].

The flexibility torque is a cubic function of φ and the stiffness
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has a quadratic dependence:

τe(φ) = Kφ + Kcφ
3, σ(φ) = K + 3Kcφ

2. (24)

At a given (q, θ), equation (23) results in the cubic equation
Kcφ3

0 + Kφ0 − a(q, θ) = 0, which has always two complex
roots and one real (positive or negative) root, thanks to the
positivity of K and Kc. The real root is given by

φ0 = 3

�
1
2

a(q, θ)
Kc

+ b(q, θ) + 3

�
1
2

a(q, θ)
Kc

− b(q, θ),

where b(q, θ) =
s

1
27

�
K
Kc

�3
+ 1

4

�
a(q,θ)

Kc

�2
> 0.

Once φ0 has been found (numerically or analytically), the
value of φ̇0 in the control law (22) is obtained in closed form
by time differentiation of (23) as

φ̇0 =
1

σ(φ0)

�
σ(φ)φ̇ +

∂g(q)
∂q

q̇

�
. (25)

B. Regulation control law

For regulating the link position q of system (18–19) to a
desired qd, we set τ = τg + τ0 with τg as in (22) and τ0

given by
τ0 = KP (qd − θ0)−KD θ̇0, (26)

where KP > 0 and KD > 0. Global asymptotic stability
can be shown without any further assumption by using the
Lyapunov candidate

V =
1
2
Mq̇2 +

1
2
Bθ̇2

0 +
1
2
KP (qd−θ0)2 +Ue(φ0) ≥ 0, (27)

which is the Lyapunov function for the gravity-free sys-
tem (20–21) under (26), In eqs. (26) and (27), we need to use
θ0 = q−φ0 and θ̇0 = q̇− φ̇0, where φ0 and φ̇0 are obtained
from (23) and (25), respectively. The proof follows along the
same lines of Theorem 1 (and it can be easily extended to
the multi-dof case).

VI. CONCLUSIONS

We have presented a new regulation approach for robot
manipulators having flexible joints. The control law consists
of two terms. The first term achieves dynamic cancellation
of gravity effects acting on the link motion and is based on
the feedback equivalence principle. It requires the on-line
computation of inertial terms, but is otherwise much simpler
than a complete feedback linearization law. The second term
is a PD-type feedback from the error on the motor position
of the associated gravity-free model, which is nonlinearly
related to the motor position of the system at hand.

Global asymptotic stabilization of the desired link posi-
tion is obtained under the weakest possible assumptions of
positive definiteness of the PD gains and of the robot joint
stiffness. The proposed solution is obtained in closed form
for robots with elastic joints (of constant stiffness) or, more in
general, using a simple numerical technique in the presence
of nonlinear flexible joints (of variable stiffness).

We are currently extending this regulation approach to
the case of robots with variable and independently actuated

nonlinear stiffness [6], [7], where the link position as well as
the device stiffness need to be asymptotically stabilized to a
desired constant value. Initial results on dynamic cancellation
of gravity in VSA-based robots can be found in [17]. Indeed,
the idea of exact gravity cancellation can be used also for
developing simpler trajectory tracking control laws, another
topic of further research.

Gravity cancellation in compliant manipulators finds a
useful application in safe physical human-robot interaction.
When unexpected collisions occur during motion, the robot
should react as soon as the impact is detected. By realizing a
zero-gravity condition for the robot links, a simpler, physical-
based torque reaction strategy can be designed for the control
term τ0, as opposed to the reaction based on feedback
linearization control proposed in [18], so that the robot
rapidly flees away from the collision area in a gravity-
unbiased fashion.
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APPENDIX
PROOF OF THEOREM 1

The proof is based on Lyapunov analysis and on LaSalle
theorem. For the closed-loop system (1–2) under (14–15),
we show first that there is a unique equilibrium state, i.e.,
an equilibrium configuration (qe,θe) with zero velocities q̇
and θ̇. Setting q̈ = θ̈ = 0 in the closed-loop equations, any
equilibrium configuration should satisfy

g(qe) + K(qe − θe) = 0
K(qe − θe) + g(qe) + KP (qd − θe + K−1g(qe)) = 0.

Subtracting the two equations gives θe = qd + K−1g(qe),
while the first equation yields θe = qe + K−1g(qe). By
comparison, it follows that

qe = qd, θe = qd + K−1g(qd) = θd

and thus (qd,θd) is the unique equilibrium configuration.
Without loss of generality, the positive-definite gain ma-

trices KP and KD are chosen symmetric. Let a Lyapunov
candidate be defined as

V =
1
2

�
q̇T M(q)q̇ +

�
θ̇ −K−1ġ(q)

�T
B

�
θ̇ −K−1ġ(q)

�

+
�
q − θ + K−1g(q)

�T
K

�
q − θ + K−1g(q)

�

+
�
qd − θ + K−1g(q)

�T
KP

�
qd − θ + K−1g(q)

��
.

As sum of positive definite terms in a quadratic structure, V
is positive definite. Moreover, V = 0 if and only if

q̇ = 0, θ̇ −K−1 ∂g(q)
∂q

q̇ = 0 ⇒ θ̇ = 0

and

q − θ + K−1g(q) = 0
qd − θ + K−1g(q) = 0

�
⇒

�
q = qd

θ = qd + K−1g(qd).

@!!



Therefore, the desired state is the unique minimum of V .
Dropping dependencies for compactness, the time derivative
of V is

V̇ = q̇T Mq̈ +
1
2
q̇T Ṁq̇ +

�
θ̇ −K−1ġ

�T
B

�
θ̈ −K−1g̈

�

+
�
q − θ + K−1g

�T
K

�
q̇ − θ̇ + K−1ġ

�

−
�
qd − θ + K−1g

�T
KP

�
θ̇ −K−1ġ

�
.

The closed-loop equations (1–2) with (14–15) can be conve-
niently rewritten in the form

Mq̈ = K(θ − q)− Sq̇ − g

B
�
θ̈ −K−1g̈

�
= K(q − θ) + g

+KP

�
qd − θ + K−1g

�
−KD

�
θ̇ −K−1ġ

�
.

Substituting these into the expression of V̇ and simplifying
terms yields

V̇ = q̇T

�
K(θ − q) +

1
2

�
Ṁ − 2S

�
q̇ − g

�

+
�
θ̇ −K−1ġ

�T �
K(q − θ) + g

+ KP

�
qd − θ + K−1g

�
−KD

�
θ̇ −K−1ġ

��

+ (K(q − θ) + g)T
�
q̇ − θ̇ + K−1ġ

�

−
�
qd − θ + K−1g

�T
KP

�
θ̇ −K−1ġ

�

= −
�
θ̇ −K−1ġ

�T
KD

�
θ̇ −K−1ġ

�
≤ 0,

where the energy-based relation q̇T
�
Ṁ − 2S

�
q̇ = 0 has

been used. Thus, it is

V̇ = 0 ⇔ ġ(q)−Kθ̇ = 0.

We proceed next using LaSalle arguments. The desired state
satisfies indeed V̇ = 0, and thus is invariant with respect to
the set of states where V̇ = 0 (and gives V (t) ≡ 0). We
should verify that there are no other system trajectories that
are invariant with respect to the set defined by V̇ = 0. When
V̇ = 0, note first that

d

dt
(g(q)−Kθ) = 0 ⇒ g(q)−Kθ = k1,

where k1 is a suitable constant vector. Moreover, the model
equation (2) with τ as in (14–15) becomes

B θ̈ + K(θ − q) =
g(q) + BK−1g̈(q) + KP (qd − θ + K−1g(q)),

or, by simple manipulation,

BK−1 d

dt

�
Kθ̇ − ġ(q)

�
=

�
I + KP K−1� �

g(q)−Kθ
�

+ Kq + KP qd.

For a closed-loop system trajectory to remain in the set of
states such that V̇ = 0, the left-hand side of this equation

must be zero. Since the term in square brackets on the right-
hand side is constant, it follows that

Kq + KP qd = k2,

where k2 is a suitable constant vector. Hence, q is constant
and, as a consequence, θ is also a constant. Thus, q̇ = θ̇ = 0
and the only invariant trajectory compatible with V̇ = 0 is
an equilibrium state. Since the desired state q = qd, θ = θd,
with q̇ = θ̇ = 0, is the unique closed-loop equilibrium state,
then it is globally asymptotically stable thanks to LaSalle
theorem. This completes the proof.
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