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Abstract
It is well acknowledged that transport-theory-based reconstruction algorithm

can provide the most accurate reconstruction results especially when small

tissue volumes or high absorbing media are considered. However, these

codes have a high computational burden and are often only slowly converging.

Therefore, methods that accelerate the computation are highly desirable. To this

end, we introduce in this work a partial-differential-equation (PDE) constrained

approach to optical tomography that makes use of an all-at-once reduced

Hessian sequential quadratic programming (rSQP) scheme. The proposed

scheme treats the forward and inverse variables independently, which makes

it possible to update the radiation intensities and the optical coefficients

simultaneously by solving the forward and inverse problems, all at once.

We evaluate the performance of the proposed scheme with numerical and

experimental data, and find that the rSQP scheme can reduce the computation

time by a factor of 10–25, as compared to the commonly employed limited

memory BFGS method. At the same time accuracy and robustness even in the

presence of noise are not compromised.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The past decades have seen considerable developments in the theory and application of diffuse

optical tomography (DOT). This emerging biomedical imaging modality has been mainly

applied to brain imaging [1–5], breast imaging [6–8], finger-joint imaging [9–11] and small

animal studies [12–15]. This method estimates the spatial distribution of optical properties in
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tissues by analyzing intensity signatures measured at boundary surfaces. State-of-the-art image

reconstruction codes employ a forward model of light propagation that leads to predictions of

measured values on the boundary, assuming a certain distribution of optical properties inside

the medium. An objective function is defined that quantifies the differences between predicted

and actually measured values. The so-called model-based iterative image reconstruction

algorithms (MOBIIR) [16–26] are employed to find the minimum of this objective function,

by updating the parameters of the forward model.

Light propagation in tissue is typically modeled either by the equation of radiative transfer

(ERT) or by its diffusion approximation (DA) depending on the physical character of the

medium. It is well known that the validity of the DA becomes less accurate when applied to

imaging of small tissue volumes and is further compromised if highly absorbing objects or

fluid-filled regions, which contain, for example, cerebrospinal or synovial fluids, are considered

[27]. Employing the ERT alleviates these problems and provides accurate prediction of

intensity measurements for imaging of small-tissue geometries. However, simulating light

propagation using the ERT requires much longer computation times as compared to the DA.

Thus, it remains a challenging problem to develop computationally efficient transport-theory-

based image-reconstruction schemes, since the reconstruction process requires a large number

of repeated forward simulations that often lead to prohibitively long computing times. In this

work we present a novel approach that is based on PDE-constrained optimization. Combining

this with a reduced Hessian sequential quadratic programming (rSQP) scheme this method

promises to accelerate the ERT-based image reconstruction process while maintaining the

reconstruction accuracy.

To understand the differences between PDE-constrained and more traditional image

reconstruction methods employed in DOT, we post the optical tomographic problem in the

most general terms as

minimize f (x; u) = 1
2
|Qu − zobs|2

(1)
subject to c(x; u) = A(x)u − b = 0,

where x = (μa, μs) ∈ R
n is the model parameter vector, u ∈ Z

m is the radiance vector and

Q is the measurement operator; f (x; u) is an objective function that quantifies the difference

between measured and predicted intensities and A(x)u = b (or c(x; u) = 0) is a discretized

version of the forward transport equation. The problem given by (1) is often referred to as

‘equality-constrained’ since the optimal solution at minimum of f has to satisfy the equality

condition represented by A(x)u − b = 0.

Methods for solving (1) can be categorized into two groups depending on how the forward

variable u and the inverse variable x are treated. The most common approach in DOT is to

treat the forward variable u as a dependent variable of the inverse variable x, which makes it

possible to replace the prediction vector u in f of (1) by its forward solution vector A−1b. As

a result, the problem (1) can be reformulated as

minimize f̃ (x) = 1
2
|QA(x)−1b − zobs|2 (2)

which is often referred to as ‘unconstrained’ because equality A(x)u − b = 0 no longer

appears in (2), i.e. f̃ is now a function of x only. Thus the forward solution vector A−1b has to

be obtained for evaluation of the objective function (2), which explains why the unconstrained

optimization scheme requires the complete solution of the forward problem at each iteration of

optimization. As a consequence, the associated optimization procedure is a computationally

very demanding process, both with respect to time and memory. Nonetheless, this approach

has been widely used for the solution of optical tomographic problems mainly because of

easiness of implementation. The existing optimization schemes [16–26, 28–31] belong to
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this category and include the conjugate gradient (CG) approach [17, 25, 30], the quasi-

Newton (QN) approach [21, 22, 24, 29] and the so-called Levenberg–Marquart (LM) method

[11, 13, 26, 31]. It should be noted that equation (2) is often modified by adding simple-

bound constraint [22, 29] (e.g. μa, μs > 0) and regularization terms, such as the Tikhonov

regularization [30, 31]. However, these modifications just constrain the model parameters

and should not be confused with equality constraints, in which the constrained is the forward

equation itself!

In another approach to solve equation (1), often referred to as ‘PDE-constrained’

optimization, the forward variable u and the inverse variable x are treated independently.

This enables solving the equality-constrained problem (1) directly by updating the forward

and inverse variables simultaneously at each iteration of optimization. Typically an extended

objective function called ‘Lagrangian’ is introduced as follows:

L(x, u; λ)
�
= 1

2
|Qu − zobs|2 + λT (Au − b). (3)

Here λ ∈ Z
m is called the vector of Lagrange multipliers. The simultaneous solutions of

forward and inverse problems can be achieved at points satisfying the so-called first-order

Karush–Khun–Tucker (KKT) conditions [32] where the gradient of L in (3) vanishes with

respect to λ, u and x, respectively. Optimization problems of this kind are referred to as

‘PDE-constrained’ because the forward and inverse solutions satisfy the first-order PDEs of

L (i.e. constrained to the KKT conditions).

One major advantage of this PDE-constrained approach is that the complete solution of

the forward problem is not required until the convergence is reached. So the solution accuracy

of the forward problem can be appropriately controlled depending on the solution accuracy

of the inverse problem, which leads to a significant saving in the total reconstruction time. In

recent years, the field of PDE-constrained optimization has seen rapid developments mainly in

applications related to airfoil design, flow variable optimization and electromagnetic inverse

problems [33–39]. Recently our group (Abdoulaev et al [40]) has introduced this approach to

optical tomographic imaging.

In particular Abdoulaev et al implemented an augmented Lagrangian method (ALM) for

simultaneous solutions of the forward and inverse problems. However, the implemented code

is required to preset a large number of convergence parameters, which differs from application

to application, and makes the use of the code cumbersome. Furthermore, the use of non-

reentry boundary condition for the frequency-domain transport-theory-based forward solver

does not allow using the code with experimental data. In this case partially reflective boundary

conditions are necessary to accurately model the light propagation in tissue. Finally, only a

first-order discretization scheme was used for the forward model, which limits the accuracy

of the reconstruction especially when applied to experimental data.

The approach suggested in this study goes beyond Abdoulaev’s work in several respects.

First we replace the ALM scheme with an all-at-once reduced Hessian SQP scheme (rSQP).

The SQP scheme, which has been extensively studied in other fields [41–46], has the advantage

that a much smaller number of convergence parameters have to be preset. In addition, many

instability issues inherent to the ALM approach can be avoided that relate to the choice of

a penalty parameter, the accuracy of a Lagrange multiplier and the solution unboundness

[39]. Furthermore, we implement a second-order discretizing scheme for the forward model

based on the frequency-domain transport equation and applied partially reflective boundary

condition. These features allow us for the first time to apply the code to experimental data. We

evaluate the performance of the rSQP scheme, with an emphasis on computational efficiency,

by comparing the algorithm with the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(lm-BFGS) method [32] that is known to be the most efficient of the existing gradient-based
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unconstrained optimization methods [21]. The remainder of the paper is organized as follows.

We first describe a general framework of a reduced Hessian sequential quadratic programming

scheme in section 2. The application of this approach to frequency-domain optical tomographic

is presented in section 3. This is followed by numerical and experimental results addressing

the performance evaluation of the rSQP scheme in sections 4 and 5. Finally we draw some

conclusions in section 6.

2. Methods

2.1. Sequential quadratic programming

2.1.1. Background. To proceed with the SQP scheme, we begin with the PDE-constrained

algebraic equations of (3) given as

Lλ
�
= ∂λL = Au − b = 0

Lu
�
= ∂uL = AT λ + QT (Qu − zobs) = 0. (4)

Lx
�
= ∂xL = ∂x(Au) = 0

The first PDE equation in (4) is equivalent to the discretized version of the forward transport

equation, and the second PDE equation can be viewed as the adjoint equation

AT λ = −QT (Qu − zobs). (5)

If vector g(x, u) represents the gradient of f (x, u) with respect to x and u, and the matrix C

represent the Jacobian of constraints c(x) with respect to x and u, we may define the following:

g
�
= ∇x(u)f = [fx, fu],

(6)
C

�
= ∇x(u)c = [Cx, Cu].

Using (6) the first-order KKT system given by equations (4) can be rewritten as

fx + CT
x λ = 0

fu + CT
u λ = 0 (7)

c = 0

which can be solved by using the Newton method as
⎡

⎣

Wxx Wux CT
x

Wxu Wuu CT
u

Cx Cu 0

⎤

⎦

⎡

⎣

�x

�u

�λ

⎤

⎦ = −

⎡

⎣

fx + CT
x λ

fu + CT
u λ

c

⎤

⎦ . (8)

Here the matrix W denotes the Hessian matrix of the Lagrangian function with respect to x and

u. The algebraic system given by (8) can be solved efficiently through the reduced Hessian

SQP scheme as will be shown next.

2.1.2. Reduced Hessian SQP scheme. The reduced Hessian SQP scheme has been used

outside the field of optical tomography to solve nonlinear constrained optimization problems

with relatively low computational cost and fast convergence [33]. Employing the SQP

method for solving the above system (8) iteratively is equivalent to minimizing the quadratic

approximation of the Lagrangian function given by (3) subject to the linearization of the

forward equation. We can formulate the following quadratic problem:

minimize �pkT gk + 1
2
�pkT W k�pk

(9)
subject to Ck�pk + ck = 0.
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Here �p = (�x,�u) at (xk, uk) and Wk is the full Hessian (or approximations) of the

Lagrangian function. The linearized QP problems given by (9) only lead to a locally convergent

algorithm. However, this can be overcome by incorporating a line search to ensure the global

convergence as will be shown later. Equation (9) has a unique solution that satisfies

W k�pk + CkT λk+1 = −gk,
(10)

Ck
x�xk + Ck

u�uk = −ck.

The full Hessian of the Lagrangian function is often difficult to obtain and its approximation

by the updating schemes tends to create large dense matrices of size (n + m) × (n + m).

These problems can be overcome by dropping certain non-critical second-order terms of the

full Hessian matrix. In what follows, we describe the standard reduced Hessian SQP method

based on separation of variables.

Since Ak
u is invertible, the vector �pk can be decomposed into two parts as follows:

�pk = Zk + Y k�xk. (11)

The choices of Zk and Y k are a challenging problem arising in practical implementation of

the reduced SQP scheme. In this study, we have followed the popular choice for Zk and Y k

given in (12) [33, 37, 42, 43, 46]:

Zk =

[

0

−
(

Ck
u

)−1
ck

]

and Y k =

[

I

−
(

Ck
u

)−1
Ck

x

]

. (12)

Substituting (11) and (12) into the system (10) and using the equality Y kT CkT = 0, we can

rewrite the full-space system (10) in the following reduced space form:

H k
r �xk = −gk

r − dk
r (13)

where H k
r = Y kT W kY k denotes the reduced Hessian, gk

r = Y kT gk denotes the reduced

gradient and dk
r = Y kT W kZk is called the cross-term. Thus the reduced SQP method requires

much less memory than the full SQP method, i.e. only a small (n × n) matrix needs to be

maintained and updated at each optimization iteration.

From (13), the inverse solution �xk and the forward solution �uk can be obtained

respectively as

�xk = −
(

H k
r

)−1(
gk

r + dk
r

)

, (14)

�uk = Zk − Y k
(

H k
r

)−1(
gk

r + dk
r

)

. (15)

At the new iterate, the Lagrangian multiplier vector is updated from the second block of (7)

λk+1 = −
[

C(k+1)T
u

]−1
f k+1

u . (16)

Using (16) the reduced gradient can be reformulated as

gk
r =

[

I − CkT
x

(

CkT
u

)−1]

[

f k
x

f k
u

]

= CkT
x λk + f k

x . (17)

For large-scale applications, it is desirable to avoid the direct computation of the reduced

Hessian H k
r and its matrix inversion

(

H k
r

)−1
. Accordingly we approximate the matrix-vector

product of
(

H k
r

)−1
gk

r directly by using the limited-memory updating formula, which is another

important feature of our study that enables the proposed rSQP scheme to be applied to large-

scale optimization. Also note that, similar to other works in this area [33, 42, 43], we ignore

the cross-term vector dk
r = Y kT W kZk . The effect of neglecting the cross-term vector may be
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different from application to application. One major disadvantage is that we lose superlinear

convergence. However we can still ensure a two-step superlinear convergence rate, which

is good enough for our applications. Especially in this study the effect of the cross-term

is not significant because the cross-term goes to zero as the iteration proceeds toward the

convergence [33].

Theoretically, the rSQP method is not as effective as the full-SQP method of quadratic

convergence. However it has been shown that the rSQP approach has a two-step superlinear

convergence [33, 43, 46]. Therefore, one can expect an acceleration of optical tomographic

imaging codes.

2.1.3. Merit function and line search. The global convergence of the rSQP scheme is ensured

by a line search on the following l1 merit function defined as

ϕηk
(u, x) = f (u, x) + η‖Au − b‖1, (18)

which is chosen here for its simplicity and low computational cost. The directional derivative

of ϕη(u, x) along the descent direction �p = (�x,�u) is given by

∇ϕη(u, x;�p) = gkT �p − ηk ‖Au − b‖1 . (19)

Thus, the descent property ∇ϕηk
(u, x;�p) < 0 can be maintained by choosing [43]

ηk > λT
k (Au − b)/‖Au − b‖1. (20)

At the new iterate given by xk+1 = xk + αk�x and uk+1 = uk + αk�uk , the merit function

(18) is successively monitored to ensure the global progress toward the solution, while a line

search is performed to find a step length that can provide a sufficient decrease in the merit

function as [46]

ϕηk
(xk + αk�xk; uk + αk�uk) � ϕηk

(xk, uk) + 0.1αk∇ηk
(xk, uk;�pk). (21)

2.2. Applications to frequency-domain optical tomography

2.2.1. The light propagation model. In this work we employ frequency-domain data. In

this case the light source is typically amplitude modulated by frequencies in the range of

50–1000 MHz, and the demodulation and phase shift of the resulting photon-density waves

that propagate inside the tissue are measured on the tissue boundary. It has been shown

that the quality of frequency-domain reconstructions is superior to the steady-state approach

[24, 25]. The frequency domain forward problem for light propagation in absorbing, scattering

media can be accurately modeled by the frequency-dependent equation of radiative transfer

[24, 25, 40], given by

(∇ · �)ψ(r,�, ω) +
(

μa + μs +
iω

c

)

ψ(r,�, ω) =
μs

4π

∫

4π

ψ(r,�+, ω)�(�+,�) d�+,

(22)

where ψ(r,�, ω) is complex radiation intensity in unit (W cm−2 sr−1), μa and μs are

the absorption and scattering coefficients, respectively, in units of (cm−1), ω is the source

modulation frequency, c is the speed of light inside the medium and �(�+,�) is the scattering

phase function that describes scattering from the incoming direction �+ into the scattering

direction �. Here we use the widely employed Henyey–Greestein phase function [47], given

by

� =
1 − g2

(1 + g2 − 2g cos θ)3/2
. (23)

6
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Furthermore, we implemented a partially reflective boundary condition that allows us to

consider the refractive index mismatch between the tissue and air. In particular this boundary

condition is given by [48]

ψb(rb,�, ω)|�nb ·�<0 = ψ0(rb,�, ω) + R(�′,�) · ψ(rb,�
′, ω)|�nb ·�′>0, (24)

where R(�′,�) is the reflectivity at Fresnel interface from direction �′ to direction �,

ψ0
b (r,�, ω) is the radiation intensity due to the external source function and subscript b

denotes the boundary surface of the medium, while �nb is the unit normal vector pointing

outward at the boundary surface.

The spatial domain of medium under consideration is discretized using a node-centered

finite-volume approach in combination with a discrete-ordinate formulation for the angular

domain. The node-centered finite-volume method combines the energy conservation

properties of the finite-volume formulation and the geometric flexibility of the finite element

approach. When using an unstructured finite-volume discrete-ordinates method [48], the

discretized form of radiative transfer equation is obtained by integrating equation (22) over

the control volume with a divergence theorem as

Nsurf
∑

j=1

(�nj · �m)ψm
j dAj +

(

μa + μs +
iω

c

)

ψm
N =

μs

4π
�VN

N�
∑

m′=1

ψm′

N �m′mwm′

, (25)

where Nsurf and N� are the number of surfaces surrounding the node N and the number of

discrete ordinates based on the level symmetric scheme, respectively, �nj and ψm
j denote the

surface normal vector and the radiation intensity defined on the jth surface. Also the surface

intensity ψm
j is related to the nodal intensity ψm

N by the second-order spatial differencing

scheme that can be applied to unstructured meshes [49]. In this work we chose a node-centered

scheme for constructing unstructured control volumes since it calculates more accurately the

flux and requires much less memory, as compared to the cell-centered schemes [50]. For

example, in three-dimensional cases, the number of tetrahedrons (i.e. cells) is usually about

six times the number of nodes, which causes the cell-centered scheme to require six times as

much memory as the node-centered scheme. Therefore the node-centered scheme offers an

efficient way of saving memory and further accelerating the convergence.

After discretizations for all nodes, the resulting algebraic equation can be written as

follows:

Nnei
∑

j=1

γ m
Nj

ψm
Nj

+

N�
∑

m′=1

βm′m
N ψm′

N = bm
N , (26)

where γ m
Nj

and βm′m
N depend only on medium optical properties or geometric properties. The

boundary condition comes into the flux term after discretization on the boundary node as

bm
N = −

∑

j∈Ŵ

[1 − max(nj · �m/|nj · �m|, 0)](nj · �m) dAjψ
0,m
Nb∈Ŵ, (27)

where ψ
0,m
Nb∈Ŵ is the external source function on boundary node Nb in direction m. It can be

easily seen that equation (26) involves Nnei spatial unknown intensities at the neighboring

nodes Nj in direction m, and N� unknown intensities at node N. Equation (26) can be solved

by any iterative solvers where all the radiation intensities ψm
N are updated simultaneously

after each iteration. We use here a matrix-based iterative solver for fast convergence. To

formulate the matrix system of the discretized equations (26), the radiation intensity ψm
N at

node N and direction m will be represented by ψl , where l is expressed in terms of N and m as

l = (N − 1) · N� + m. We define here the radiation intensity vector as u = (ψ1, . . . , ψNtN�
),

7
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where Nt denotes the total number of nodes and finally can obtain the resulting linear algebraic

equation as

Au = b. (28)

Each line denoted by l(l = 1, . . . , NtN�) of the matrix A contains the coefficients of the

discretized form (26) established at node number N and direction m. Thus the coefficients of

the matrix Alk and the vector bl can be given explicitly as

Alk =

⎧

⎪

⎨

⎪

⎩

βm′m
N

γ m
Nj

0

for m′ = 1, . . . , N�; k = (N − 1)N� + m′; l = (N − 1)N� + m

for Nj = N1, . . . , NNnei
; k = (Nj − 1)N� + m; l = (N − 1)N� + m

for other l and k

bl = bm
N .

(29)

In this study, the sparse matrix given by (29) contains complex-valued elements since we treat

the frequency-domain equation of radiative transfer (22) directly, instead of separating it into

two real-valued equations as found in other works [24, 40]. As a result, the complex-valued

algebraic linear equation given by (28) is solved with a complex version of the GMRES linear

solver [51, 52].

2.2.2. Optical tomographic inverse problems. In an all-at-once rSQP approach, the

inverse problem associated with optical tomography is to find the radiation intensity vector

u = (ψ1, . . . , ψNtN�
) and the optical property vector x =

(

μ1
a, . . . , μ

Nt
a , μ1

s , . . . , μ
Nt
s

)

so that

min f (x; u) =
1

2

Ns
∑

s=1

Nd
∑

d=1

(Qdus − zs,d)(Qdus − zs,d)
∗

(30)
s.t. A(μa, μs)us = bs; s = 1, . . . , Ns

where Ns and Nd are the numbers of sources and detectors used for measurements and

predictions, zs,d and Qdus are the measurements and the predictions for source–detector pairs

(s, d), and the operator (·)∗ denotes the complex conjugate of the complex vector. Thus the

optimization problem (30) is characterized by NtN� forward variables and Nt (or 2Nt ) inverse

variables.

Applying the KKT condition to equation (30) gives the frequency-domain adjoint

equation as

AT λs = −

Nd
∑

d=1

QT
d (Qdus − zs,d)

∗, (31)

which is solved by the iterative GMRES method. The gradients of the objective function

are obtained by differentiating f (x; u) given by (30) with respect to xi =
(

μi
a, μ

i
s

)

at the ith

control volume δV i as

∇μi
a
f =

Ns
∑

s=1

(

λT
s δV ius

)

Re
, (32)

∇μi
s
f =

Ns
∑

s=1

(

λT
s δV i

(

us −
1

4π

∑

m′

us�w

))

Re

, (33)

which represents the reduced gradient vector gr = (∇μa
f,∇μs

f )T as described in (17).

8
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2.2.3. Computational implementation of the reduced SQP scheme. The algorithm that makes

use of the reduced Hessian SQP method as described in sections 3.1 and 3.2, has the following

structure:

(1) Set k = 0. Pick initial guess x0 and obtain the starting point u0 from solving A(x0)u0 = b,

and initialize the merit function parameter as η0 = 1. Assume the initial reduced Hessian

as H 0 = I .

(2) Evaluate c0, g0, C0
x(u) at (x0, u0), and compute Y0 and Z0 given by (12).

(3) Solve for λ0 from C0T
u λ0 = −f 0

u by using a GMRES iterative solver.

(4) Evaluate the reduced gradient g0
r = CoT

x λ0 + f 0
x .

(5) Check the convergence: if the stopping criterion is satisfied, stop.

(6) Calculate the search direction �xk from �xk =
(

H k
r

)−1
gk

r via the limited memory BFGS

updating formula.

(7) Solve for the forward variables �uk from Ck
u�uk = −Ck

x�xk − ck by a GMRES linear

solver.

(8) Set αk = 1 and check if it ensures the sufficient decrease in the merit function

ϕηk
(xk + αk�xk; uk + αk�uk) � ϕηk

(xk, uk) + 0.1αk∇ηk
(xk, uk;�pk)

where ϕη(u, x) = f (u, x) + η ‖Au − b‖1.

(9) If the sufficient decreasing condition is satisfied by the searched step length, then set

xk+1 = xk + αk�xk and uk+1 = uk + αk�uk;

otherwise,

αk = max

{

−0.5∇ϕηk
(xk, uk;�pk)(αk)2

ϕηk
(xk + αk�xk; uk + αk�uk) − ϕηk

(xk) − αk∇ϕηk
(xk, uk;�pk)

, 0.1

}

when line search fails, the algorithm solves the linearized forward solution (step 7) more

accurately and performs line search again.

(10) Evaluate ck+1, gk+1 and Ck+1, and compute Y k+1 and Zk+1.

(11) Solve for λk+1 from λk+1 = −
[

C(k+1)T
u

]−1
f k+1

u with a GMRES solver

and update the merit function parameter ηk by

ηk+1 = max(1.001 + ‖λk+1‖∞, (3ηk + ‖λk+1‖∞)/4, 10−6)

(12) Evaluate gk+1
r = C(k+1)T

x λk+1 + f k+1
x .

(13) Evaluate yk = gk+1
r − gk

r and sk = xk+1 − xk .

(14) Return to step 5 with k = k + 1 to check the convergence.

Note that our algorithm stated above is similar to the reduced Hessian SQP algorithm

proposed by Biegler and Nocedal [46]. However, we employ here the frequency-domain ERT

as constraint, while Biegler and Nocedal used a much simpler nonlinear quadratic function as

constraint.

As mentioned earlier, the rSQP algorithm does not require the exact solution of the

radiative transfer equation during the reconstruction process. Instead the rSQP scheme solves

the linearized forward equation as described in step 7, which allows us to utilize the incomplete

solution obtained with the loose tolerance (10−2–10−3). On the other hand, the unconstrained

(lm-BFGS) method requires the accurate solution of a forward problem with the tolerance

of 10−10.
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(a) (b)

r

Figure 1. The schematic of the test problems 1 and 2: cylinder height H = 2 cm and radius r =
1 cm. (a) Source–detector configuration: 8 sources ( ) and 64 detectors (◦), and (b) computation

domain with 6764 tetrahedrons.

3. Results

3.1. Numerical experiments

In this section, we show numerical results for reconstructions of the spatial distributions of

optical properties inside the medium by using the rSQP method and the lm-BFGS method.

Note that the lm-BFGS approach implemented in this study generates the quasi-Newton

matrices using information from the last six iterations in a very efficient way by employing the

recursive formula given in [32]. To illustrate the code performance, we compare the results of

both schemes on three types of test problems, all with cylindrical geometries.

3.1.1. Setup of the test problems. The geometry for the first two cases in this study consists

of a cylinder with diameter of 2 cm and a height of 2 cm in which a smaller cylinder with a

diameter of 0.5 cm is embedded (figure 1). This geometry mimics small animal experiments

[12–15] or measurements on finger joints [9–11]. In the first example, the smaller cylinder

differs in μa from the larger cylinder, while μs is the same (see table 1). The absorption

coefficient of the smaller cylinder is set to be twice as high (μa = 0.2 cm−1) as that of the

background medium (μa = 0.1 cm−1). Note that all sources and detectors are located on

a circle defined by Ŵ = {(x, y, z)|x2 + y2 = 1, z = 1}. The second problem involves the

reconstruction of μs . Therefore instead of varying μa inside the smaller cylinder, we now

increase μs inside the smaller cylinder to 15 cm−1, while the background medium stays at

μs = 10 cm−1.

In the third example, we consider the case of reconstructing μa and μs simultaneously.

In this case, two spherical objects are embedded in a background medium that varies in

both the absorption coefficient μa and the scattering coefficient μs . The sources and

detectors are located on two circles, defined by Ŵ = {(x, y, z)|x2 + y2 = 1.52, z = 2.2}

10
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(a) (b)

r

H

Figure 2. The schematic of the test problem 3: cylinder height H = 5 cm, radius r = 1.5 cm

and two embedded spherical objects with diameter of 0.5 cm. (a) Source–detector configuration

at planes z = 2.2 cm and z = 3.2 cm: 24 sources ( ) and 24 detectors (◦), and (b) computation

domain with 14 114 tetrahedrons.

Table 1. Parameters used in three different examples.

Problem 1 Problem 2 Problem 3

Anisotropic factor g 0.0 0.5 0.9

Background μa (cm−1) 0.1 0.1 0.5

Inhomogeneity μa (cm−1) 0.2 0.1 1.0

Background μs (cm−1) 10.0 10.0 10.0

Inhomogeneity μs (cm−1) 10.0 15.0 15.0

Number of sources 8 8 24

Number of detectors 64 64 24

Modulation frequency ω (MHz) 400 400 600

Number of finite volumes 6764 6764 14 114

Number of discrete ordinates 24 48 80

and Ŵ = {(x, y, z)|x2 + y2 = 1.52, z = 3.2}, respectively (see figure 2). The corresponding

values of optical properties for all three cases are given in table 1.

For the numerical experiments, we use synthetic data that are obtained from the solution

of the frequency-domain forward problem given by (22) at specified detector locations for

the exact optical properties. All synthetic data are generated on a mesh that is two times

finer than the mesh used for the reconstructions. The solution of the forward problem at

detector locations provides the exact ‘measurements’ zex. Measurements containing noise are

simulated by adding an error term to zex in the form zobs = zex + ̟σ , where σ is the standard

deviation of measurement errors and ̟ is the random variable with normal distribution, zero

mean and unitary standard deviation. With the use of such simulated measurements as the

input data for the inverse analysis, we examine the stability of the inverse solution with respect

to various noise levels by generating data with different standard deviations obtained from the

signal-to-noise ratio, SNR = 10 log(z/σ ).

11
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We stop the optimization process when the following stopping criteria are satisfied:

|f k+1(u; x) − f k(u; x)|/f k(u; x) � ε1, (34a)

f k(u; x) � ε2. (34b)

The tolerance ε1 is set to 10−5, and ε2 is chosen to have the same order of magnitude of

measurement errors, which leads to sufficiently stable results in the principle of discrepancy

[53]. When noise-free data is considered, the tolerance ε2 is assigned a sufficiently small

number (typically 10−6). The stopping criteria given by (34a), (34b) are applied in the same

way to the reconstruction codes that make use of the rSQP method and the lm-BFGS method.

To quantify the quality of reconstruction, we use the correlation factor ρ(μe, μr) and the

deviation factor δ(μe, μr) as introduced in [21]:

ρ(μe, μr) =

∑Nt

i=1

(

μe
i − μ̄e

i

)(

μr
i − μ̄r

i

)

(Nt − 1)σ (μe)σ (μr)
, δ(μe, μr) =

√

∑Nt

i=1

(

μe
i − μr

i

)2
Nt

σ(μe)
. (35)

Here μ̄ and σ(μ) are the mean value and the standard deviation for the spatial function

of the optical property than can be either μa and μs . Similarly, μe and μr are the

exact and reconstructed distributions of optical properties, respectively. The correlation

coefficient indicates the degree of correlation between exact and estimated quantities while the

deviation factor describes the discrepancy in absolute values of exact and estimated quantities.

Accordingly, the closer ρ(μe, μr) gets to unity, and the closer δ(μe, μr) gets to zero, the better

is the quality of the reconstruction.

In the following sections, the rSQP method and the lm-BFGS method are applied to

functional estimations of unknown optical properties for the three test problems as given in

table 1. All the simulations are carried out on a Pentium IV 3.0 GHz CPU processor.

3.1.2. CPU time and influence of noise. To compare the CPU time and the influence of

noise in rSQP-based and lm-BFGS-based algorithms, we consider the reconstruction of μa

inside the target medium as shown in figure 1. We test the effects of noise on the algorithm

by varying the SNR from infinity (no noise) to 20 dB and 15 dB, with the later two values

representing typical noise levels encountered in optical tomography [21].

As shown in table 2, the usage of the rSQP method results in a significant reduction of

computation time in all cases considered here. For the case of the noise-free data, the rSQP

method converges in 0.44 h while the lm-BFGS method takes about 5 h to reach the same

convergence criterion. Therefore, the rSQP method reduces the computation time by a factor

of about 11. We observe a similar reduction in the two other cases of different noise levels.

The 20 dB data requires 0.2 h using the rSQP method and 2.18 h using the lm-BFGS method,

respectively. With the 15 dB data the rSQP method converges in 0.15 h while the lm-BFGS

method requires 3.72 h. Therefore, in this case, using the rSQP method reduces computation

time by a factor of about 25.

The main reason for this significant reduction in CPU time can be explained by the

fact that the rSQP method does not require the exact solution of the forward problem at

each iteration of optimization until it converges to the optimal solution, as mentioned earlier.

Indeed we obtain the incomplete solution of the linearized forward equation by applying the

loose tolerance of 10−2 that is empirically chosen from our extensive study. We found that

even a tolerance of 10−2 can generate a sequence of feasible solutions satisfying the first-

order necessary conditions (KKT conditions), while advancing to the true solution through

the optimization process. For example, we usually stop the GMRES iteration for the forward

12
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(a) (b)

Figure 3. Variations of the value of the objective function (in log10 scale) obtained with the rSQP

and lm-BFGS methods for the reconstruction μa with noise-free data. A convergence history for

each of the two methods is depicted with respect to (a) the number of function evaluations and

(b) the CPU time.

Table 2. Comparison of the CPU time and the reconstruction quality for codes that make use of

rSQP and lm-BFGS methods. CPU time, rho and delta are given for varying noise levels in the

input data of problem 1 (see table 1).

Schemes CPU time (∗) Correlation ρ(μe, μr ) Deviation δ(μe, μr )

Noise free rSQP 0.44 h (11.5) 0.79 0.65

lm-BFGS 5.05 h 0.78 0.65

20 dB rSQP 0.20 h (10.9) 0.63 0.93

lm-BFGS 2.18 h 0.64 0.85

15 dB rSQP 0.15 h (24.8) 0.47 1.03

lm-BFGS 3.72 h 0.42 0.99

∗ denotes the acceleration factor by the rSQP method.

solution when its relative residual becomes smaller than 10−10. Thus the GMRES iteration

process essentially has to perform a sufficient number of matrix-vector multiplications to reach

the desired accuracy, which is the case using the unconstrained lm-BFGS method. However,

the rSQP scheme stops the GMRES iteration at a much earlier stage of the iterations based

on the loose tolerance. As a consequence, the rSQP scheme only requires a relatively smaller

number of matrix-vector multiplications, which leads to a significant time savings through

the overall optimization process. Figures 3(a) and (b) show the convergence history of the

two methods versus the number of function evaluations and the CPU times. As expected,

it is observed that the rSQP scheme produces a similar convergence history with respect to

the iteration number (figure 3(a)) but it shows much faster convergence with respect to the

computation time (figure 3(b)).

In addition to the CPU time, we measured the accuracy of reconstruction as a function

of the SNR. The correlation factor ρ(μe, μr) and the deviation factor δ(μe, μr) as defined in

(35) are computed for the plane z = 1 where the sources and the detectors are located. The

corresponding values of ρ(μe, μr) and δ(μe, μr) are given in table 2. Figure 4 shows the

cross-section maps of the reconstructed μa for the xy-plane (first row in figure 4) at z = 1

and the xz-plane (second row in figure 4) at y = 0. The upper and lower parts of the xz-plane

images contain the optical properties of the unchanged initial guess due to the lack of sources
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(a) (c) (e)

(b) (d) (f)

Figure 4. Cross-section maps of the reconstructed μa-value obtained for problem 1 (see table 1).

The maps are shown for the xy-plane at z = 1 and xz-plane at y = 0. (a) and (b) lm-BFGS results

with noise-free data; (c) and (d) rSQP result with noise-free data; (e) and (f) rSQP reconstructions

with 15 dB noise-added data.

and detectors at these regions. As a result, one can observe the reconstructed object only

around the region where all sources and detectors are placed.

At noise levels of 15–20 dB, the difference between the rSQP and lm-BFGS methods are

not significant; both schemes show a decrease in the correlation factor and an increase in the

deviation factor as compared to the corresponding values of the noise-free data (∞ dB, see

table 2). Therefore, it can be stated that the rSQP and lm-BFGS methods are similar to each

other in terms of response to noise in the data.

3.1.3. Effect of initial guess. Typically the exact optical properties of the background

medium are not known a priori, and the optimization scheme starts with certain reasonable

choice for these properties. It can be assumed that there is always some mismatch between

the true background medium and the guessed background medium, which can affect the

reconstruction accuracy. For this reason, we evaluate the robustness of the rSQP code to this

initial guess of optical properties.

For this study we consider the same geometry as the first example but this time we change

μs inside the smaller cylinder as shown in figure 1. The corresponding optical properties

are given in table 1. We looked at two cases. First we assumed that the initial guess of the

background optical properties is 10% higher than the true value; in the second example the

initial guess is 20% higher. The simulations are performed with noise-free data and CPU times

are measured. In addition, we calculated the correlation factor ρ(μe, μr) and the deviation

factor δ(μe, μr) to discuss the robustness of the rSQP and lm-BFGS codes to initial guess.

The results are given in figure 5 and table 3.

It can be seen from table 3 that the rSQP method leads to much more accurate results

than the lm-BFGS method when the initial guesses of the optical properties of the background
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(a) (c) (e)

(b) (d) (f)

Figure 5. Cross-section maps of the reconstructed μs value for problem 2 (see table 1) obtained

by using the rSQP method. Maps shown represent result for the xy-plane at z = 1.0 and

xz-plane at y = 0, respectively. (a) and (b) Reconstruction results based on noise-free data;

(c) and (d) reconstruction results obtained by starting with initial guess of optical properties that is

10% higher than true optical properties; (e) and (f) reconstruction results obtained by starting with

initial guess of optical properties that is 20% higher than true optical properties.

Table 3. The reconstruction quality and the computation time obtained with the two methods for

different initial guesses for the second example of reconstructing μs .

Schemes CPU time (∗) Correlation ρ(μe, μr ) Deviation δ(μe, μr )

Background RSQP 4.3 h (12.2) 0.89 0.57

lm-BFGS 52.4 h 0.88 0.53

10% higher RSQP 3.7 h (16) 0.78 0.73

lm-BFGS 59.2 h 0.62 0.87

20% higher RSQP 3.6 h (16.9) 0.53 0.98

lm-BFGS 60.8 h 0.41 1.69

∗ denotes the acceleration factor by the rSQP method.

medium are 10% or 20% higher. The correlation factor ρ(μe, μr) using the rSQP method

is 0.78 and 0.53 for the 10% and 20% cases, respectively. This is almost 20% better than

when the lm-BFGS method is used (ρ(μe, μr) = 0.62 and 0.41, respectively). Also the rSQP

method shows 20–50% smaller deviation factors (δ(μe, μr) = 0.73 and 0.98 for 10% and

20% cases, respectively), as compared to the lm-BFGS method (δ(μe, μr) = 0.87 and 1.69).

Furthermore, the CPU times are 16 times shorter (3.7 h as compared to 59.2 h in 10% case,

and 3.6 h versus 60.8 h in 20% case). We also observed that the rSQP method still converges to

reasonable solutions even when initial guess is made 50% larger than the true value, whereas

the lm-BFGS method leads to a premature convergence for this same case. The reason for

this observation is not quite clear but may be understood by looking at how the variables are

treated in these two different schemes. The unconstrained scheme treats the intensity vector u

as a dependent variable of the model parameter vector x, while the PDE-constrained scheme
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(a)

(b) (c)

(d)

(e) (f)

Figure 6. Cross-section maps of the reconstructed μa(a) –(c) and μs (d)–(f) values for problem

3 (see table 1) obtained by using the rSQP method. The maps show results for the xy-planes at

z = 2.2, z = 3.2 and xz-plane at y = 0.

Table 4. The reconstruction quality and the computation time obtained with the rSQP method for

the third example in which the spatial distributions of μa and μs are reconstructed.

CPU time Plane Correlation ρ(μe, μr ) Deviation δ(μe, μr )

51 h z = 2.25 cm 0.79 0.60

z = 3.25 cm 0.53 0.92

treats these two variables as independent variables. Accordingly the lm-BFGS method can be

stronger influenced by a wrong starting value as compared to the rSQP method.

3.1.4. Reconstruction of absorption and scattering coefficients. Finally we reconstruct μa

and μs simultaneously. The test medium contains two objects: one object that has an increased

μa value and another object that has an increased μs value as compared to the background

medium (see table 1—third column, and figure 2). Finer spatial (14 114 tetrahedrons) and

angular (S8) meshes are used in order to capture the effects of the highly anisotropic scattering.

Since we already discuss the code performances of the two methods in the previous two

sections, we limit our attention here to the rSQP scheme.

The 20 dB noise-added synthetic data are used as the input. The optimization process is

started with an initial guess that assumes a homogeneous medium with the optical properties

being the same as the optical properties of the true background medium. The reconstructed

cross-section maps of the μa and μs are shown in figure 6 for xy-planes at z = 2.2 and z =
3.2, and for the xz-plane at y = 0. As expected (see for example, Kui et al [24]), we observe

that the absorbing and scattering objects are well separated, which is mainly due to the use of

a higher modulation frequency. Also it can be seen from table 4 that the rSQP method offers

reasonable accuracy with respect to the two metrics ρ(μe, μr). As a result, we demonstrate

that the rSQP scheme can reconstruct μa and μs simultaneously within reasonable accuracy

by mitigating the cross-talk problem between the objects.
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(a) (b)

Figure 7. Schematic of the phantom used for experimental studies; (a) locations of 25 sources

(•) and 25 detectors (•), (b) the computation domain with 28 852 tetrahedrons. The diameter of a

cylinder is 3.2 cm and the height 3.6 cm.

1.45

0.06 

(a)

 µ
a
[cm-1] 

(b)

 µ
a
[cm-1] 

Figure 8. Cross-section maps of the reconstructed-μa value using experimental data obtained at

800 MHz with the tissue phantom shown in figure 7. Reconstruction results were generated with

the rSQP code and results are shown for the xy-plane at z = 1.8 (a) and the yz-plane at x = 0 (b).

3.2. Application to experimental data

In addition to the numerical studies, we also apply our code to experimental data. For the

experimental studies we use a tissue phantom with optical properties similar to those used

in the numerical studies. A cylinder with a 3.2 cm diameter (figure 7) is filled with 0.55%

intralipid. The anisotropy of intralipid g is 0.71. The reduced scattering coefficient of

intralipid is μ′
s = 3.5 cm−1. The absorption coefficient of the background is known as μa =

0.027 cm−1. The perturbation consists of a simple absorption inclusion rod (with the same

scattering properties as the background) placed vertically about 1 cm away from the surface.
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The absorbing cylinder rod is filled with India ink whose μa is about 3.5 cm−1. The 25 sources

and 25 detectors are placed around the phantom surface. The source–detector configuration

is shown in figure 7. The measurement data were obtained at modulation frequency of

800 MHz, which yields reasonable amplitude SNR using our instrument and provides for

large enough phase shifts that can be measured with sufficient SNR.

The reconstruction of μa is carried out with the rSQP method and the lm-BFGS method.

The reconstruction results using the rSQP methods can be seen in figure 8. As found

in the numerical study, we observe that both the location of the smaller cylinder and the

spatial distribution of μa can be recovered using the rSQP method. As for the total image

reconstruction time, the rSQP method only took 9 min to converge while the lm-BFGS method

converged after 3.15 h. Therefore, the convergence speed was increased by a factor of 21,

while the quality of the reconstructed images was maintained.

4. Conclusions

To increase the convergence speed of transport-theory-based reconstruction algorithm for

optical tomography, we considered in this work a PDE-constrained approach that makes use

of a reduced Hessian all-at-once sequential quadratic programming (rSQP) method. The

proposed algorithm solves the forward and inverse problems all at once by updating the

radiances and the optical coefficients simultaneously in one iteration process. The frequency-

domain equation of radiative transfer was employed as a light transport model. To evaluate the

performance of the rSQP scheme, we performed numerical experiments varying the geometry

and the optical coefficients of a test problem and compare the results of the rSQP method and

the lm-BFGS method (the fastest unconstrained scheme in OT) in terms of computation time,

accuracy and robustness.

We found that the rSQP method can lead to a significant reduction in CPU time. Depending

on the measurement noise and the optical properties of the medium considered, we observed

10- to 25-fold faster convergence compared to lm-BFGS-based codes. We also studied the

impact of noise on the image quality in the reconstruction process. While the image quality

depends on the signal-to-noise level of the data, there appear to be little difference between the

cases when rSQP or lm-BFGS methods were used. Investigating the influence of the initial

guess of the background medium on the accuracy on the reconstruction results, we found

that the rSQP method is more robust than the lm-BFGS method. Therefore, in the examples

considered, the rSQP method would converge to a reasonable solution, even when the lm-BFGS

code would not. Furthermore, we showed that the rSQP scheme can be successfully applied to

simultaneous estimation of μa and μs . Finally, we employed the rSQP and lm-BFGS codes to

reconstruct the optical property distribution in a tissue phantom using real measurement data.

Increase in convergence speed and reconstruction accuracy were comparable to the results

observed in the numerical studies.
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