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Abstract— Several recent control applications consider the
coordination of subsystems through local interaction. Often
the interaction has a symmetry in state space, e.g. invariance
with respect to a uniform translation of all subsystem values.
The present paper shows that in presence of such symmetry,
fundamental properties can be highlighted by viewing the
distributed system as the discrete approximation of a partial
differential equation. An important fact is that the symmetry
on the state space differs from the popular spatial invariance
property, which is not necessary for the present results. The
relevance of the viewpoint is illustrated on two examples: (i) ill-
conditioning of interaction matrices in coordination/consensus
problems and (ii) the string instability issue.

I. INTRODUCTION

During the last decades, the control literature has consid-

ered several applications involving the collective behavior of

locally interacting subsystems. For instance, distributed con-

trol is applied e.g. to stabilize a perfectly smooth configura-

tion for a membrane or segmented telescope mirror (see [24],

[13], [3]), or for cross-directional control of industrial paper

machines (see [25], with additional applications); platoons of

cars following each other are considered a key technology

enabling automated highways (see [26]); the “consensus

problem” where a set of communicating agents must reach

agreement on a decision value has become standard (see [27]

for an early discussion, [20] for a review).

Applications focus on different aspects like optimal con-

figuration, collision avoidance, nonlinear dynamics,... in the

literature on vehicle formation control (see e.g. [18], [17],

[11], [7], [15]); information passing issues, e.g. time delays

and the graph structure formed by communication links, in

the consensus literature [27], [4], [21], [20]; decentralized

linear controller design in the distributed systems literature

(see e.g. [25], [13], [2]). These different studies feature

similar basic properties for controlling the overall behavior

of a set of locally interacting entities, e.g. phenomena due to

very different system response to long-range and short-range

effects (see e.g. [3], [24], [14], [8], [21], [16]).

The present paper proposes to view distributed systems

with particular symmetries as the discretization of a partial

differential equation (PDE); it shows that this allows to

study fundamental system properties on the basis of the

continuous PDE approximation. Specifically, the considered

distributed systems consist of linear subsystems which are
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locally coupled through an operator satisfying a state sym-

metry condition. The coupling operator is then viewed as the

discretization of a spatial derivative operator. This approxi-

mation is shown to be valid for long-range spatial signals.

The utility of our viewpoint is illustrated by (i) providing

a natural explanation for several observations associated to

very different system response to long-range and short-range

effects; (ii) showing that spatial invariance is not necessary

for these observations to hold; and (iii) highlighting the link

between string stability (see e.g. [22], [26]) and stability of

the associated PDE for some simple settings.

The goal is to draw a link which allows to reflect on the

behavior of locally coupled distributed systems by exploiting

existing knowledge and tools for PDEs. The link between

PDEs and their discretization is subtle; see e.g. the finite

difference PDE discretization literature [19], [5], [9] which

studies the converse operation: approximating a continuous

PDE by a discrete system. Formal conclusions are therefore

limited in this paper. The hope is that controller design

can benefit from intuitive insights of the PDE viewpoint,

although final analysis of the resulting system may still have

to consider the exact discrete setting. It seems that this has

not been exploited in the literature. The fact that PDEs in

physics are often used to model the behavior of interacting

particles supports our point.

A complementary approach may be found in papers

like [12]: interactions on graphs are written with “partial

difference equations” whose abstract formulations mimick

PDEs; however, the only abstract analogy precludes intuitive

comparison of system properties.

Much previous work on locally coupled distributed sys-

tems focuses on spatially invariant systems. Analysis (see

e.g. “spatial bandwidth” discussion in [14], [8], [1]) and

constructive controller design results are proposed thanks to

a “spatial frequency shaping” approach (see e.g. [25], [13],

[2]), similar to the standard “temporal frequency shaping”.

The present paper rather proposes a “spatial continuous”

approximation of distributed systems, similar to the standard

approximation of time sampled systems by continuous-time

equations. It shows that spatial invariance is in fact not nec-

essary for several observations, which is a major distinction

with respect to previous work.

A behavorial viewpoint on interconnected systems and

symmetries can be found e.g. in [10].

The paper is organized as follows. Section II defines how

to associate a PDE to a discrete distributed system satisfying

certain properties. The following sections justify this step
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by showing that the associated PDE reflects some basic

properties of the distributed system. Section III considers

the correspondence at a static level between local coupling

and spatial derivatives; this allows to naturally explain how

the collective response of a coupled system differs for long-

range and for short-range effects. Section IV considers the

link between dynamical distributed systems and associated

PDEs, starting with examples of the string stability problem

before briefly discussing the general case; the latter is the

subject of ongoing investigation.

Notation: Imaginary unit is j =
√
−1; ‖s‖ and arg(s)

denote the norm and angular argument of complex number

s. R>0 is the set of strictly positive real numbers.

II. ASSOCIATING A PDE TO A DISTRIBUTED SYSTEM

The present section takes the opposite step of PDE dis-

cretization (see e.g. [19], [9], [5]). For simplicity, everything

is kept one-dimensional at this stage.

Consider a distributed system composed of N subsystems.

Denote by u(k, t), y(k, t) and Hk respectively the scalar

input, scalar output and linear dynamics of subsystem k, for

k = 1, 2, ..., N . Dynamics are typically formulated as

Pk( d
dt)y(k, t) = Qk( d

dt )u(k, t) (1)

where Pk( d
dt ) and Qk( d

dt ) are constant coefficient polyno-

mials in the time derivative operator. Denoting u(t) and

y(t) the column vectors containing all u(k, t) and all y(k, t)
respectively, the subsystems are coupled through

u(t) = Γy(t) (2)

where Γ is a linear static operator represented by a constant

matrix ∈ RN×N ; the element in row l, column k of Γ is

denoted Γl,k. To separate spatial and temporal couplings,

we here assume identical subsystem dynamics Hk = Hj

∀j, k; future work might relax this condition. The following

assumptions are considered on the coupling.

(A.1) Symmetry in y: ∃ M ≥ 1 such that (i) y(k) = km

belongs to the kernel of Γ, i.e.
∑

k Γl,k km = 0 ∀l, for

all m ∈ {0, 1, ...M − 1}; (ii)
∑

k Γl,k kM 6= 0.

(A.2) Local coupling (one-dimensional lattice): ∃ c ≪ N
such that Γk,k+m = 0 when |m moduloN | > c.

The meaning of (A.2) is clear; it can be easily adapted to

multi-dimensional coupling lattices. The moduloN opera-

tion allows ring interconnections where the “last” subsys-

tems are coupled to the “first” ones. Integer M in (A.1)

characterizes the degree of state space symmetry, associated

in what follows to the order of spatial derivatives. M = 1
corresponds to

∑
k Γl,k = 0 which implies that any constant

signal y(k) = y leads to u(k) = 0; this situation is familiar

at least in consensus problems. Importantly, note that spatial

invariance is not considered: Γ is not assumed to be circulant.

Assumptions (A.1) and (A.2) often hold locally in k. Typ-

ically, higher symmetry order M is obtained when disregard-

ing the boundary of the overall system, where the number

of coupled subsystems decreases. Since the developments in

this paper are based on spatially local analysis, they still very

reasonably hold when discarding boundaries.

Proposition 1: Associate to the spatially discrete signal

y(k, t) the spatially continuous signal y(x, t), where x is

continuous. If Γ satisfies (A.1), then a Taylor development

of (1),(2) associates to y(x, t) the “infinite-order” PDE

P ( d
dt )y(x, t) = Q( d

dt )

(
+∞∑

q=0

aq(x)
(q+M)!

∂M+q

∂xM+q

)
y(x, t) (3)

where aq(x) is a continuous interpolation of aq(k) =∑
l Γk,l((l − k)moduloN)q+M . In particular, for x = k the

PDE becomes equal to the distributed system equation.

Proof: One readily checks, by expanding the expression,

that (A.1) is equivalent to
∑

l Γk,l (l − k)m = 0 ∀l for all

m ∈ {0, 1, ...M − 1}. Consider the Taylor expansion

y(k + n) = y(k) + n ∂y
∂x(k) + n2 1

2
∂2y
∂x2 + ... (4)

where constants in n are overlined for better visualization.

Inserting (4) in u(k) =
∑

l Γ(k, l)y(l) with l = k +n, (A.1)

implies that the M first terms of (4) sum to zero, ∀k; the

others yield coefficients aq(k) as specified. Thus by taking

aq(x) to be interpolations of the aq(k), (3) indeed becomes

equal to the distributed system equations for x = k. △

Remarks:

(a) The infinite series in (3) is not handy; its convergence

for x 6= k is an issue that will not be discussed here.

The following sections show that some properties of the

distributed system can be investigated by truncating the

sum in (3) to a few terms. This kind of argument is

well known in the finite differences literature like [19],

[9]. The important property is the absence of spatial

derivatives of orders 0 to M − 1 implied by (A.1).

(b) The assumed invariance combines elements on the same

row of Γ, implying symmetry with respect to certain

y-patterns. In contrast, spatial invariance ([8], [2],...)

requires equality of elements on the same diagonal of

Γ, such that Γ becomes circulant; this is a symmetry

in k (or x). If (A.1) and spatial invariance hold, then

(3) becomes a (infinite-series) linear PDE with constant

coefficients aq , and spatiotemporal frequency domain

tools can be used. This is strictly analog to time-domain

characterizations: time-invariance simplifies the analysis

but many properties hold without it.

We believe that state space symmetry, as a fundamental

structural property of the coupling characterizing the dis-

tributed system, plays an important role regardless of the

complexity of subsystem dynamics. Taking such structural

properties into account in large state space approaches to

analysis and design can be difficult. The following sections

illustrate how the spatial derivative/PDE viewpoint, which

inherently contains the symmetry, provides useful insight.

III. LOCAL COUPLING AS DISCRETIZED SPATIAL

DERIVATIVES

This section leaves dynamics aside, focusing on the inter-

pretation of coupling operator Γ as a discretization of spatial

derivatives. This is justified as follows.
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Proposition 2: Consider a linear static coupling (2) satisfy-

ing (A.1) and (A.2). Then the small-q terms are dominant

in the Taylor series of (3) describing Γ at least for low

spatial frequencies of a harmonic signal y(k) = sin(ωk).
In particular, the amplification of y through Γ decreases as

ωM when ω approaches 0.

Proof: Consider y(l) = y(k+n) = sin(ω(k+n)). Building

its Taylor expansion around y(k) and applying (2) as for

Proposition 1 leads to

u(k) =

+∞∑

q=0

(∑

l

Γk,l
(ω(l−k))(q+M)

(q+M)!

)
bq(k) (5)

where |bq(k)| ∈ {sin(ωk), cos(ωk)} ≤ 1 ∀k, q. Low spatial

frequencies correspond to ω = fπ
N with f a small integer.

If Γk,l 6= 0, then (A.2) implies |(l − k)| ≤ c ≪ N so

ω(l − k) ≪ 1. Therefore the series is dominated by the

terms of small q. In particular, the first nonzero term implies

a behavior in ωM when ω tends to 0. △

Remarks:

(a) The conditions “small ω” and “local coupling c ≪ N”

are actually combined to get ωc ≪ N . Thus for more

localized coupling (smaller c), the approximation holds

up to higher frequencies ω.

(b) If the moduloN operation is used in (A.2), then the

distributed system is coupled in a ring structure and the

continuous variable x belongs to the circle S1. If (A.2)

holds without applying moduloN , then x belongs to a

line segment [x0, xL].

The viewpoint of Γ as a discretized spatial derivative

provides a natural fundamental explanation for an order of

magnitude difference in responses to long-range and to short-

range effects in distributed systems. Phenomena related to

the latter fact — e.g. bad system conditioning for robust-

ness/performance (see [3], [24], [14], [8]), or slow consensus

in non-“small-world” networks (see [21], [16] and references

therein) — have been independently observed in several

applications. The following reviews several examples with

our common viewpoint. Spatial invariance plays an important

role in existing studies, like [1]. However, according to the

present interpretation, spatial invariance is not necessary for

the observations to hold; this is illustrated in Example 4.

Example 1: (see Figure 1, e.g. [3]) A segmented mirror

is composed of straight segments aligned along a spatial

dimension at k = 1, 2, ..., N . The output m(k) used to

control mirror shape is the difference in vertical position

at adjacent segment edges. First assume that segments only

translate vertically to positions y(k); then m(k) = y(k +
1) − y(k). Observability is seen to go down for long-range

deformations; this induces noise robustness and performance

issues in the MIMO controller design for the full system.

This property can be understood by viewing outputs m(k)
as the first-order spatial derivative (see Appendix) of states

y(k): then m(k) is expected to linearly decrease to zero with

spatial frequency ω.

A similar effect is observed for short-range deformations

when segments only rotate to orientations θ(k). In this case

m(k) = − sin(θ(k + 1))− sin(θ(k)) ≈ −(θ(k + 1) + θ(k)).
Change of variables [θ̄(k), m̄(k)] := (−1)k[θ(k), m(k)]
transforms high spatial frequency θ-signals into low spatial

frequency θ̄-signals and conversely, and leads to the same

output equation as for vertical translation, m̄(k) = θ̄(k +
1) − θ̄(k). The property is then similarly interpreted.

-
k. . .

. . .

q q q

1 2 N

6m(1) 6y(N)

-
k. . .

. . .

q q q

1 2 N

HH XX ��6m(1)
CCOθ(N)

Fig. 1. Setting of the segmented mirror example: (left) restricted to
translation, (right) restricted to rotation.

Example 2: (see Figure 2, e.g. [24], [8]) A membrane is

controlled with actuators uniformly distributed at positions

k = 0, 1, ..., N − 1. Actuator input y(k) is assumed to

linearly induce deformations in its neighborhood, e.g. such

that membrane displacement d(k) = y(k) + y(k−1)+y(k+1)
2

(except at boundaries). Controllability is seen to go down

when approaching the spatial Nyquist frequency of short-

range deformations. Change of variables [ȳ(k), d̄(k)] :=
(−1)k[y(k), −d(k)] brings the Nyquist frequency to the

origin, transforming high spatial frequency [y, d]-signals into

low spatial frequency [ȳ, d̄]-signals. The resulting equation

d̄(k) = ȳ(k−1)+ȳ(k+1)
2 − ȳ(k) involves a discretized second-

order spatial derivative (see Appendix). This naturally ex-

plains quadratic decrease of controllability for low frequency

d̄-signals, thus for d-signals close to the Nyquist frequency.

-
k

66 66
. . .

. . .

66
6

1 2 3 N
-

k. . .

. . .

q q q q q q q

6
d(3)

1 2 3 N

0

Fig. 2. Setting of the membrane example: (left) actuator forces, here
y(k) 6= 0 for k = 3 only; (right) membrane response to these forces.

Example 3: (see e.g. [16]) The consensus problem requires

a set of agents, indexed by k, to reach agreement on an e.g.

scalar quantity y. In the standard consensus algorithm (see

e.g. [27], [20]), every agent moves towards the average of its

“neighbors” in the “interconnection graph”: y(k)+ = u(k) =∑
j∈neighbors(y(j)− y(k)) where y+ denotes the update on

y. Particular graphs of interest are the path or the ring. In

a directed ring, u(k) = y((k + 1)moduloN) − y(k) ∀k. In

an undirected ring, u(k) = (y((k + 1)moduloN)− y(k)) +
(y((k−1)moduloN)−y(k)). The right sides of these equa-

tions match coupling relations of Example 1 and Example

2 respectively. The viewpoint of spatial derivatives explains

why convergence speed to consensus decreases respectively

as ω and as ω2 for low spatial frequency disagreements.

Example 4: Previous examples are all invariant in the

direction of k, i.e. the output at k + 1 due to input at j + 1
is the same as the output at k due to input at j (up to

possible boundary effects). This spatial invariance is broken
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e.g. by introducing a k-dependent weight α(k) > 0 in the

consensus algorithm on a directed ring: u(k) = α(k)(y((k+
1)moduloN) − y(k)). Then u = Γy with Γ containing

zeros except Γk,k = −α(k) and Γk,(k+1)moduloN = α(k),
∀k. Figure 3 shows the 40 smallest singular values σ of Γ
for N = 100 and three different choices of α(k): uniform

α(k) = 1 ∀k, linearly increasing α(k) = k/10, and

uniformly independently randomly distributed in (0, 1). Only

the first case is invariant along k, but the roughly linear

decrease of singular values to zero, causing a decrease in

consensus convergence speed, is clearly visible in all plots.

0 20 40
0

0.5

1

1.5

egv. #

σ

0 20 40
0

1

2

3

4

egv. #

σ

0 20 40
0

0.1

0.2

0.3

0.4

egv. #

σ

0 50 100

0

0.2

0.4

0.6

0.8

1

k

α(k)

a. b.

c. d.

Fig. 3. Smallest singular values of update coupling matrix Γ for consensus
in a directed ring with weight α(k): a. α(k) = 1 ∀k, b. α(k) = k/10 and
c. α(k) uniformly randomly chosen in (0, 1)N ; plot d. shows the actual
α(k) used in c.

IV. LINKING DISTRIBUTED SYSTEM AND PDE

PROPERTIES

Section III indicates that, for low spatial frequencies,

the series development of Γ can be truncated to its first

term(s). The present section returns to the interplay between

spatial coupling and temporal dynamics in relation with the

associated continuous limit of a partial differential equation.

It first considers examples of the string stability problem

before discussing the general case.

A. A PDE viewpoint on string stability

Consider N vehicles aligned one behind the other on a

straight line (“the road”). The goal is to make each vehicle

interact with neighboring vehicles to maintain inter-vehicle

distance δ, see Figure 4. Numbering the vehicles from 1
(leader) to N (tail), the desired evolution of vehicle k’s

position is p(k, t) = a(t) − δk for some a(t) : R →
R independent of k. The vehicles do not get an explicit

reference a(t): to position itself correctly, vehicle k compares

p(k) to e.g. p(k − 1) + δ. Define y(k, t) = p(k, t) + δk.

Then the desired evolution becomes y(k, t) = a(t), i.e.

consensus of the y(k), and vehicle k compares y(k) to e.g.

y(k − 1). String stability — see e.g. [22], [6], [26] and

references therein — characterizes how a disturbance on one

vehicle affects the others: letting N tend to infinity, if a

bounded disturbance on y(k) leads to unbounded disturbance

on y(l) for |l − k| tending to infinity, then the system is

string unstable; else it is string stable. Several dynamics and

coupling schemes have been analyzed against string stability.

The following considers three simple examples.

e e e e e

δ

. . .
. . . k ∼ x3 2 1

-
p

Fig. 4. Vehicles (depicted by circles) following each other on a straight
road, to be examined for string stability. Note that x increases in opposite
direction of p.

Example 5: Vehicles have first-order dynamics and react to

the preceding vehicle according to

d
dty(k,t) = α (y(k−1,t) − y(k,t)) (6)

with α ∈ R>0. Equation (6) is equivalent to the continuous-

time consensus algorithm on a directed path, which is known

to appropriately converge. The cascade interaction structure

implies that a disturbance on k is transmitted to k + 1, then

k+2,... through the vehicle chain. The transfer function at k
from input y(k − 1) to output y(k) is α

s+α , so from y(k) to

y(k + K), K > 0, it is ( α
s+α )K . Its amplitude is lower than

1 for any s = jω, tending to 1 for ω = 0. Thus time-varying

disturbances are attenuated when transmitted through the

chain, while a constant displacement of one vehicle implies

the exact same displacement of its followers. The system is

string stable.

In terms of the associated PDE, keeping the first term in

the series, (6) corresponds to the transport equation

∂y
∂t = −α ∂y

∂x . (7)

Its solution is y = f(x − αt) for any function f : any

disturbance travels towards the positive x at speed α without

modifying its shape. This situation is marginally stable.

Adding the second term of the expansion yields

∂y
∂t = −α ∂y

∂x + α′ ∂2y
∂x2 (8)

with α′ ∈ R>0. This adds dissipation to (7), such that

disturbances are in fact smoothed out in time. More formally,

assume a solution y(x, t) = ejξxest with ξ ∈ R and s ∈ C.

Plugging into (8) we obtain s = −jαξ − α′ξ2. Thus s has

negative real part, such that any solution that is not constant

in x vanishes to zero as time evolves.

Example 6: Each vehicle follows the preceding one accord-

ing to second-order spring-damper dynamics

d2

dt2 y(k,t) = α (y(k−1,t) − y(k,t)) + β ( d
dty(k−1,t) − d

dty(k,t))
(9)

with α, β ∈ R>0. Equation (9) is equivalent to a second-

order dynamics consensus algorithm on a directed graph,
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for which convergence is not ensured as with first-order

dynamics, see [23]. The transfer function from input y(k−1)
to output y(k) is βs+α

s2+βs+α . Its amplitude is larger than 1 at

least for small s = jω, so slow disturbances are amplified

along the chain and the system is string unstable. This

conclusion still holds when adding dissipation −γ d
dty(k, t)

with γ small enough.

In terms of the associated PDE, (9) corresponds to

∂2y
∂t2 = −α ∂y

∂x − β ∂2y
∂x∂t . (10)

Assuming a solution y(x, t) = ejξxest, (10) requires s2 =
−jαξ − jβξs. This implies s = −jλ1 ± λ2e

jλ3 where

λ1 = βξ
2 > 0, λ2 =

√
‖β2ξ2+j4αξ‖

2 > 0 and λ3 =
arg(β2ξ2+j4αξ)+π

2 ∈ (π
2 , 3π

4 ). Therefore one solution takes

the form s = µ1 − jµ2 with µ1, µ2 ∈ R>0, implying

y(x, t) = ej(ξx−µ2t)eµ1t: a solution propagating towards

positive x (the direction of information passing in the original

discrete setting) is amplified as time evolves.

Example 7: Each vehicle is coupled to the preceding and

following one according to spring-damper dynamics:

d2

dt2 y(k,t) = α (y(k−1,t) + y(k+1,t) − 2y(k,t)) (11)

+β ( d
dty(k−1,t) + d

dty(k+1,t) − 2 d
dty(k,t))

with α, β ∈ R>0. Since the system is bidirectionally coupled,

it is not possible anymore to use the transfer function

argument. Equation (11) is equivalent to a second-order

dynamics consensus algorithm on an undirected graph, for

which convergence can be ensured, see [23]. The system is

string stable.

In terms of the associated PDE, (9) corresponds to

∂2y
∂t2 = α ∂2y

∂x2 + β ∂3y
∂x2∂t . (12)

For β = 0 this would be a wave equation; β > 0
adds dissipation, such that (12) is sometimes called the

strongly damped wave equation. Assuming y(x, t) = ejξxest

with (12) requires s2 = −αξ2 − βξ2s; this implies s =
−βξ2±

√
β2ξ4−4αξ2

2 . Both cases have negative real part for all

ξ. Thus any such solution vanishes to zero as time evolves

and y(x, t) converges to a solution constant in x.

Remarks:

(a) Although the formal definition of string stability in-

volves a spatially invariant system, observations remain

valid if e.g. α, β depend on k (⇔ x); however, when

non-standard PDEs appear in this way, the required

analysis may be difficult.

(b) The converging algorithms still feature different attenu-

ation for short- and long-range disturbances, according

to the observation of Section III. This is reflected in the

ξ-dependence of the exponential attenuation factor.

B. Discussion towards general conclusions

The previous examples are encouraging for a charac-

terization of distributed system properties on basis of the

associated PDE. However, the link is weak in the general

case. A formal result takes the following form.

Proposition 3: Consider the PDE associated as in Section II

to a distributed system satisfying (A.1) and (A.2), truncated

to a few first terms. If its general solution, restricted to

propagation directions allowed by the distributed system (see

e.g. Example 6), is exponentially unstable for all spatial

frequencies in [0, ε) for some ε > 0, then the distributed

system is unstable.

Proof idea: For low spatial frequencies ∈ [0, ε), the dis-

tributed system described by the truncated PDE corresponds

to (1) with modified coupling u(t) = (Γ + δ(t))y(t), where

the elements of δ become arbitrarily small when ε tends to

0. Robustness of exponential system properties then implies

that the original distributed system is unstable. △

Remark: The truncation to “a few first terms” is chosen

to at least contain the first term which leads to exponential

stability or instability of the PDE (e.g. second term for

Example 5, first term for Examples 6 and 7). Adding further

terms to this dominant part will not change the limit behavior

for spatial frequency tending to 0.

A tighter link cannot be proposed in general because the

PDE approximation is valid for low spatial frequencies only:

instability of the PDE at high spatial frequencies does not

necessarily carry over to the distributed system, and instabil-

ity of a distributed system at high spatial frequencies is not

necessarily reflected on the PDE. The last point means that

a stable PDE does not necessarily imply a stable distributed

system. The existence of differences in stability properties

between a PDE and its discretization is well-known and

analyzed in the literature on finite differences for PDE

numerical simulation, e.g. [19], [9]. Their results may be

advantageously used in the present context both for analysis

and design. Indeed, “bad” and “good” discretization schemes

— the latter accurately reflecting stability properties of the

original PDE — are characterized for many standard PDEs.

It is worth noting that “good” space and time discretization

schemes sometimes require implicit update equations.

In a design context, a first step would be to examine what

type of PDE can be obtained with the imposed temporal

dynamics and coupling structure of the distributed system.

A second step could then design a PDE with the appropriate

behavior on the basis of physical PDE knowledge. Further or

in parallel, one might check how/if the distributed system can

implement a “good” discretization of the designed PDE. The

resulting discrete system could finally be analyzed on its own

to confirm its behavior. The examples of Subsection IV.A,

where PDE and distributed system have the same stability

properties, are encouraging for our ongoing work on this

subject.

V. CONCLUSION

The present paper proposes to study distributed systems

with appropriate symmetries on the basis of an associated

PDE. It illustrates this viewpoint by providing a natural inter-

pretation for very different system response to long-range and

short-range effects, and by highlighting the correspondence
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between string stability of a discrete chain and stability of

the corresponding PDE for several simple settings. The paper

also shows that invariance along the “spatial” dimension

along which the systems are interconnected is not necessary

for fundamental observations to hold.

The goal of the paper is mainly to describe the concept

and argue its plausibility. Several questions remain to be

answered to formalize the link between PDE and distributed

system behaviors. In particular, sufficient conditions ensuring

stability of the distributed system (for all spatial frequencies)

on the basis of conditions on the associated PDE would

be of practical interest. Extensions are also planned to

more complex dynamic settings — maybe nonlinear and

heterogeneous subsystems — and higher-dimensional local

coupling lattices; indeed [1] shows, under spatial invariance,

that performance of locally coupled systems is inherently

limited for 1- or 2-dimensional interconnection lattices, but

better performance is recovered in higher dimensions. Most

importantly, we plan to further examine distributed controller

and algorithm design on the basis of associated PDEs. This

could motivate further development of “PDE shaping con-

trol”, where in contrast to traditional e.g. boundary control

problems, the actual form of the PDE must be designed.
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APPENDIX

The present appendix recalls Fourier transforms of discrete

derivative approximations, to illustrate how they closely

approximate continuous derivatives at low frequencies.

1st order: The first derivative y(1)(x) := dy
dx of signal

y(x) is approximated by y(1)(k) = y(k+1)−y(k). Then y(1)

is the convolution of y with the signal der = [−1 1 0 ... 0].

In the Fourier domain ŷ(1) = ŷ d̂er, where for a signal y
of (e.g. even) length/period N the functions are defined at

frequencies ωk = k 2π
N with k = −N

2 , −N
2 + 1, ..., N

2 − 1.

Then d̂er(ωk) = ejωk/2 2j sin(ωk

2 ). For small ωk, this is a

close approximation in frequency domain of the continuous

derivative d̂
dx = jω.

2nd order: The second derivative y(2)(x) := d2y
dx2 of

y(x) is approximated by y(2)(k) = y(k + 1) + y(k − 1) −
2y(k). Then y(2) is the convolution of y with dder =

[1 − 2 1 0 ... 0]. In the Fourier domain, ŷ(2) = ŷ d̂der

with d̂der(ωk) = −4 sin2(ωk

2 ), which for small ωk is a close

approximation of the continuous derivative d̂2

dx2 = −ω2.
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