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Summary

Missing data rates could depend on the targeted values in many settings, including mass

spectrometry-based proteomic profiling studies. Here we consider mean and covariance estimation

under a multivariate Gaussian distribution with non-ignorable missingness, including scenarios in

which the dimension (p) of the response vector is equal to or greater than the number (n) of

independent observations. A parameter estimation procedure is developed by maximizing a class

of penalized likelihood functions that entails explicit modeling of missing data probabilities. The

performance of the resulting ‘penalized EM algorithm incorporating missing data mechanism

(PEMM)’ estimation procedure is evaluated in simulation studies and in a proteomic data

illustration.

Keywords
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1. Introduction

Mass spectrometry (MS) based platforms serve as the workhorse (Faca et al., 2006) in

proteomics profiling research. However, properly analyzing proteomics data from MS based

experiments remains challenging due to a typical high percentage of missing data and

complicated missingness patterns. For example, in our application in Section 5, the

missingness rate in one sample is as high as 50%.
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When the proportion of missing values in a dataset is substantial, it is inappropriate to

simply ignore the observations with missing values (Rubin, 1976; Little and Rubin, 2002).

Various statistical approaches have been proposed for valid inference based on incomplete

data (Afifi and Elashoff, 1966; Dempster et al., 1977; Rubin, 1987, 1996; Schafer, 1997). A

crucial step involves characterizing the nature of missingness in a study. To do so, Rubin

(1976) defined three missing data mechanisms: missing completely at random (MCAR),

missing at random (MAR), and not missing at random (NMAR). Inference based on

approaches that ignore the missing data mechanisms could still be valid (Little and Rubin,

2002) for MCAR or MAR, but not for NMAR data.

To properly characterize the missing data mechanism in proteomics data, we first need to

obtain a good understanding of the experimental procedures and the related instrument

measurement properties. A typical MS based proteomics experiment starts with

enzymatically digesting intact proteins into peptides — small segments of amino acid

sequences. Then, peptides are introduced into the MS instrument for identification and

quantification. In the end, the presence and abundance of proteins are inferred based on the

identification and quantification of peptides. Due to the dynamic nature of the MS

instrument, many factors in the experiment could contribute to missingness in the final

protein abundance data. For example, the MS machine may have trouble detecting weak

signals of low-abundance peptides. Or, even if the instrument detects the signal, the peak

intensities of low-abundance peptides may be too low to be distinguished from background

noise during data processing. Therefore, the lower the abundance, the more likely the

peptide will be “missing” in the MS output data. Besides abundance, other physical or

chemical properties of a protein could also contribute to its missingness. For instance, a

small protein consisting of only a few peptides in general is more likely to be “missing” in

MS experiments than a large protein consisting of many peptides. So the probability of a

protein being missing also depends on the number of peptides in the protein (or roughly, the

size of the protein). Moreover, missing data could be caused by other experimental attributes

associated with each protein/peptide. In light of these observations, modeling the missing

data mechanism in proteomics data as a function of the abundance to be measured, as well

as other pertinent variables, provides an attractive approach to acknowledging the major

aspects of these experimental complexities. Note, the abundance-dependent missing data

mechanism in proteomics data involves no clear detection threshold, and thus it is more

appropriate to utilize a probabilistic missing data mechanism than a censoring model (Little

and Rubin, 2002).

In this paper, we focus on the problem of jointly estimating the mean abundance levels of

multiple proteins and their covariances, i.e., estimating mean and covariance matrix for

incomplete data with abundance-dependent missingness when p < n or p ≥ n. Addressing

this problem could greatly facilitate high dimensional omics data analysis, such as pathway/

gene-set based hypothesis testing or discriminant analysis. Here, we propose to model the

abundance-dependent missing data mechanism with a class of exponential functions and

seek parameter estimates that maximize the joint likelihood of the observed data and the

missing events, assuming that the multiple protein abundance levels follow a multivariate

Gaussian distribution. In addition, to deal with the high-dimension-low-sample-size issue,
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we employ a penalized likelihood approach. We impose a Inverse-Wishart penalty on the

covariance matrix, which amounts to the conjugate prior for a multivariate Gaussian

distribution from a Bayesian perspective. This penalty gives a simple closed-form solution

for the maximum penalized likelihood estimates and is computationally efficient.

Since samples are often missing different proteins and thus have different likelihood

functions, there is typically no closed-form solution for maximizing the joint log-likelihood

function. In order to obtain the maximum likelihood estimates with incomplete data, the EM

algorithm and its extensions (Dempster et al., 1977; Meng and Rubin, 1993; Neal and

Hinton, 1999) have been widely used in a variety of applications. The EM algorithm gained

its popularity because of its easy implementation and its numerical stability due to monotone

convergence (Wu, 1983). However, it may converge slowly and may not converge to the

global maximum (McLachlan and Krishnan, 1996). To improve its numerical performance

and provide more efficient estimation of the parameters of interest, regularization has been

introduced to the EM framework. Green (1990) proposed maximizing a penalized likelihood

function in the M-step and demonstrated that the corresponding EM algorithm achieves a

faster convergence rate. In contrast, Schneider (2001) introduced the penalty to the E-step in

each iteration and allowed the penalty to change across iterations. However, it is unclear

whether typical convergence properties of the EM are preserved in this procedure. In recent

work (Städler and Bühlmann, 2012; Städler et al., 2012), sparse penalties have been

employed in the EM framework to handle high-dimensional multivariate data when

missingness is MAR, with the goal of controlling the sparsity of the inverse covariance

matrix. For non-ignorable missing data, Little and Rubin (2002, Chapter 15.2) have outlined

a framework for the EM algorithm to incorporate general NMAR mechanisms. In

comparison, the major innovation of this paper is that we introduce a specific NMAR

mechanism into the general penalized EM framework. We propose PEMM, a penalized EM

algorithm incorporating missing data mechanism, for data with non-ignorable missingness.

We implement the proposed PEMM algorithm for parameter estimation of multivariate

Gaussian data with abundance-dependent missingness.

The remainder of this paper is organized as follows. In Section 2, we present the penalized

joint likelihood model that incorporates missing data mechanism. In Section 3, we outline

the PEMM algorithm and implement it in detail for the models proposed in Section 2. We

compare the proposed method with competing ones on simulated data and a proteomics

dataset in Section 4 and 5, respectively. We then provide a brief summary in Section 6.

2. Model

Let X = (xij) denote the complete Gaussian data without missing values, where xij represents

the jth feature for the ith subject. Let Oi denote the index set of features being observed in the

ith sample; and let Xi,obs = {xij : j ∈ Oi} and Xi,mis = {xij : j ∉ Oi} represent the observed and

the missing component in the ith sample respectively. Let M = (mij) be the missingness

indicator matrix, such that mij = 1 if xij is missing, and mij = 0 if xij is observed. The missing

data mechanism is characterized by P(M|X). If P(M|X) depends on the missing values in X,

the mechanism is NMAR, and ignoring the missing data mechanism leads to invalid

parameter inference. Therefore, in this paper, we will explicitly model P(M|X) and estimate
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the mean and variance of X, µ and Σ, by seeking the MLEs of the full likelihood, which is

the joint likelihood of the observed data Xobs and the missing-indicator matrix M:

2.1 Missing data mechanism in proteomics data

It is typically reasonable to assume that, given the complete abundance data X and the

pertinent corresponding covariate data C, missingness of different features are independent

of each other:

We also assume that for a given feature, its missingness does not depend on abundances or

covariates of other features:

where  is a vector of covariates associated with the jth feature for the ith subject.

For example,  can be the size (# peptides) of the jth protein, which will take the same

value across different subjects; or it can be the total detected ion abundance at the

corresponding eluting time of the jth protein (output from the MS1 data) in the ith

experiment. We then propose to model P(mij = 1|xij, cij) with a bounded exponential

function:

(1)

where Γ = {γ1, γ2, γ3} is the parameter of the missing data mechanism and is distinct from

the parameter of interest (µ, Σ). For positive γ2, this probability function monotonically

decreases with the abundance, xij, to be measured and is consistent with the abundance-

dependent missing data mechanism discussed above.

Note, for some platforms utilizing labelling strategies, the outputs from the experiments are

the log-ratios of abundances in the test samples versus the reference samples, and log-ratios

with smaller absolute values are more likely to be missing. This missing data mechanism

can be modelled using a bounded quadratic exponential form:

(2)

Estimation procedure development for log-ratio-abundance data using the above missing

data mechanism is provided in Web Appendix F. Here, we choose to use  instead of |xij| in

(2) for computational convenience.
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2.2 Penalized joint likelihood

Denote the joint log-likelihood of the observed data and missing-indicator matrix as L(Xobs,

M; µ, Σ, Γ, C), where µ and Σ are the mean and covariance parameters of interest; C is the

observed covariate data; and Γ is the nuisance missing data mechanism parameter. Our goal

is to obtain the MLE:

(3)

Temporarily we assume that Γ is completely known. We will elaborate estimation with Γ

parameters known and unknown in Sections 3.2.1 and 3.2.2, respectively.

When p > n or p ≈ n, the MLE in equation (3) is typically unsatisfactory or even not

meaningfully defined. For example, if there is no missingness, the MLE for (µ, Σ) of a

multivariate Gaussian distribution is the sample mean X ̄ and the sample covariance matrix

SX. When p ≥ n, SX becomes singular and is no longer a proper estimator for Σ.

To circumvent these difficulties, regularization is quite valuable. A natural strategy is to

consider the penalized likelihood and seek the maximum penalized likelihood estimate

(MPLE):

(4)

where P(·) is a penalty function on Σ. The performance of the MPLE heavily depends on the

choice of the penalty term P(·). It is important to take both the interpretability and

computational feasibility into account when specifying P(·). In recent literature on high

dimensional Gaussian graphical modeling, including Yuan and Lin (2006), Friedman et al.

(2008), Rothman et al. (2008), and Städler and Bühlmann (2012), the l1 norm of the

concentration matrix (||Σ−1||l1) has typically been penalized, thereby helping to control the

number of non-zero entries in the MPLE of the concentration matrix. In other applications

involving covariance estimation, such as pathway analysis in proteomics studies (Chen et

al., 2011), it may not be necessary or reasonable to assume a sparse Σ−1. In this paper, we

consider an alternative approach and propose to use a penalty amounting to an Inverse-

Wishart prior with penalty parameters λ and K:

(5)

Denote the eigenvalues of Σ as . The above penalty term can be rewritten as: P(Σ) =

λ &Sum;ℓ 1/dℓ + K log(Πℓ dℓ). Thus positive (λ, K) values constrain the parameter space of

Σ and bounds each eigenvalue from above and below. This helps to ensure that both

covariance matrix and concentration matrix are non-singular, an important property that is

not readily achieved if p > n. In addition, since the Inverse-Wishart distribution is the

conjugate prior for the covariance matrix of multivariate Gaussian, the PEMM algorithm for
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solving (4), which is outlined in the next section, enjoys computational efficiency. More

discussion on the interpretation of λ and K is provided in later sections.

The Inverse-Wishart penalty equally penalizes the variance of each of the p-variables. If

some of the variables have substantially larger variances than the others, one could

standardize each variable first, or incorporate different weights in the penalty term for

different variables.

3. Algorithm

In Section 3.1, we outline a PEMM algorithm for calculating MPLEs of general distributions

and investigate its convergence properties. Then, in Section 3.2, we implement the PEMM

algorithm for obtaining the MPLEs of multivariate Gaussian parameters with Inverse-

Wishart penalty on the covariance matrix and abundance-dependent (non-ignorable) missing

data mechanism.

3.1 A PEMM algorithm

Consider the general problem of seeking MPLE for data with non-ignorable missingness:

where Ω is the parameter of interest. Note that covariate C is omitted to simplify the

presentation in this section. To solve the above optimization problem, we outline PEMM, a

modified version of the EM algorithm, in Algorithm 1 below.

Algorithm 1

A PEMM algorithm.

1 Obtain the initial estimate Ω(0).

2 E-step: calculate L̂(t−1)(X, M; Ω) = EXmis|XobsM;Ω(t−1) {L(X, M; Ω)};

3

M-step: calculate .

4 Repeat 2–3 until convergence.

Following Beale and Little (1975), we establish the convergence property of the PEMM

algorithm in Web Appendix A. Briefly, the targeted penalized likelihood will always

increase in successive iterations of the PEMM algorithm, and thus the algorithm will

converge to a stationary point of the penalized log-likelihood (though not necessarily to the

global maximum, similar to the EM algorithm). Therefore, the PEMM algorithm is an

appropriate algorithm for solving the optimization problem in equation (6).

3.2 A PEMM algorithm for estimating multivariate Gaussian parameters

In this section, we implement the PEMM algorithm in detail to calculate the MPLEs of

multivariate Gaussian parameters with the missing data mechanism specified in equation (1)
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and the penalty term specified in equation (5). To better illustrate the impact of the missing

data mechanism on parameter estimation, we first review a penalized EM algorithm for data

with ignorable missingness, and then present the PEMM algorithm for data with abundance-

dependent missingness. When data are MAR, one can ignore the missing data mechanisms

in parameter estimation (Rubin, 1976):

Then, to obtain the MPLEs of multivariate Gaussian parameters with Inverse-Wishart

penalty (5) on the covariance matrix, we can implement a penalized EM algorithm as

outlined in Algorithm 1. Specifically, the E-step is the same as described in Beale and Little

(1975):

where  is a p × p matrix and  is the submatrix of  that corresponds to the

missing features in the ith sample. Here,  represents cov(Xi,mis|Xi,obs; µ
(t−1), Σ(t−1)),

which measures the additional covariance caused by the missing data in sample i.

Then, with the Inverse-Wishart penalty in equation (5), the MPLE updates in the M-step

become:

(6)

where . The regularization induced by the

Inverse-Wishart penalty helps to assure the positive definiteness of the estimated covariance

matrix. For the special case of K = 0, the corresponding update in the M-step simplifies to

Σ(t) = S(t) + λn−1I. This resembles the popular ridge regularization for covariance estimation

(Lin and Perlman, 1985; Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005). However,

with a positive K, the additional shrinkage factor n/(n + K) imposed on S(t) helps to stabilize

the variability of Σ(t) and often improves the performance of parameter estimates, as

illustrated in Section 4.1.

When missingness is non-ignorable, we need to incorporate the mechanism of missingness

in the likelihood function in order to obtain reliable parameter estimates. In Section 3.2.1,

we consider the situation where the nuisance parameter of the missing data mechanism Γ is

known; while in Section 3.2.2, we propose a profile likelihood approach to jointly estimate

the missing data model parameters and the multivariate Gaussian parameters.
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3.2.1 A PEMM algorithm for abundance-dependent missing data—With the

missing data mechanism incorporated, the E- and M-steps of PEMM (Algorithm 1) aim to

solve:

(7)

Following the notation in previous sections, we denote the missing data mechanism function

as P(mij = 1|xij) = g(xij; cij, Γ), where cij is some known covariate information; Γ is the

parameter of the missing data mechanism and is distinct from the parameter of interest Ω =

{µ, Σ}. Assume Γ is known and denote g(·) = g(·; cij, Γ). Note, g(·) may depend on feature/

sample-specific covariates. We first derive the solution in (7) for a general missing data

mechanism and the Inverse-Wishart penalty (5).

Proposition 1: Let . For i ∈ {1, ···, n} and j, j′ ∈ {1, ···, p}, denote

; and

. Then for multivariate Gaussian data, (7) can be

calculated as

(8)

The proof of Proposition 1 is provided in the Web Appendix B.

Comparing equations (6) and (8), we see that the assumption about the missing data

mechanism leads to weighting the sample i by , when updating the mean and

covariance estimates. This is similar in spirit to inverse probability weighting, another

popular technique for handling missing data, including NMAR data, in other contexts

(Robins et al., 1995; Robins and Rotnitzky, 1995).

In Section 2.1, we introduced an abundance dependent missing data mechanism in equation

(1), motivated by data characteristics in proteomics studies. Here we assume that with the

true parameter values, (µ, Σ, Γ), the missing probability is always non-negative such that

, for some small ε > 0. Then, instead of equation (1), we choose

to use the unbounded g(·) function:

(9)
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when solving the optimization problem. Equation (9) is a simplified form of equation (1). It

can be easily integrated in the density function of multivariate Gaussian. This strategy has

very limited impact on the parameter estimation while simplifying the computation. In

application, if a positive value of  is encountered, i.e., the probability of

missingness exceeds 1, the xij value can be reset to be missing, to avoid the possibility of a

high leverage observation.

In equation (9), the  component does not depend on xij, so it can be treated

as a scaling constant and moved to the outside of the conditional expectation when

calculating αi, βij, and δijj′ as defined in Proposition 1. Since the scaler appears in both the

numerator and the denominator in equation (8), it cancels out and does not contribute to the

calculation of MPLEs. Thus, we can focus on the reduced model:

(10)

Below, we will derive the detailed updating formula in the PEMM algorithm for the missing

data mechanism in (10) with multivariate Gaussian data. The log-ratio abundance dependent

missing data mechanism in (2) can be similarly simplified to g(x, Γ) = exp{−γ2x2}.

Derivations of the log-ratio incomplete data are provided in the Web Appendix F.

Proposition 2: Define  such that , and

where . Then for the missing

data mechanism specified in equation (10), the solutions in the M-step are given by

where  is a p × p matrix with all elements being zero except the submatrix .

The proof of Proposition 2 is provided in Web Appendix D.

In the PEMM algorithm, there are two penalty parameters, λ and K, to be specified by the

user. Non-zero λ and K help to smooth the penalized likelihood function and speed up the

convergence rate (Green, 1990). Particularly, Σ(t) is made positive-definite by sufficiently

large λ at each EM iteration. Therefore, we propose to use a descending sequence of {λ(t)}t

when implementing PEMM. This strategy helps to further stabilize and speed up the

algorithm. Specifically, we begin with a sufficiently large λ(0) to assure the positive

definiteness of the covariance matrix estimate. As iteration proceeds, we allow λ(t) to change
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with the minimum eigenvalues of Σ(t). After a few iterations, as the Σ estimate becomes

positive-definite, λ(t) is set to the user-specified λ and stays unchanged for the remaining

iterations. Details of this procedure are summarized in Algorithm 2. In the next section, we

show via simulations that the performance of the PEMM algorithm is relatively robust to the

choice of penalty parameters.

Algorithm 2

A PEMM algorithm for the abundance-dependent missing data mechanism in (9).

1 Specify positive λ and K.

2 Based on available cases, obtain the sample mean X ̄ and sample covariance SX. Then find the smallest
positive λ(0) such that λ(0) ≥ λ and the minimum eigenvalue of matrix nSX + λ(0)I is positive. Set µ(0) = X̄
and Σ(0) = (n + K)−1(nSX + λ(0)I).

3 Calculate the conditional expectation of the sufficient statistics given the current parameter estimate
(µ(t−1),Σ(t−1)):

A
i:mis,mis
t)

= ∑
i:mis,mis
(t-1)

- ∑
i:mis,obs
(t-1)

(∑
i:obs,obs
(t-1)

)
-1

∑
i:obs,mis
(t-1)

,

X̂
i,obs
(t)

= X
i,obs

, X̂
i,mis
(t)

= µ
i,mis
(t-1) + ∑

i:mis,obs
(t-1)

(∑
i:obs,obs
(t-1)

)
-1

(X
i,obs

- µ
i,obs
(t-1)) - γ2A

i:mis,mis
(t)

· 1.

4 Calculate the maximum penalized likelihood estimates:

µ
(t) = n

-1∑
i

X̂
i
(t)

, ∑
(t)

= (n + K )-1 (∑
i

((X̂i
(t)

- µ
(t)) (X̂

i
(t)

- µ
(t))

T
+ A

i
(t)) + λ (t)

I),

where λ(t) is chosen to be the smallest value which makes Σ(t) positive-definite and is greater than or equal
to λ.

5 Repeat 3–4 until convergence.

3.2.2 A profile likelihood approach to jointly estimate Γ and (μ,Σ)—In Section

3.2.1, we implemented the PEMM algorithm for multivariate Gaussian parameter estimation

when the missing data mechanism parameter Γ in (9) is known. Here we propose a profile

likelihood approach to jointly search for the MPLEs of (Γ,µ,Σ). For a given Γ, we can

rewrite the penalized log-likelihood as

and we can use the PEMM algorithm (Algorithm 2) to calculate

(11)

Note that we again omit the covariates in the above equations to simplify the presentation.

Then, to obtain the MPLE of Γ, we can evaluate L̃Γ(µ ̂
Γ, Σ̂Γ) at different Γ values and choose

the Γ that gives the maximum over the likelihood profile:
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(12)

Evaluating L̃Γ(µ̂Γ, Σ̂
Γ) involves integrating out {Xi,mis} in the joint penalized log-likelihood

function of the complete data based on (Γ, µ ̂
Γ, Σ̂

Γ). For the abundance-dependent missing

data mechanism in equation (9), we have

where Φ(·) is the density function of multivariate Gaussian distribution; and |Oi| denotes the

number of elements in set Oi. The conditional expectation in the above equation can be

calculated in the same way as outlined in the proof of Proposition 2. Since g(·) is not

bounded, it can be greater than one, and then log(1 − gΓ(xij)) cannot be computed. In

practise, if a negative value or a value close to zero for 1 − gΓ(xij) is encountered, we suggest

ignoring the corresponding data point by resetting mij = 1 (i.e. pretending xij is missing).

This will help to avoid the possibility of a high leverage observation. However, we expect

this to be a very rare occurrence for reasonable Γ values. Indeed, in the simulation and the

real data application, when the estimated g(·) function is evaluated at the observed data

points, its value rarely exceeded one.

As mentioned in the previous section, for the abundance-dependent missing data mechanism

in equation (9), the MPLEs of Gaussian parameters in equation (11) only depend on γ2,

while not depending on γ1 nor . However, incorporating the latter two terms in the

missing data mechanism would enable one to handle either NMAR (γ2 > 0) or MAR data (γ2

= 0, γ1 > 0 or γ3 > 0), and improves the overall performance of the proposed method by

enhancing the accuracy of γ2 estimation in the profile-likelihood approach.

In application, solving the optimization problem in equation (12) is not easy. When there are

substantial amounts of missing data, the log-likelihood surface is often not convex. Thus,

general purpose optimization algorithms do not apply, as they may easily converge to local

extreme or saddle points. On the other hand, performing a thorough grid search for Γ = (γ1,

γ2, γ3) can be computationally intensive. To circumvent this difficulty, we propose the

following strategy: we first obtain a good initial estimate of Γ and then perform a small

neighbourhood search of Γ around the initial estimate to find the solution maximizing the

profile likelihood. Specifically, we take the available-case mean estimate for each ‘protein’

as xj and the missing percentage of that protein as yj. We then regress log(yj) on xj to obtain

. Since Γ̂0 is based on available-case estimates of mean protein abundance, it

might be biased though is likely to be close to the MPLE. Then, we perform a small

neighbourhood grid search of γ2 to find the estimate maximizing the profile likelihood while

fixing γ1 and γ3 estimates, since the MPLEs of Gaussian parameters in equation (11) only
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depend on γ2. In this way, we reduce the potential uncertainty in estimating Γ. Details of this

procedure are outlined in Web Appendix E.

4. Simulations

4.1 Penalty parameters

We first investigate the impact of different choices of penalty parameters λ and K.

Multivariate Gaussian data X ~ N(µ,Σ) were simulated with p = 10, 20, 30, where µj is

randomly sampled from {0, −3, 3}; Σjj = 1; and Σjj′, j ≠ j′ is either set to 0 or sampled from

N(0.5, 0.12), each with probability 0.5. We then simulate ~ 30% of the data to be MAR. For

the ith sample, we first randomly pick two features, j1 and j2, and set the missing probability

of these two features to be 0 in this sample. For the other features in the sample, we set their

missing probabilities to be P(mij = 1) ∝ exp(− (|xij1| + |xij2|)). Thus, P(mij = 1) only depend

on observed values in each sample, but do not depend on the missing values. This satisfies

the definition of MAR.

For each choice of penalty parameters, we calculate the ratios of the mean squared errors of

estimates resulting from the penalized EM algorithm based on the incomplete data to the

mean squared errors of the MLEs based on the complete data. These ratios are then referred

to as relative mean squared errors (RMSEs) hereafter. Figure 1 shows the average RMSEs

of Σ estimates over 100 simulations at different λ = {10, 5, 1} and K = {0, 1, …, 10}. We

omit the results on the RMSEs of µ estimates, as the parameter space of µ is not regularized

in the penalty term and thus different choices of penalty parameters show minor impact on µ

estimates. Evident from Figure 1, for both sample sizes considered (n =100 and 10), the

performance of the penalized EM algorithm is relatively robust to different choices of λ and

K, especially when sample size is large. When sample size is limited and the dimensionality

p is relatively large, non-zero λ and K are necessary to keep the positive definiteness of the

covariance and concentration matrix. We observe similar results with other p, n, correlation

patterns and missing data patterns (data not shown). Based on these simulations, we choose

λ = 5, K = 5 in the following analyses, and this choice seems to give favorable RMSEs

throughout all our simulations.

4.2 Comparison with competing methods

We simulate multivariate Gaussian data with p = 10, 20, 30,X ~ N(µ,Σ). We consider both

large and small sample sizes: n = 100 (p < n) and n = 10 (p ≥ n). We sample µj

independently from {4, 8}, while Σ is simulated as before. Missing data are simulated based

on the abundance dependent mechanisms for positive data with γ2 = 0.3, γ1 = γ3 = 0, i.e.

P(mij = 1) = exp(−0.3xij). There are a few negative xij values generated in this scenario for

which exp(−0.3xij) > 1, and they are set to be missing as well. Overall, there are about 40%

missing data.

We investigate the performances of six different methods: (1) AC+P: available-case analysis

with Σ̂(λ) = S + λ/n · I; (2)Imp+P: imputing the missing values by the k-nearest neighbors

(kNN) algorithm (Troyanskaya et al., 2001) with k chosen by cross-validation, and obtaining

µ ̂ = X ̄
Imp and Σ̂(λ) = SImp + λ/n · I; (3) EM: the EM algorithm; (4) PEM: the penalized EM
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algorithm; (5) PEMM: the PEMM algorithm using the true missing data parameter Γ

(Section 3.2.1); (6) PEMMe: the PEMM algorithm using the profile-likelihood-based

estimate of Γ (Section 3.2.2). Note, λ = 5 is used for AC+P and Imp+P; and (λ,K) = (5, 5) is

used for PEM, PEMM, and PEMMe.

For each simulation setting, we generate 1000 independent datasets, and obtain RMSEs of µ̂

and Σ̂ by different methods relative to estimates from complete data without missing values.

The results are shown in Figures 2 and 3. When sample size is large, the PEMM and

PEMMe estimates perform favorably (yield smaller RMSEs) compared to other methods in

various scenarios. When sample size is small, the PEMM/PEMMe methods still yield

smaller RMSEs for the mean estimates, but the improvement of PEMM/PEMMe over PEM

for covariance estimation becomes less obvious. This probably occurs because the variance

component is dominant compared to the bias component in the MSE of Σ̂ when sample size

is small. The regularization, which controls the variance of Σ̂, dramatically improves the

MSE of all penalized EM estimates (right column of Figure 3), demonstrating the benefit of

proper regularization in high dimensional settings. On the other hand, incorporating the

missing data mechanism may help to reduce bias. But since the bias of Σ̂ is dominated by

the variance of Σ̂, the improvement on the former is not quite visible in this setting.

In Web Appendix F, we also show the simulation results for the two-sided log-ratio

abundance-dependent missing data mechanism in equation (2). Similarly, the proposed

PEMM and PEMMe methods yield smaller RMSEs for µ and Σ estimates with both large

and small sample sizes. The performance of the PEMM and PEMMe estimates also appear

to have desirable robustness to departure from normality. (data not shown due to space

limitation).

5. Application – estimating the mean abundance for spiked-in human

proteins in yeast

We apply the proposed PEMM algorithm to a real data example from the study conducted

by the Clinical Proteomic Technologies for Cancer consortium (Paulovich et al., 2010). In

the study, the Universal Proteomics Standard Set 1 (UPS1) collection of 45 human source or

human sequence recombinant proteins were spiked into yeast protein lysate samples at

different concentrations and quantified by mass spectrometry. We focus on the data

corresponding to a subset of the spiked-in samples, designated C, D and E, from the study.

The compositions of C, D, and E include 60ng/µL yeast lysate together with 2.2, 6.7 and

20fmol/µL UPS1 respectively. For each of C, D and E experiments, 12 samples were

obtained by multiple collaborating labs. Abundance of each protein in each sample was

derived using software Sahale (Milac et al., 2012). Not surprisingly, the human proteins

show different abundances and are subject to different probability of missingness across

protein profiles of different samples. Specifically, there are 51.1, 23.7 and 9.8% of the

human protein abundance measures missing in the protein profiles of the samples from C, D

and E experiments, respectively.

In this dataset, all abundance measures are positive and are roughly normally distributed.

We consider the missing data mechanism specified in (9) and adjust for the number of
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peptides in each protein as a covariate. We use the proposed profile-likelihood-based PEMM

algorithm in Section 3.2.2 to estimate the missing data mechanism parameters and the mean

and covariance of the abundance of 45 human proteins in the three experiments. The

estimated missing probabilities evaluated at observed data range from 0.001 to 0.878. Figure

4 shows the frequency distributions for the differences between the mean estimates by AC

+P and those by PEMM. Similar plots for the differences between the mean estimates by

PEM and PEMM are shown in Web Figure 3. For data from experiment C, which has more

than 50% missingness, the mean estimates by AC+P and PEM are much larger than that by

PEMM. In samples from experiment E, the percentage of missingness in the data is smaller.

The difference between the estimates by PEMM estimates and that by AC+P and PEM

becomes smaller too. These patterns are consistent with what we observed in simulations in

the previous subsection: when the data are NMAR, the proposed PEMM algorithm can yield

estimates with less bias, compared to estimates based on other methods that ignore the

missing data mechanism.

6. Discussion

To estimate the mean and covariance for multivariate Gaussian data with substantial

missingness, it is important to characterize the missing data mechanism. If the probability of

a value being missing depends on the missing values themselves, one needs to take the

missing data mechanism into account in parameter estimation. In this work, we propose a

penalized EM algorithm incorporating missing data mechanism (PEMM) for multivariate

Gaussian parameter estimation. Specifically, motivated by data characteristics in proteomics

studies, we discussed two types of abundance dependent missing data mechanisms, and

derived detailed formula for the corresponding PEMM algorithms. Furthermore, in the

PEMM algorithm, we introduce penalization into the full log-likelihood to regularize the

parameter estimation.

We proposed an Inverse-Wishart penalty, because it yields a positive-definite estimate of the

covariance matrix and is computationally efficient with a simple closed form solution in the

M-step. There are two tuning parameters, λ and K, in the Inverse-Wishart penalty. In the

paper, λ = 5 and K = 5 is used in all of the numerical studies. These values may not be

optimal in other general applications. The method for selecting the optimal tuning parameter

in the PEMM algorithm warrants future research. In addition to the Inverse-Wishart penalty,

other convex penalty functions can be conveniently incorporated in the PEMM framework,

because the non-ignorable missing data mechanism only affects the E-step and does not

directly interfere with the penalty function in the M-step. Although it is possible to develop

a full Bayesian approach within the current framework, it is beyond the scope of this work.

Better estimation of multivariate Gaussian parameters with incomplete data can valuably

facilitate high-dimensional ’omics data analysis. For example, the PEMM framework could

be used for imputation of missing data under NMAR. In the E-step of PEMM, the

conditional expectation of missing data given the observed data and the missing data

mechanism could serve as natural “imputation” of the missing data. Future work to

investigate the merit of such an approach is warranted. The framework of the PEMM

algorithm could also be extended to non-Gaussian distributions and other missing data
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mechanisms. However, different forms of penalty terms may then be needed. In addition, for

general non-ignorable missingness other than the abundance dependent missing data

mechanism, the implementation of the PEMM could be complicated. An R package PEMM

will be available on CRAN (http://cran.r-project.org/) soon.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Impact of different penalty parameters on parameter estimation of the PEM algorithm. Here

we compare the average relative mean squared errors (RMSE) of Σ estimates over 100

simulations at different λ = {10, 5, 1} and K = {0, 1, …, 10} for different p = {10, 20, 30}

and n = {10, 100}. The RMSEs of Σ estimates are relative robust to the choices of penalty

parameters when K ∈ [5, 10] and λ ∈ [1, 10].
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Figure 2.

Boxplots of RMSEs of µ ̂ by different methods on positive abundance-dependent missing

data. For different combinations of p and n, p = {10, 20, 30} and n = {100, 10}, we compare

the RMSEs of µ ̂ by six methods: available-case analysis with ridge regularization applied on

Σ̂ (AC+P); imputation with kNN followed by estimating the mean and ridge regularized Σ̂

on the imputed data (Imp+P); the EM algorithm (only applied for n > p); the penalized EM

algorithm (PEM); the PEMM algorithm with true Γ (PEMM); and the PEMM algorithm

with the profile-likelihood-based estimate of Γ (PEMMe).
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Figure 3.

Boxplots of RMSEs of Σ̂ by different methods on positive abundance-dependent missing

data. For different combinations of p and n, p = {10, 20, 30} and n = {100, 10}, we compare

the RMSEs of Σ̂ by six methods: available-case analysis with ridge regularization applied on

Σ̂ (AC+P); imputation with kNN followed by estimating the mean and ridge regularized Σ̂

on the imputed data (Imp+P); the EM algorithm (only applied for n > p); the penalized EM

algorithm (PEM); the PEMM algorithm with true Γ (PEMM); and the PEMM algorithm

with the profile-likelihood-based estimate of Γ (PEMMe).
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Figure 4.

Histograms of differences in protein abundance estimates based on available-case analysis

with ridge penalization on covariance (AC+P) versus the PEMM algorithm, in three

different experiments, C, D, and E. There are 51.1, 23.7 and 9.8% of protein abundance

measures missing in the samples from Experiments C, D, and E, respectively. For proteins

with no missingness, the corresponding differences are 0 and are not plotted in the figure.
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