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Abstract. We propose a penalty approach for a box constrained variational inequality
problem (BVIP). This problem is replaced by a sequence of nonlinear equations containing
a penalty term. We show that if the penalty parameter tends to infinity, the solution of
this sequence converges to that of BVIP when the function F involved is continuous and
strongly monotone and the box C contains the origin. We develop the algorithmic aspect
with theoretical arguments properly established. The numerical results tested on some
examples are satisfactory and confirm the theoretical approach.
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1. Introduction

Many real-world phenomena in engineering and economics are governed by a box

constrained variational inequality problem BVIP, see [10]. Extensive studies of BVIP

have been done in [11], [7] and the references therein. Numerical methods for solving

BVIP have been extensively investigated in the literature such as smoothing Newton

methods [5], [14], [17], interior point method [2] and nonsmooth equation methods

[9], [8]. However, it seems that there are few studies of penalty methods for BVIP.

Recently, a power penalty approach has been proposed for linear, nonlinear, and

mixed nonlinear complementarity problems in both the finite-dimensional space Rn

and the infinite-dimensional functional spaces [9], [6], [8], [16]. This approach con-

sists of approximating a box constrained variational inequality problem BVIP by

a sequence of nonlinear penalty equations with a penalty term. The penalty method

has the merit of not introducing any extra or auxiliary variables. Besides, the re-
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sulting algebraic equations are easily solvable by a conventional numerical method

such as that of Newton type.

Based on the method presented in [9], [6], [8], [16] for linear, nonlinear, and mixed

nonlinear complementarity problems, the present study aims to develop and analyze

a penalty approach for the BVIP.

This paper is organized as follows. At the beginning, we present the box con-

strained variational inequality problem BVIP and its penalized problem. In Sec-

tion 2, we analyze the convergence of the penalty approach. In Section 3, the corre-

sponding algorithm is constructed and we prove the global convergence results under

the hypothesis of continuity and strong-monotonicity of F. Furthermore, some nu-

merical experiments are presented in Section 4. Finally, we give some concluding

remarks in Section 5.

Throughout the paper, Rn denotes the n-dimensional Euclidean space with Rn
+ =

{x ∈ R
n ; x > 0} being the positive orthant, 〈·, ·〉 and ‖·‖ the Euclidean inner product

and norm, respectively.

1.1. The problem BVIP and its penalty formulation. Consider the follow-

ing box constrained variational inequality problem BVIP.

Find x̄ ∈ C ⊂ R
n such that

(1.1) 〈F (x̄), x− x̄〉 > 0 ∀x ∈ C,

where F : R
n → R

n is a continuous differentiable mapping from R
n to itself and

C =
n
∏

i=1

[li, ui], −∞ 6 li 6 ui 6 ∞, i = 1, 2, . . . , n.

The problem (1.1) is called the box constrained variational inequality problem

BVIP.

Now, we present a penalty approach for (1.1). First, we give an important defini-

tion.

Definition 1.1. An operator B : R
n → R

n is called a penalty operator relative

to a closed convex set C ⊆ R
n if it satisfies

(i) B is a continuous operator on R
n.

(ii) For any x ∈ C:

〈B(y), y − x〉
{

= 0 if y ∈ C,

> 0 if y /∈ C.

Many penalty operators have been proposed in the literature (see [1]). Among

them, we have the projection operator, which is defined by:

B(x) = x− PrC(x),

where PrC(x) stands for the Euclidean projection of x onto C.
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Let C =
n
∏

i=1

[li, ui]. Then the projection operator B(x) = x−PrC(x) is defined by

B(x) = B1(x) + . . .+Bn(x), where

Bi(x) =











(0, . . . , xi − li, . . . , 0)
T if xi < li,

(0, . . . , 0, . . . , 0)T if li 6 xi 6 ui,

(0, . . . , xi − ui, . . . , 0)
T if xi > ui.

1.1.1. Penalized problem of BVIP. Consider the following sequence of non-

linear equations BVEPr:

Find a vector xr ∈ R
n such that:

(1.2) E(xr) = F (xr) + rB(xr) = 0,

where r > 0 is the penalty parameter and B is the previous projection operator.

The formula (1.2) is an approximate problem of the initial problem (1.1).

When r → ∞, we expect that the solution xr of problem (1.2) converges to that

of problem (1.1). A detailed convergence analysis of the solution of (1.2) will be

developed in the next section under some mild assumptions on the operator F and

the box C.

2. Theoretical aspect of the problem BVEPr

In this section, we establish some upper bounds for the distance between the

solutions of problems (1.1) and (1.2). Before, we first make the following assumptions

on F and C.

(A1) F is continuous on R
n.

(A2) F is strongly monotone, i.e., there exists a constant α > 0 such that

〈F (x) − F (y), x− y〉 > α‖x− y‖2 ∀x, y ∈ R
n.

(A3) 0 ∈ C.

Lemma 2.1 ([10]). If F is strongly monotone, then F is strongly coercive, i.e.,

there exists x0 ∈ C such that

lim
‖x‖→∞

〈F (x), x − x0〉
‖x− x0‖ = ∞.
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It can be easily shown that, under assumptions (A1) and (A2), the problem (1.1)

has a unique solution (cf., for example, Theorem 2.3.3 of [1]). Furthermore, since

F (·) + rB(·) is also strongly monotone for any r > 0, the variational inequality

problem (with C = R
n) corresponding to problem (1.2) has a unique solution.

2.1. Convergence of BVEPr to BVIP. We start our convergence analysis

with the following lemma.

Lemma 2.2. Let xr be a solution of (1.2) for any r > 0 and let assumptions (A1),

(A2), and (A3) be satisfied. Then there exists a positive constant M independent of

xr such that

(2.1) ‖xr‖ 6 M ∀ r > 0.

P r o o f. For r > 0, let xr be a solution of (1.2). Left-multiplying both sides

of (1.2) by xT
r , we obtain

〈xr, E(xr)〉 = 〈xr, F (xr)〉+ r〈xr , B(xr)〉 = 0.

From assumption (A3), we have 0 ∈ C. Then,

〈B(xr), xr − 0〉 > 0,

which gives according to Definition 1.1

〈xr , F (xr)〉 = −r〈xr , B(xr)〉 = −r〈B(xr), xr − 0〉 6 0 ∀ r > 0.

Moreover, we have

〈xr , F (xr)〉 = 〈xr , F (xr)〉 − 〈xr , F (0)〉+ 〈xr , F (0)〉

which is equivalent to

〈xr, F (xr)− F (0)〉 6 −〈xr, F (0)〉.

Using the above estimate and the Cauchy-Schwarz inequality, we get

〈xr, F (xr)− F (0)〉 6 −〈xr, F (0)〉 6 ‖xr‖‖F (0)‖.

From assumption (A2) and the above estimate, we have

α‖xr‖2 6 〈xr, F (xr)− F (0)〉 6 ‖xr‖‖F (0)‖,

and so,

(2.2) ‖xr‖ 6
‖F (0)‖

α
.

This completes the proof with M = ‖F (0)‖/α. �
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R em a r k 2.3. Lemma 2.2 shows that for any non-negative r, the solution

of (1.2) always belongs to a bounded closed set D = {y ∈ R
n ; ‖y‖ 6 M}. Due to

assumption (A1), this guarantees that there exists a positive constant L independent

of xr and r such that

(2.3) ‖F (xr)‖ 6 L ∀ r > 0.

This result will serve us in the proof of the following lemma.

Lemma 2.4. Let xr be a solution of (1.2) and let the assumptions (A1) and (A2)

be satisfied. Then there exists a positive constant L independent of xr and r such

that

(2.4) ‖B(xr)‖ 6
L

r

for all r > 0.

P r o o f. Left-multiplying both sides of (1.2) by [B(xr)]
T, we obtain

[B(xr)]
TF (xr) + r[B(xr)]

TB(xr) = 0.

Now using the Cauchy-Schwarz inequality, we have from the above equation

‖B(xr)‖2 =
−1

r
[B(xr)]

TF (xr) 6
1

r
‖B(xr)‖‖F (xr)‖,

and so

‖B(xr)‖ 6
‖F (xr)‖

r
.

Finally, (2.4) holds due to the above inequality and (2.3). �

Now, we present and prove our main convergence result.

Theorem 2.5. Let x̄ and xr be the solutions of problems (1.1) and (1.2), respec-

tively and let the assumptions (A1), (A2), and (A3) be satisfied. Then there exists

a constant c1 > 0 independent of xr and r such that

(2.5) ‖x̄− xr‖ 6
c1√
r
.

443



P r o o f. Let x̄ be a solution of problem (1.1) and xr a solution of problem (1.2).

We decompose x̄− xr as follows

(2.6) x̄− xr = (x̄ − PrC(xr))− (xr − PrC(xr)) = sr − (xr − PrC(xr)),

where sr = (x̄ − PrC(xr)). Then

(2.7) x̄− sr = PrC(xr) ∈ C.

From (1.1), for x = x̄− sr ∈ C, we obtain

(2.8) 〈F (x̄), x̄− sr − x̄〉 = 〈F (x̄),−sr〉 > 0.

Multiplying (1.2) by sTr , we have

(2.9) 〈F (xr), sr〉+ r〈B(xr), sr〉 = 0.

Adding up (2.8) and (2.9), we deduce

(2.10) 〈F (xr)− F (x̄), sr〉+ r〈B(xr), sr〉 > 0.

Note that

〈B(xr), sr〉 = 〈xr − PrC(xr), x̄− PrC(xr)〉 6 0.

Thus (2.10) leads to

〈F (x̄)− F (xr), x̄ − PrC(xr)〉 = 〈F (x̄)− F (xr), sr〉 6 0.

Then

〈F (x̄)− F (xr), (x̄− xr) + (xr − PrC(xr))〉 6 0

which gives

〈F (x̄)− F (xr), (x̄ − xr)〉 6 〈F (xr)− F (x̄), xr − PrC(xr)〉.

Using the Cauchy-Schwarz inequality, assumption (A2) and the above inequality, it

follows that
α‖x̄− xr‖2 6 〈F (x̄)− F (xr), (x̄− xr)〉

6 〈F (xr)− F (x̄), (xr − PrC(xr))〉
6 ‖F (x̄)− F (xr)‖‖xr − PrC(xr)‖
= ‖F (x̄)− F (xr)‖‖B(xr)‖.
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Finally, from (2.3) and Lemma 2.4, we obtain

α‖x̄− xr‖2 6
2L2

r

which implies

‖x̄− xr‖ 6
c1√
r
.

This completes the proof with c1 =
√
2L/

√
α. �

3. The algorithm and its convergence

In this section, the corresponding algorithm is constructed for solving the problem

BVIP.

3.1. Algorithm.

Begin algorithm

1. Initialization

Let ε > 0 be a given precision and θ > 1.

Let x0 ∈ R
n, r0 = 1 and k = 0.

2. Iteration

Find xk+1 solution of nonlinear equation

E(x) = F (x) + rkB(x) = 0.

3. If ‖B(xk)‖ 6 ε or ‖xk+1 − xk‖ 6 ε, then stop: xk+1 is an approximate solution

of BVIP.

If not take

⊲ rk+1 = θrk,

⊲ xk = xk+1,

⊲ k = k + 1, and go back to 2.

End algorithm

3.2. Comments on the algorithm.

⊲ Clearly, the analysis and the properties of the algorithm depend largely on the

treatment of the step 2.

⊲ To solve the equation of step 2, we can consider any conventional method such as

fixed point, Newton, etc.

⊲ The choice of the method depends on the properties of the operator B and the

function F of problem (1.1).
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3.3. Convergence of the algorithm. The result given in the following theorem

is the same as that of Theorem 4.4 from [1], established with a detailed proof.

Theorem 3.1. Let assumption (A1) hold and F be strongly-coercive. Then the

sequence {xk} generated by the Algorithm 3.1 converges to the unique adherent

value x̄ of the solution of the problem (1.1).

P r o o f. The proof of this theorem is done in three steps:

Recall that since F is strongly-coercive, the step 2 of Algorithm 3.1 is realized,

because the operator E = F + rkB is also strongly-coercive on R
n.

First, we prove that the sequence {xk} of Algorithm 3.1 is bounded. Suppose the
contrary. Then there exists a subsequence {xkj} of {xk} such that ‖xkj‖ → ∞ as

j → ∞. From step 2 of Algorithm 3.1, we have:

〈E(xkj ), xkj − x0〉
‖xkj − x0‖ =

〈F (xkj ), xkj − x0〉
‖xkj − x0‖ + rk

〈B(xkj ), xkj − x0〉
‖xkj − x0‖ = 0

=⇒ 〈F (xkj ), xkj − x0〉
‖xkj − x0‖ = −rk

〈B(xkj ), xkj − x0〉
‖xkj − x0‖ .

According to the property (ii) in Definition 1.1 of B, we have:

〈F (xkj ), xkj − x0〉
‖xkj − x0‖ 6 0.

On the other hand, the strong coercivity of F gives

lim
‖xkj ‖→∞

〈F (xkj ), xkj − x0〉
‖xkj − x0‖ = ∞ > 0

which is a contradiction. Hence, the sequence {xk} is bounded.
Since the sequence {xk}k∈N is bounded, we can extract a subsequence converging

to the adhesion value x̄ of the sequence {xk}.
Note that for all x ∈ C

lim inf
k→∞

rk〈B(xk), xk − x〉
{

> 0 if xk ∈ C,

∞ if xk /∈ C.

Therefore,

lim inf
k→∞

〈F (xk), x− xk〉 = lim inf
k→∞

rk〈B(xk), xk − x〉.

On the other hand, we have F continuous over Rn (assumption (A1)), hence

lim inf
k→∞

〈F (xk), x− xk〉 = 〈F (x̄), x− x̄〉 > 0.
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We deduce that

x̄ ∈ C and 〈F (x̄), x− x̄〉 6 0 ∀x ∈ C,

which gives that x̄ is a solution of the problem (1.1).

This completes the proof. �

4. Numerical experiments

To give some insight into the behavior of our Algorithm 3.1, we implemented it

on Matlab and have run it on a set of problems which are described below.

We denote by x0 the starting point of the algorithm. The examples are tested for

different values of θ with θ > 1 and the tolerance considered is taken ε = 10−6.

In the tables of results, (Iter) represents the number of iterations needed to obtain

the solution of BVIP, and CPU(s) represents the time of computation.

Finally, we note that the nonlinear equation (1.2) is solved thanks to the f-solver

procedure from the Matlab optimization toolbox.

4.1. Examples with fixed sizes.

E x am p l e 1 ([11]). The operator F : R
4 → R

4 is

F (x) =









400x3
1 + 2x1 − 400x1x2 − 2

−200x2
1 + 200.2x2 + 19.8x4 − 40

360x3
1 + 2x2 − 360x3x4 − 2

19.8x2 − 180x2
3 + 220.2x2

4 − 40









and C = [−10, 10]4.

Using the starting point x0 = (3, 3, 3, 3)T, the numerical results are given in Ta-

ble 1.

θ Iter CPU(s)

10 1 0.100601

102 1 0.071838

103 1 0.059665

104 1 0.041732

105 1 0.024124

Table 1.
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E x am p l e 2 ([15]). Kojima-Shindo problem (MCPLIB file kojsshin.gms) where

the operator is defined by

F : R
4 → R

4, F (x) =









3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x1 + 2x2

2 + 2x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3









,

and the feasible set is C = [−0.5, 0.5]4.

In this problem, we consider θ = 10, and we present the computational results in

Table 2 for different choices of the starting point x0.

x0 Iter CPU(s)

(5,−1, 1, 1)T 8 0.128521

(1, 7, 1, 1)T 8 0.177527

(2, 7,−2,−1)T 8 0.137462

(−1,−5, 0,−3)T 8 0.116928

(0.6, 4, 0, 8)T 8 0.147629

(1,−2, 0.7, 1)T 8 0.1103788

(1,−6, 5, 3)T 8 0.135970

(−1,−1,−1,−1)T 8 0.151304

Table 2.

E x am p l e 3 ([15]). We take again the Kojima-Shindo problem (MCPLIB file

kojsshin.gms) with C = [0, 3]4. This problem has two degenerate solutions x̄1 =

(1, 0, 3, 0)T, F (x̄1) = (0, 31, 0, 4)T and x̄2 = (
√
6

2
, 0, 0, 1

2
)T, F (x̄2) = (0, 2+

√
6

2
, 0, 0)T.

Using the starting point x0 = (−1,−1,−1,−1)T, the numerical results are given

in Table 3.

Similarly, taking another starting point x0 = (9, 0,−1, 1)T, we obtain the numeri-

cal results given in Table 4.

E x am p l e 4 ([15]). The operator is

F (x) =









x3
1 − 8

x2 − x3 + x3
2 + 3

x2 − x3 + 2x3
3 − 3

x4 − 2x3
4









and C = [0, 5]4. This problem has one degenerate solution x̄ = (2, 0, 1, 0)T, F (x̄) =

(0, 2, 0, 0)T.
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θ Iter CPU(s) xk

6 10 0.197873







1.224745
0.000003
0.000000
0.499999







7 9 0.172599







1.224752
0.000006
0.000000
0.499999







10 8 0.152000







1.224745
0.000003
0.000000
0.499999







15 7 0.133142







1.224745
0.000003
0.000000
0.499999







22 6 0.130594







1.224752
0.000003
0.000000
0.499997







25 ∗ ∗ ∗
Table 3. The star ∗ indicates that the algorithm does not provide any solution when θ takes

a value greater than or equal to the last value displayed. Therefore, we consider
that the method does not converge.

θ Iter CPU(s) xk

10 9 0.056870







1.000000
0.000003
2.999999
0.000000







25 7 0.050231







1.000000
0.000002
2.999999
0.000000







50 6 0.0491033







1.000000
0.000001
2.999999
0.000000







100 5 0.049065







1.224745
0.000000
0.000000
0.500000







200 4 0.044569







1.224745
0.000000
0.000000
0.499999







415 ∗ ∗ ∗
Table 4.
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Using the starting point x0 = (−6,−6,−10,−1)T, the numerical results are given

in Table 5.
θ Iter CPU(s)

5 11 0.066163

10 8 0.049526

20 6 0.039950

100 5 0.039827

200 4 0.033758

1500 3 0.026853

4600 ∗ ∗
Table 5.

E x am p l e 5 ([15]). The operator is the same as that defined in Example 4 and

C = [−1, 1]4.

Using the starting point x0 = (6,−6, 10, 3)T, the numerical results are given in

Table 6.
θ Iter CPU(s)

5 11 0.147629

10 8 0.217512

102 5 0.095258

103 4 0.046632

104 3 0.033456

Table 6.

4.2. Examples with variable sizes.

E x am p l e 6 ([13]). We consider the following linear complementarity problem,

where the operator F is defined by:

F (x) = Mx+ q,

while the matrix M ∈ R
n×n and vector q ∈ R

n are of the following forms

M =























1 2 2 . . . 2

0 1 2 . . . 2

0 0 1 . . . 2

. . . . .

. . . . .

. . . . .

0 0 0 . . . 1























, q =























−1

−1

.

.

.

.

−1























.
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This example has one degenerate solution x̄ = (0, 0, . . . , 0, 1)T.

The numerical results are presented in the following tables for different sizes of n

using the starting point x0 = (2, 2, . . . , 2)T and different values of θ.

For θ = 10
Size (n) Iter CPU(s)

10 8 0.47

50 8 5.26

100 8 85.50

150 8 213.88

200 8 561.56

Table 7.

For θ = 20
Size (n) Iter CPU(s)

10 7 0.37

50 7 4.78

100 7 54.34

150 7 143.75

200 7 476.12

Table 8.

For θ = 30
Size (n) Iter CPU(s)

10 6 0.34

50 6 4.74

100 6 51.70

150 6 91.19

200 6 127.88

Table 9.

E x am p l e 7 ([13]), ([12]). Let F (x) = Mx+ q, where M is the (n×n) nonsym-

metric matrix

M =

























4 −1

−1 4 −1

4 −1
. . .

. . .

4 −1

4 −1

4

























, q = (−1,−1, . . . ,−1)T ∈ R
n,

and C = [0, 1]n.
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The computational results are summarized in Tables 10 and 11 using two starting

points for different sizes of n.

For x0 = (−1,−1, . . . ,−1)T

Size (n) 10 100 1000 2000 3000

Iter 1 1 1 1 1

CPU(s) 0.09 0.18 32.40 65.84 203.76

Table 10.

For x0 = (0, 0, . . . , 0)T

Size (n) 10 100 1000 2000 3000

Iter 1 1 1 1 1

CPU(s) 0.03 0.11 30.95 59.73 171.88

Table 11.

4.3. Comments. Through the examples tested, we note that the number of iter-

ations depends inversely on the value of θ. However, the quality of the solution risks

to be deteriorated when θ is too large. On the other hand, the choice of the starting

point x0 does not influence the behavior of the algorithm (see Examples 2 and 7).

We note also that if the solution is in the interior of the admissible set C, then the

algorithm converges after one iteration (see Examples 1 and 7). This phenomenon

is justified, because if the solution is an interior point of C, then the resolution of

BVIP is reduced to the resolution of F (x) = 0 (see [3], [4]).

The used selection (r0 = 1 and rk+1 = 10rk) of the penalty parameter does not

work if the solution is nondegenerate (see Examples 3, 4 and 6). We must then

choose appropriate values. It is also noticeable that this algorithm can be considered

to solve BVIP of large dimensions as shown in the last two examples.

5. Conclusion

In this paper, we have proposed and analyzed a penalty method for solving the

box constrained variational inequality problem. The method consists of formulating

the variational inequality as a sequence of penalized nonlinear equations. We have

shown that the sequence of solutions of the sequence converges to that of the box

constrained variational inequality problem.

To highlight the details of our contribution, we have presented numerical sim-

ulations on some examples not necessarily strongly monotone. These simulations

illustrate clearly the effectiveness of our approach and consolidate our theoretical

results.
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