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A PENALTY FUNCTION APPROACH TO SMOOTHING LARGE
SPARSE CONTINGENCY TABLES

BY JEFFREY S. SIMONOFF

New York University

Probabilities in a large sparse contingency table are estimated by maxi-
mizing the likelihood modified by a roughness penalty. It is shown that if
certain smoothness criteria on the underlying probability vector are met, the
estimator proposed is consistent in a one-dimensional table under a sparse
asymptotic framework. Suggestions are made for techniques to apply the
estimator in practice, and generalization to higher dimensional tables is

considered.

1. Introduction. When the number of observations in a large table is close to the
number of cells, standard estimation techniques are inappropriate. In this paper maximum
penalized likelihood is used to estimate probabilities in large sparse tables. It is assumed
that the true underlying probability vector « satisfies certain smoothness criteria, so that
information in nearby cells is useful in estimation. The most obvious example of a
contingency table that might satisfy the criteria is one with ordered categories.

Previous work in the field can be divided into three major areas: large sparse tables,
tables with ordered categories and nonparametric density estimation. Fienberg and Holland
(1973) examine estimators of the form

(1.1 pi=(n+ a)/(N+ ¥ )

(this is the Bayes estimator using a squared-error loss function if the prior is Dirichlet with
parameter «). Here K is the number of cells in the table, and N is the number of
observations. In order to examine the behavior of these estimators in large sparse multi-
nomials, they develop a “sparse asymptotics,” by letting N — « and K — o such that
N/K = §, a constant. By putting a smoothness constraint on the probabilities, specifically
m = K 'f((i — %)/K) where f has a continuous second derivative, they show that their
choice of a results in an estimator with asymptotic mean squared error smaller than the
mean squared errors of the frequency estimator #; = n;/N and the common estimators of
the form (1.1). However, the estimator is not consistent (consistency in the sparse
asymptotic framework being defined as the property sup;|(p:/7;) — 1| —, 0).

Leonard (1973) develops a Bayesian framework for a one-dimensional table with ordered
categories. He puts a multivariate normal prior distribution on y = log p, and incorporates
ideas of smoothing by assuming that the prior covariance matrix has the form Cov(y:, v;)
= ¢2p!*], This is equivalent to using the prior proportional to

(1.2) YEI! (o log p; — log pir1)®.

Leonard does not examine the sparse asymptotics when using this prior. Leonard (1975)
generalizes this work to two-dimensional tables by putting the prior on x;; = py;/p:.p.j;
again, ordering of categories can be reflected in the form of the prior covariance matrix.
Laird (1978) provides a slight modification of this technique. Leonard (1978) proposes a
general framework where f(¢) (the density being estimated) is a random process; his
proposed prior then involves second' differences of log probabilities, rather than first
differences.
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Techniques for smoothing probabilities have a close relationship to nonparametric
density estimation techniques, since both require smoothness assumptions about the
underlying probabilities. The most commonly used estimator is the Parzen-Rosenblatt
kernel estimator (Rosenblatt, 1956; Parzen, 1962); if probability estimates are restricted to
be nonnegative, the optimal convergence rate of the estimator is [ {(Fulx) — fx)}2 dx =
O(N~*5),

Good and Gaskins (1971) introduced an important density estimation technique which
they call maximum penalized likelihood. They propose estimating probabilities by maxi-
mizing the function L = log likelihood — ®(f), where ® is a roughness penalty. They
propose two penalties (where f is the density being estimated):

L [ B ), @) Fefe)
1.3) @) aJ_m d + = f_m[ ) + 00 ) :ldx

and

(1.4) o(f) = (a/4)J {f (x)/f(x)}? dx.

Note that this is equivalent to Leonard’s approach with a more complicated prior. They
also give guidelines for how to choose the parameters of the penalties from simulations.
Good and Gaskins (1980) look at penalty (1.3) above and set « = 0; they then recommend
estimating 8 from the data using goodness-of-fit tests. The existence and uniqueness of the
two distinct estimators using these penalties is shown by deMontricher, Tapia and
Thompson (1975).

Tapia and Thompson (1978, Chapter 5) examine the method of maximum penalized
likelihood in the case where the data is presented in bins, rather than continuously (this
corresponds to a one-dimensional contingency table). The roughness penalty which they
propose is
(1.5) ®=aK* Y5 (0 — pin1)®
They show that the estimator f; is consistent if K = N 0 < ¢ < %; Monte Carlo
simulations indicate that it has properties similar to kernel estimators.

The penalty function proposed here is a special case of Leonard’s prior (1.2) with p = 1
and can be viewed as a discrete version of (1.4). The novelty of the present work is the
sparse asymptotics that will be presented in the next section. These asymptotics are a

generalization of Fienberg and Holland’s model of N/K = §, and provide a framework
where large sparse multinomials can be studied.

2. Probability estimation.
2.1 The model. Consider a one-dimensional table {n;},i=1, ..., K, generated from
{ p:} by a multinomial likelihood:
fm|p) < [[Kipr, TEipi=1.

The prior distribution (or penalty function) is defined, as outlined above, such that the log
of the posterior is

L(p|n) = 3£, nlog p; — B T (log(pi/pi+1)}°, TEipi=1,8=0

(omitting constants that do not depend on p). The “true” value of p, which we are trying
to estimate, is denoted by 7.

The MLE 7 is defined as the value of p that maximizes #(n | p)(#; = n;/N). The MPE
(“maximum posterior estimator”) is defined as the value of p that maximizes L (p | n). The
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MPE will be a “smoothed” estimator because the maximization process forces the ratio of
adjacent probabilities towards one. It is shown in Theorem 2.1 that a unique maximizing
value exists.

A

THEOREM 2.1. Let L(p|n) be defined as above. A unique value P maximizing
L(p|n) exists and is given by the solution to the set of equations (2.1):

n1 + 2B8(xs — x1) —Nexp(x;) =0,
@.1) ny + 2% — 2% + x0-1) —Nexp(x;) =0, i=2,...,K—1,
ni + 2B(xx-1 — xx) —N exp(xx) = 0,

.

where x; = log p;.

Proor. Let x; = log p;. Then
L(p|n) = Y& nix; — BTE (i — xi41)%, T expla) = 1.

By the theory of Lagrange multipliers, any local maximum of L will satisfy equations (2.1).
This is equivalent to the unconstrained maximization of L’ = ¥ n;x, = B X" (x; — xi41)°
— N Y ¥ exp(x;). But L’ is strictly concave, and approaches —o as any x, — =oo; hence,
there is one and only one stationary point (a global maximum), and it solves (2.1).

2.2 Sparse asymptotics.

THEOREM 2.2. Let P be the MPE. Let N, K, B — o with 0 < y1 < N/K < ys < o
assume BK 2 — 0 and K**(log K)¥*8~' — 0. Assume 3 M € (1, ) such that 0 < (MK)™"
< m < M/K <1 for all i; also, assume the smoothness constraint

sup; | log(mi_17i1/7d) | = O(K7?).
Then
sup; | (Pi/m:) — 1| = OP(B_IM(log Ky + ,BK_Z).

(Note this implies that taking 8 of the order K**(log K)*° results in the rate of convergence
supi| (B:/m) — 1| = O, (K~*"(log K)%).

It is worth noting that the smoothness constraint assumed in the theorem is implied by
the usual density estimation assumption that the log of the density being estimated has a
bounded second derivative (which means the density itself has bounded second derivative
and is bounded away from zero in the region of interest).

In order to prove this result, we need a number of lemmas; several are presented with
only sketch proofs.

LEMMA 2.3. Consider the linear equations

Yi—aix +B(x2'_xl)=0’
2.2) Yi—a% +B@ia—-2x+2x.1=0, i=2.--.,K-1,

¥k — agXx + B(xg_1 — x¢) = 0,
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witha;,>0alliand B>0.Then y; =2 0Vi=x;= ¢ixis1, 0< ;< l,and y; =z 0 Vi= x;
=Gxi-1,0< 6 < 1.

Proor. This is proven by induction on i; if y; = 0, the equations (2.2) become
inequalities. Successive summation of the equations gives the result. [

LEMMA 24. For a;> 0, B > 0, the tridiagonal matrix

B+ a -B 0
-B 2B + ay -B
F=
-B 2B + ax-1 -B
0
-B B+ ax.

is nonsingular. Furthermore, if we call its inverse H, then each row of H has the property
that the elements increase monotonically to the diagonal, and then decrease.

Proor.

(a) The equations (2.2) may be written as Fx = y. Setting y = 0 and summing the
equations (2.2) implies that F is nonsingular. (b) Since the row h;(h;,7=1, --- , K) is the
solution {x,} to the equations (2.2) when y; = 0,7 # i and y; = 1, j = i, we have xj+1 — x;
=0 forj < iand x,4+; — x; < O for j = i. This implies the result given. [

LemMma 2.5. Write the solution to the equations (2.2) as X = Hy. Let K — « and
assume B — o with BK™ — 0. Assume A M € (1, ) such that M ' < a,<MVias K
— . Then (a) hy = 0 Vij, (b) sup. K. 5 = M, (c) sup;i(hy;) = OB, (d)
{inf,(TE:18%)} " = O(B').

Proor.
(a) This is equivalent to showing y; =0 Vi = x; = 0 Vi, which is a direct consequence of

Lemma 2.3.

(b) A direct substitution into (2.2) yields that y; = 1 Vi = sup;(x;) < sup;(a; ') = M which
was the result to be proven.

(c) Using the parameterization of Lemma 2.4 (b), we have

Vi1 @pxp = Tho1 ¥p — B(x — %i11).
By part (b), this means
| Z{;=1 Yp — Z£=1 apx, | = M?

which implies that adjacent entries in h; differ by at most M?B~". SinceY. ;¥ h;, = M (by
part (b)), this implies

hi = (M*BY2 + 2MBY* + M? /2B, or sup(h;;) = O(B™'?).
(d) Consider again the ith row of H, h;(denoted x). Then, by part (b),
(2.3) Vi ajxj< Mx, Yio {1+ (i — j)?/2MB)™" = Mx:i{1 + %(2MBx=*)"*}.
By a similar argument,
(2.4) 1=K, aqx; = Mx;{1 + (2MB=*"%}
implying
(2.5) hi=x=[M{1+ @QMB=z)"3]".
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Since A; differs from A;; by at most (j — )M?/B, it can be shown that
(2.6) YK, b} = Q/[8M*(MB#* + (2MB=)* + 1%}],

where @ = B/[2M*{1 + (2MB~?"/?}]. This implies that B ¥ %_; 4% is bounded away
from zero as K — oo; therefore, (inf; ¥ ;h%) ™' = O(B'%).0

A matrix that satisfies the conditions (a) — (d) above will be said to satisfy Condition 1.
We now prove a lemma that gives the general asymptotic framework for a particular
class of estimates; we then show that the MPE is a member of this class.

LEMMA 2.6. Suppose the vector u satisfies u = Gz, Y%, exp(y;) = K, where z is
defined by

zj = (nj — Nmj) + N {1 + uy —exp(w;)} + 1, j=1,.--,K.

The vector n is a random vector distributed as Multinontial (N, w). Assume A M € (1,
) such that 0 < (MK) ' <m <M/K<1Vi. Let N,K,B— o with0 < yi < N/K <y,
< w, K¥*(log K)*?B™' — 0 and BK~? — 0. Assume ¥ = sup,(r;) = O(B*K™"). Let G =
(g satisfy Condition 1 (from Lemma 2.5). Then sup;|u;| = O,(B~*(log K)'*) + O(F).

Proor. We will examine the behavior of u; in two parts: Write u;, = W; + v;, where w;
= Y71 8;(nj — Nmy), vi = 3 X1 gy Nuj {1 + u; — exp(u;)} and Wi = T %1 gyry + wi.
(1) Let Y,,p=1, .-+, N, be defined by
1 if pth observation falls in jth cell
Y, =
0 otherwise

where Yi, --., Yy are independent of each other. Define X, by X, = G{(Y, — 7), where
G is the ith column of G. Then the X,’s are independent of each other and

@2.7) E(X,) =0

(2.8) V(X,) =YK ghmi(l — nj) — 2 25=1;§{=1 Bim&iTmTy

m#j
(2.9) | X | < sup;; (&)
and w; =Y X,.
Condition 1 implies C; < KBY*V(X,) < C; for C; and C; constants greater than zero.
Bennett (1962) showed that for iid random variables Sy, .-, Sy with E(S;) =0, |S;| < b,
then for all x

2100 P(ZL:S|zx) =2 exp<- % [{1 + N‘;;S") }log{l +z’v7bf§} - 1]) :

Applying this result to w; gives

A tx KV (X,)
sup, P(|wi| = tx) = 2 exp[ Sp( &) {(1 + sup(g,-j)tK>

sup( gi))tx

Bl/2 BI/2c3tK
52‘”‘"{ - t"(EF‘T)}

where sup;(g;;) = CsB™"/2. Take tx = B""*Ax(log K)'/?, where Ax — o, tx — 0 as K — o
then

sup; P (|w;i| = tx) < 2h‘exp[—}\%<(log K){(2CZ)—1 - (CgtK)/2C%}:] .
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It is easy to show that
(2.12) P(supi| wil =tk)=K supiP(| w,-l = Ix)
= 2K1-A&{1/2C— (Catx}/2CY} — () a5 K — oo,

This implies that P (sup;| w;| = B~*Ax(log K)"*) — 0 as K — o with Ax — =, and hence
that sup;| wi| = O,(B~"*(log K)'?). But sup,y, ;g;;1; = O(F), so

sup;| Wi| = O, (B™"(log K)'*) + O(F).
(2) (a) Since v; < 0 (with equality only at u; = 0 V) and u; = W, + uv;, for all u; > 0, | v
=< W.. Thus sup*|v:| = O,(B™"*(log K)"?) + O(F), where sup*(s;) is defined as sup(s;)
over all cells i such that u; > 0. Therefore sup* | u;| = O,(B~"*(log K)V?) + O(F). That is,
we have shown that the positive u;’s are O, (B~ *(log K)'*) + O(F).

(b) We now examine the negative u; terms. We can divide all of the u’s into three
groups: there are g u;’s such that u; < —¢ (Group G1), K — p = ¢ us such that —e < u; <
0 (Group G:), and p u/s such that u; > 0 (Group Gs) for some constant € € (0, 1). Then
some algebra gives

K=Y exp(u;) = ge™ + K —p — q + p exp(O, (sup*w;))
which implies
q = p{exp(O, (sup*u;)) — 1} /(1 — 7).

This means that ¢ = O, (p sup *u;); so, even if p ~ K, the biggest g can be is O, (K sup *u;).
(¢} Let tmin be the smallest value of u;, occurring at cell I; say s, < —¢. Then tmn = Wi
+ v;7. We examine the three groups G1, Gz, G (of vr) separately.

2e8NT{1 + w; — exp())} = Yo (y1/M)sup(g5){1 + Uumin — €XP(tmin)}

(i) = 0,(KB™"*sup*1;) {1 + tmin —€Xp(thmin)}
= O0,(KB™"?sup * ;Y ttmin.
(ii) 268uNT {1 + u; — exp(w))} = ¥ ecy=ogNm(—%/2) = £°0,(1).

(iii) By part (a), it is easy to show

26,85 N7;{1 + u; — exp(y)} = O, ((sup*w;)?).
Parts (i), (ii) and (iii) above imply
(2.13) Umin = Wi + €20, (1) + O, ((sup*u;)?)

as K — . Since W = 0, (1), | #mun| = 0, (1), and so sup;| u;| = 0,(1). Using a Taylor Series
expansion of exp(y;) then implies

u; = W; + O, (sup;u?).
This finally implies
(2.14) sup;| w:| = O, (B *(log K)» + O(7).O1

We now use the previous lemmas to prove Theorem 2.2

Proor or THEOREM 2.2. Let u; = log(p;/7:). Then
L =YK niu; — B Y {wi — winr + log(ami/min)}? + K, nilog m, YK, exp(u;) = K.
The optimal G satisfies the equations (2.2) of Lemma (2.5) with
a;=Nm, B=2B, y=(m— Nm)+ Nrj{1+ w — exp(w;)} + 28 log(m_1m41/73).

We have used the notation u = Hy to express these equations previously.
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By the assumptions of Theorem 2.2 and the results of Lemma 2.5, all of the conditions
of Lemma 2.6 are satisfied, so

2.15) supi| u;| = O, (8~ 4(log K)2) + 0<2 sup;Y, jhi;B | log =t )
7y
or
sup;| u:| = O, (,3"1/4(10g K)? + ,BK‘Z).
This means
(2.16) sup;| log(p./m:) | =0, (ﬁ"”“(log Ky + ,BK""’)

which implies

sup;| (Pi/m) — 1| = O, (B7"*(log K)'/* + BK™?).
Taking 8 ~ (K**(log K)*®) implies
217 supi| (Bi/m) — 1| = Op(K~**(log K)**). 0

As a result of the asymptotic analysis, we can make more specific statements about the
approximate distribution of p. Theorem 2.2 shows that if p; = m;(1 + 8;), then & satisfies
(218)  log(l + &) = Y 51 hyj[(n; — Naj) + 28 log(mj—1mj+1/72) + Nu;{log(1 + 8;) — 8;}].
Since 8; = 0,(1), terms in 67 may be neglected.) Therefore
(2.19) 8 = Y K1 hy{(n; — Nuy) + 28 log(mj—1mj1/7?)}.
We can use this result to get the asymptotic form of P; namely
D=7+ m Y K1 by {(n; — Nuy) + 28 log(mj—1mj1/7?))
= m(1 + O, (K~ **(log K)*®)).

This is the same order of magnitude as the optimal order of magnitude for the Parzen-
Rosenblatt kernel estimators (which require the observations themselves, rather than a
histogram of them); the proof is a substantial improvement over corresponding proofs for
the Good and Gaskins version of the MPE, whose consistency results have only been
shown for K = ¢N? 0 < g < % (in our case, g = 1).

The approximate form in (2.20) also provides a way of establishing the asymptotic
distribution of ;. Let z; = (p;/m) — 1. Then the results of Morris (1975, Corollary 4.1)
imply that z; is asymptotically normally distributed, specifically, {z; — u(z:)}/0(2:) —o
N(0, 1), where

(2.21) pz:) = 28 ¥ K1 hilog(mj—ymj/7?)
(2.22) o(z:) = {31 hy?Naj(1 — )} 2

(2.20)

3. Applications. In this section we briefly address some of the issues involved in the
implementation of the MPE procedure. The results here are basically preliminary; further
investigation is continuing.

3.1 The algorithm. The MPE is defined as the value 5 that maximizes L (p | n) subject
to ¥{p; = 1. The most efficient algorithm to get p is the Newton-Raphson procedure;
however, this requires calculation of the matrix H of Lemma 2.5 at each iteration (with the
current probability estimates replacing #). This is not computationally desirable, since it
requires O(K®) operations at each step. An approximate maximization procedure that
requires far fewer operations is to use the inverse H (at all steps) with 7 = 1/{2(K — 1)};
m=1/(K-1),i=2, ... ,K—1; 7k = 1/{2(K — 1)}; this can be calculated in closed form
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{(we denote it by ). This requires only O(K?) operations, and extensive computations
have indicated that @ and H are close enough so that the convergence properties are
similar.

3.2 Determining 3. Although Theorem 2.2 indicates that taking B8 of the order
K% (log K)*® (or NK**(log K)*®) will give the convergence (2.20), this does not give
any indication as to the proper choice of 8 for a particular problem. An algorithm can
be formulated that chooses 8 based on the data itself through (2.20) (this follows a sug-
gestion by James R. Thompson). Specifically, the mean squared error of the estimator
S¥(p; — m)*? is asymptotically a quadratic function of 8:

(3.1) MSE = Y&, [7: Y51 hii{(n; — Nuy) + 28 log(mj—1mj+1/73)} 1%

Using (3.1), the value of 8 that minimizes the MSE can be determined easily as a function
of 7. This can be used algorithmically by substituting the current estimate p for the value
of 7 and updating the value of 8. Combining this with the modified Newton-Raphson
procedure outlined above gives a computational procedure that provides a data-dependent
technique to determine 8 and . Although convergence of this procedure is not guaranteed,
extensive computations have indicated that convergence is not a problem. It can be noted
that Laird (1978) provides consistent estimation of prior parameters through the use of the
EM algorithm of Dempster, Laird and Rubin (1977).

3.3 Effectiveness of MPE. Theorem 2.2 provides the theoretical justification for the
MPE, but cannot be used to determine what value of K is large enough for the MPE to be
effective. In this section we examine that question through the use of simulations. The
MLE and MPE are compared with the Fienberg and Holland (1973) estimator (which is
the minimum MSE estimator of the form (1.1) with a = al). In this limited study, N and
K are set equal to each other for varying values ranging from 15 to 100, and the MSE of
each estimator is calculated based on 200 simulations. The true probability vector = is
uniform (7; = 1/K Vi).

The results are given below.

K=N MLE F&H MPE

15 06681  .03135  .01104

20 04640  .025456  .00774 -

50 01926  .00996  .00164
100 00976  .00492  .00048

As can be seen, the F & H estimator provides the expected improvement over the MLE
(approximately a 50% improvement for the range of K = N given). However, for K as small
as 15, the MPE is significantly better (more than an 80% reduction in the MSE over the
MLE). This superiority becomes more pronounced as K increases; for K = N = 100, the
reduction in MSE of the MPE over the MLE exceeds 95%.

3.4 Pre-testing for smoothness. The consistency result of Theorem 2.2 requires the
smoothness constraint

sup; | log(mi_17i41/7?) | = O(K™?).

As was pointed out earlier, this is implied by the usual smoothing assumptions of a
bounded second derivative of the density being estimated. If the probability vector = is not
smooth, there is no intuitive basis for the smoothing procedure proposed here.

The estimates in p can themselves be used as a screening device to test the smoothness
assumption. If 7 is not smooth, adjacent values in P should be farther apart than if 7 is
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TaBLE 1
Percentage of silica in 22 chondrites

Percentage Frequency MLE MPE

20.00-21.6 1 .0455 0664
21.61-23.2 3 .1364 0796
23.21-24.8 0 .0000 05661
24.81-26.4 0 .0000 .0665
26.41-28.0 6 2727 .1508
28.01-29.6 2 .0909 .1041
29.61-31.2 1 .0455 .0848
31.21-32.8 1 0455 .0969
32.81-34.4 7 .3182 .1894
34.41-36.0 1 .0455 .1055

smooth. This suggests the statistic
Sk =Y £ {log(pi/pi1)}?

to test smoothness. Note that this is proportional to the penalty function ®(p). Large
values of Sk are indicative of non-smoothness.

In order to use Sk as a testing tool, its null distribution must be determined. This can
be accomplished through the use of simulations. Preliminary examination suggests that
the power of the Sk test to detect a highly non-smooth 7 for K = N = 100 is quite high.
More work is necessary to evaluate the test completely.

3.5 Numerical examples. In this section, two numerical examples are given to illus-
trate the effectiveness of the algorithm proposed here, and to compare it with other
techniques.

The first data set is a small sparse table (K = 10) giving the percentage of silica in 22
chondrite meteors, originally from Ahrens (1965), and analyzed by Good and Gaskins
(1980) and Leonard (1978). The data were originally in continuous form; they have been
converted to a table for analysis.

Table 1 gives the original chondrite data (in a discretized form), the frequency estimates
and the MPE probability estimates found using the algorithm of Sections 3.1 and 3.2.

It can be seen that the density appears to be trimodal with modes in the cells
corresponding to (21.6, 23.2), (26.4, 28.0) and (32.8, 34.4); each succeeding mode is larger
than the previous one. This is the conclusion reached by Good and Gaskins, and contrasts
with Leonard’s result of a bimodal distribution.

The other data set analyzed here is considerably larger (K = 55) and comes from
Maguire, Pearson and Wynn (1952). It gives the time intervals between explosions in mines
involving more than 10 men killed in Great Britain from December 8, 1875 to May 29,
1951. This data set was also analyzed by Leonard (1978).

Maguire et. al. fitted an exponential curve to this data, but as Leonard points out this
is not necessarily the best choice (as can be seen in the estimates in Table 2). The true
distribution has more of a peak than the exponential, and a thicker tail. Additionally, there
is a bulge around the 250 day cell and a slight rise at the upper extreme. These are similar
to the conclusions Leonard reached.

4, Higher dimensional tables. Consider an R X C two dimensional table {n;}. The
likelihood function is multinomial:
(4.1) ¢u|p) o« [[E Ik, T Xfapy=1.

The penalty function proposed in this case generalizes the use of the ratios p;/p;+1 to the
use of cross-product ratios, so that the function to be maximized to get the estimates is



SMOOTHING CONTINGENCY TABLES 217

TABLE 2
Time intervals between explosions in mines
Days Frequency MLE MPE Days Frequency MLE MPE
0-30 18 .1651 1144 841-870 0 .0000 0040
31-60 14 1284 1028 871-900 1 0092 .0038
61-90 9 0826 0874 901-930 0 .0000 .0036
91-120 8 0734 0751 931-960 0 .0000 .0034
121-150 6 .0550 0647 961-990 0 .0000 .0033
151-180 4 0367 0569 991-1020 0 .0000 .0032
181-210 6 .0550 0522 1021-1050 0 .0000 .0031
211-240 7 .0642 0476 1051-1080 0 .0000 .0030
241-270 1 .0092 0419 1081-1110 0 .0000 .00293
271-300 6 .0550 .0396 1111-1140 0 .0000 .00290
301-330 7 .0642 .0362 1141-1170 0 .0000 .00289
331-360 5 .0459 0312 1171-1200 0 .0000 .00290
361-390 5 .0459 .0260 1201-1230 8 .0092 .00292
391-420 0 .0000 .0208 1231-1260 0 .0000 .00290
421-450 0 .0000 0174 1261-1290 0 .0000 .00291
451-480 2 .0183 0151 1291-1320 1 .0092 00293
481-510 1 .0092 L0130 1321-1350 0 .0000 00291
511-540 1 .0092 .0113 1351-1380 1 .0092 .00291
541-570 1 .0092 0099 1381-1410 0 .0000 .00286
571-600 0 .0000 .0086 1411—1440 0 .0000 00284
601-630 0 .0000 0077 1441-1470 0 .0000 .00283
631-660 1 0092 .0070 1471-1500 0 .0000 .00284
661-690 0 .0000 .0063 1501-1530 0 .0000 .00287
691-720 0 .0000 0057 1531-1560 0 .0000 00291
721-750 1 .0092 .0053 1561-1590 0 .0000 .00297
751-780 0 .0000 .0049 1591-1620 1 .0092 .00305
781-810 0 .0000 0045 1621-1650 1 0092 .00309
811-840 0 .0000 0042

L(p|n) = $&: ¥ 1 nylog pis
—B Y Y 5 og{(pupier i+ )/ (Pivr i+ 1)} D1 Dimipiy= 1.

The effect of this penalty function is to smooth the estimates by pushing the inherent 2
X 2 tables of adjacent rows and columns towards independence (since the logs of the cross-
product ratios are forced towards zero). If the underlying probability matrix = satisfies
smoothness criteria, it is easy to show that

4.3) N log{(mmis1,jv1)/ (Fivr,jmije1)} = ORT'C™;

4.2)

$0, as R — », C — o, the logs of the true cross-product ratios approach zero. This means
that in a large table, smoothness corresponds to local independence, so the penalty function
proposed is a sensible one. Although a proof of sparse asymptotic consistency analogous to
the proof in Section 2.2 has not been found, computer simulations indicate the estimator
has similar consistency properties (Simonoff, 1980).

In order to generalize this to higher dimensions, an extension of the concept of cross-
product ratios to multidimensional tables is necessary; the log-linear model provides this
in the form of the highest interaction term. For instance, in the two-dimensional case, the
saturated log-linear model has the form

(4.4) log pij = u + w1y + Uzqjy + Urzp)-
We use estimates that are moved toward

(4.5) log Dij = u + w + uz),
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(the model of independence). This is done by making the penalty function of the form
(4.6) ~B LY, (ew)® = =B LT X5 og{(pupisr e}/ (pisrpu j+1)} 1%

This clearly generalizes to multidimensional tables. For instance, the penalty function for
a three-dimensional table would be

4.7 =B LY T (tssem)’
— —B ZlKll_l ZKZII 2K3_11 (log DijmPij+1,m+1Pi+1,5,m+1Pi+1,j+1,m )
= j= m=

Pijm+1Di, j+1,mPi+1, j,mPi+1, j+1,m+1

5. Conclusions. This paper provides a technique for consistent estimation of all
probabilities in a large sparse multinomial (one-dimensional contingency table). Further
investigation of the applications-oriented problems of Section 3 is necessary, as is study of
the behavior of higher dimensional analogues.
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