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Abstract. We consider the finite element method for the time-dependent Stokes problem
with the slip boundary condition in a smooth domain. To avoid a variational crime of
numerical computation, a penalty method is introduced, which also facilitates the numerical
implementation. For the continuous problem, the convergence of the penalty method is
investigated. Then we study the fully discretized finite element approximations for the
penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of
the penalty term, we propose reduced and non-reduced integration schemes, and obtain an
error estimate for velocity and pressure. The theoretical results are verified by numerical
experiments.
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1. Introduction

We consider the time-dependent Stokes problem in a smooth bounded domain

Ω ⊂ R
N (N = 2, 3) with boundary ∂Ω = γ ∪ Γ, where γ ∩ Γ = ∅ and γ has positive

(N − 1)-dim measure. The problem reads:

(1.1) (P)






ut − ν∆u +∇p = f, ∇ · u = 0 in Ω× (0, T ),

u = 0 on γ × (0, T ),

u · n = 0, (I − n⊗ n)σ(u, p)n = 0 on Γ× (0, T ),

u(x, 0) = u0 in Ω,
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where 0 < T < ∞, u and p denote the velocity and pressure of the fluid, respectively,
ν denotes the viscosity constant, n is the unit outer normal vector to Γ, and σ(u, p) =

−pI + ν(∇u +∇uT) is the stress tensor.

The slip boundary condition (1.1)4 has massive applications in the real flow prob-

lems (see [17], [15], [11], [19]). However, there exist some numerical difficulties to deal

with the slip boundary condition when Γ is smooth. In the finite element method

(FEM), Ω is usually approximated by a polygon or polyhedron Ωh with the Dirichlet

boundary γh and the slip boundary Γh. It is natural to discretize the slip boundary

condition by uh · nh = 0, where nh is the unit outer normal vector to Γh. However,

such discretization results in a variational crime and leads to the constraint uh = 0

on Γh, because nh is in general discontinuous at the vertices of Γh.

To overcome the variational crime, [22], [21] imposed uh ·n = 0 at the nodes of Γh,

where Ω is assumed to be a spherical shell and n is prescribed. Using the quadratic

approximation, [1] proposed the discretization uh · (n ◦ Gh) = 0 at all nodes and

barycentres of the boundary elements on Γh, where Gh is an abstract transformation

from Γh to Γ. However, in both methods, it is quite hard to compute Gh or n for

a general domain. In addition, the implementations of uh ·n = 0 and uh ·(n◦Gh) = 0

in finite element code require more advanced techniques than the Dirichlet boundary

condition (see [1], [7]). Although one can use some approximation of n or nh in the

above schemes (see [2], [5]), a rigorous error analysis is difficult and some points still

remain unclear in the literature.

On the other hand, a penalty method has also been proposed in order to avoid such

numerical and theoretical difficulties. The penalty method is very simple and easy to

implement by the popular FEM softwares, such as Freefem++ (see [9]) and FEniCS

(see [16]). The idea of the penalty method is to replace the slip boundary condition

by a Robin-type boundary condition (see (2.6)3), which yields a penalty term in

variational form, i.e., ε−1
∫
Γ
(uε · n)(v · n) dΓ in (2.5) with a penalty parameter ε

(0 < ε ≪ 1).

In this paper, we consider a penalty method for the time-dependent Stokes prob-

lem. There exist a lot of works on the penalty method for stationary problems.

However, to the best of our knowledge, there is no literature dealing with the time-

dependent problem. The main contribution of the paper is to establish error es-

timates of the penalty method for such a problem. We emphasize that the error

analysis cannot be obtained by a straightforward extension of the analysis in the

stationary case and that there are indeed nontrivial difficulties in the proof, which

is explained below.

Let us pay attention to the error estimate of the penalty method. For the station-

ary Stokes/Navier-Stokes problems, the sub-optimal error estimate of order O(
√
ε)

is proved under a priori estimate of the traction tensor in the L2 norm; whereas the
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optimal error estimate of order O(ε) requires the boundedness of u and p in the H2

and H1 norms, respectively. To prove the optimal error estimate, the inf-sup condi-

tions of pressure and Lagrange multiplier have been used (cf. [4], [6], [28]). However,

these arguments are not applicable to the non-stationary problem. We explain the

reasons in the following (see Section 3 for the detailed proof and discussion). First,

owing to the loss of compatibility of the initial value and the boundary condition

for (P) and the penalty problem, we only obtain a priori estimates with weight
√
t in

front of utt and uεtt. Moreover, in the non-stationary case, we cannot use the inf-sup

condition to get estimates of pressure and Lagrange multiplier depending only on

velocity, because the time derivative of velocity is also involved.

As a result, we need to construct a new proof for error analysis. In this paper,

we show a priori estimates of (P) and the penalty problem under various regularity

assumptions on given data, with help of which we derive the sub-optimal O(
√
ε) and

quasi-optimal O(ε|log ε|) error estimates for the penalty method.
Now we turn our attention to the finite element approximation for the penalty

problem. For the stationary Stokes/Navier-Stokes problem with the slip boundary

condition, the FEM without penalty has been studied by Verfürth [25], [26], [27],

Knobloch [14] and Bäncsh and Deckelnick [1], and the case of the penalty method

has been investigated by Dione and Urquiza [6] and [12], [28]. The error estimates

of all the above works become sub-optimal if the difference between n and nh is

carefully taken into account (see Introduction of [12] for a comprehensive description

of these works). We mention that the error can be upgraded to optimal in the

two-dimensional case by introducing a reduced integration for the penalty term (see

[12], [28]).

All the above results are concerned with the stationary problem. In the present

paper, we consider the P1/P1-stabilization (or P1b/P1) full-discrete finite element

approximation for the time-dependent problem. Introducing the projection operators

of velocity and pressure from [12], [28], we derive the error estimate O(τ + h+
√
ε+

h/
√
ε), where τ and h are the time and spatial discretization parameters. For the two-

dimensional case with reduced integration for the penalty term, the error estimate

is upgraded to O(τ + h+
√
ε+ h2/

√
ε).

The paper is organized as follows. In Section 2, we introduce the penalty prob-

lem (Pε), and derive a priori estimates for (P) and (Pε) under various regularity

assumptions on the initial value and force. In Section 3, we deduce sub-optimal and

quasi-optimal error estimates for the penalty method. Section 4 is devoted to the

finite element scheme of the penalty method. Numerical experiments are presented

in Section 5.
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Notation. Throughout this paper, the norms of the Sobolev spaces Hk(ω) and

W k,p(ω) are denoted by ‖·‖Hk(ω) and ‖·‖Wk,p(ω), respectively. The inner product

of L2(ω) or L2(ω)N is denoted by (·, ·)ω . We will use the abbreviation Lm(Hk(ω))

to mean Lm(0, T ;Hk(ω)), Lm(0, t;Hk(ω)), Lm(0, t;Hk(ω)N ) or Lm(0, T ;Hk(ω)N ).

Sometimes, we omit ω in the above notation when ω = Ω. We introduce the notation

vn = v · n and vT = (I − n⊗ n)v to represent the normal and tangential component

of v on Γ, respectively. We use C to denote generic constants independent of ε, h,

and τ . We also use C(a, b) to emphasize that the constant is dependent on a and b.

The volume and surface measures are denoted by |·|.

2. The penalty problem and related estimates

2.1. Function spaces and bilinear forms. We introduce the function spaces

V = {v ∈ H1(Ω)N ; v = 0 on γ}, Vn = {v ∈ V ; vn = 0 on Γ},
Hσ = {v ∈ L2(Ω)N ; ∇ · v = 0 in weak sense},
Hσ

n = {v ∈ Hσ ; vn = 0 holds weakly on Γ},
V σ = {v ∈ V ; ∇ · v = 0}, V σ

n = Vn ∩ V σ, Q = L2(Ω),

Q̊ = L2
0(Ω) = {q ∈ L2(Ω); (q, 1) = 0}, Λ = H1/2(Γ), Λ∗ = H−1/2(Γ),

where X∗ denotes the dual space of a Banach space X .

For any ω ⊂ R
N , we define the bilinear forms

aω(u, v) :=
ν

2
(E(u), E(v))ω , for u, v ∈ H1(ω)N ,

bω(v, p) := (−∇ · v, p)ω, for v ∈ H1(ω)N , p ∈ L2(ω),

c(λ, µ) := (λ, µ)Γ, for λ ∈ Λ, µ ∈ Λ∗,

where E(u) = ∇u+∇uT and (·, ·)Γ denotes the dual product between Λ and Λ∗. We

introduce some inequalities for the above bilinear forms.

⊲ Korn’s inequality: there exists a constant C depending on Ω (note that |γ| > 0)

such that

(2.1) aΩ(v, v) > C‖v‖2H1 ∀ v ∈ V.

⊲ Inf-sup condition: there exists a constant C depending on Ω such that

(2.2) C‖q‖L2 6 sup
v∈H1

0
(Ω)N

bΩ(v, q)

‖v‖H1

∀ q ∈ Q̊,

where H1
0 (Ω) is the closure of C

∞
0 (Ω) with respect to ‖·‖H1(Ω).
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At this stage, let f ∈ L2(L2(Ω)). Then the variational form of (P) reads: Find

(u, p) ∈ (H1(L2) ∩ L2(Vn))× L2(Q) with u(0) = u0 such that for all t ∈ (0, T ),

(2.3)

{
(ut(t), v) + aΩ(u(t), v) + bΩ(v, p(t)) = (f(t), v) ∀ v ∈ Vn,

bΩ(u(t), q) = 0 ∀ q ∈ Q.

The unique existence of the weak solution of (P) follows from the standard theory

(see §1, Chapter 3 of [24]). In fact, given u0 ∈ Hσ
n and f ∈ L2(V σ∗

n ), there exists

a unique weak solution u ∈ C([0, T ];Hσ
n) ∩ L2(0, T ;V σ

n ) to (P), i.e., u satisfies:

u(x, 0) = u0, and for all t ∈ (0, T ),

(2.4)
d

dt
(u(t), v) + aΩ(u(t), v) = (f(t), v) ∀ v ∈ V σ

n .

2.2. The penalty method. Let ε be the penalty parameter with 0 < ε ≪ 1,

and let uε0 be an initial value approximating u0. The penalty problem in variational

form reads: Find (uε, pε) ∈ (H1(L2) ∩ L2(V )) × L2(Q) with uε(0) = uε0 such that

for all t ∈ (0, T ),

(2.5)

{
(uεt(t), v) + aΩ(uε(t), v) + bΩ(v, pε(t)) + ε−1c(uεn(t), vn) = (f(t), v) ∀ v ∈ V,

b(uε(t), q) = 0 ∀ q ∈ Q.

The strong form of the penalty problem reads:

(2.6) (Pε)






uεt − ν∆uε +∇pε = f, ∇ · uε = 0 in Ω× (0, T ),

uε = 0 on γ × (0, T ),

σ(uε, pε)n+ ε−1uεnn = 0 on Γ× (0, T ),

uε(x, 0) = uε0 in Ω.

Proposition 2.1. Given uε0 ∈ Hσ and f ∈ L2(V σ∗), there exists a unique weak

solution uε ∈ C([0, T ];Hσ) ∩ L2(V σ) to (Pε), i.e., uε satisfies uε(x, 0) = uε0 and for

all t ∈ (0, T ),

d

dt
(uε(t), v) + aΩ(uε(t), v) + ε−1(uεn(t), vn)Γ = (f(t), v) ∀ v ∈ V σ.

P r o o f. In view of the coercivity aΩ(v, v) + ε−1c(vn, vn) > C‖v‖2H1 , the unique

existence follows from the standard argument (see §1, Chapter 3 of [24]). �
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2.3. A priori estimates for (P) and (Pε). To obtain error estimates of the

penalty method, we need a priori estimates for (P) and (Pε).

2.3.1. A priori estimate for (P).

Proposition 2.2. Let u be the solution of (P).

(1) For u0 ∈ Hσ
n and f ∈ L2(V σ∗

n ) we have:

‖u‖2L∞(L2) + ‖u‖2L2(H1) 6 C(‖f‖2L2(V σ∗

n ) + ‖u0‖2L2) =: C1(f, u0).

(2) For u0 ∈ V σ
n and f ∈ L2(L2), we have:

‖ut‖2L2(L2) + ‖u‖2L∞(H1) 6 C(‖f‖2L2(L2) + ‖u0‖2H1) =: C2(f, u0).

(3) For u0 ∈ V σ
n ∩H2(Ω)N , f ∈ C([0, T ];L2), and ft ∈ L2(0, T ;L2) we have:

‖ut‖2L∞(L2) + ‖ut‖2L2(H1) 6 C31(f, u0),(2.7a)

‖
√
tutt‖2L2(L2) + ‖

√
tut‖2L2(H1) 6 C‖

√
tf‖2L2(L2) + C31(f, u0),(2.7b)

where C31(f, u0) := C(‖ft‖2L2(V σ∗

n ) + ‖u0‖2H2 + ‖f‖2C([0,t];L2)). In addition, if

u0 ∈ H3(Ω)N and f(0) ∈ H1(Ω)N , then we have:

(2.8) ‖utt‖2L2(L2) + ‖ut‖2L2(H1) 6 C(‖ft‖2L2(L2) + ‖u0‖2H3 + ‖f(0)‖2H1) =: C32(f, u0).

The results of Proposition 2.2 have already been obtained by Heywood and Ran-

nacher, Theorems 2.4 and 2.5 [10] for the Dirichlet boundary condition. By a similar

argument, we can prove Proposition 2.2 for the slip boundary problem.

R em a r k 2.1 (Regularity of u). In a similar manner to Theorems 2.4 and 2.5

[10], we can show the regularity sup
0<t<T

t2n+m−2‖Dn
t u‖2Hm<∞ when Ω and f are

sufficiently smooth, which implies that one can obtain any regularity of u in (ta, T )

for ta > 0.

R em a r k 2.2 (Regularity of p). Consider the stationary Stokes problem with

the slip boundary condition:

{
−∆u∗ +∇p∗ = f∗, ∇ · u∗ = 0 in Ω,

u∗ = 0 on γ, u∗
n = 0, (I − n⊗ n)σ(u∗, p∗)n = 0 on Γ.
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For sufficiently smooth γ and Γ, we have ‖u∗‖Hm+2+‖p∗‖Hm+1 6 C‖f∗‖Hm (cf. [18]).

Hence, Proposition 2.2 (2) implies

‖u‖L2(H2) + ‖p‖L2(H1) 6 C2(f, u0).

Moreover, it follows from (2.7) and (2.8) that

‖u‖C([0,T ];H2) + ‖p‖C([0,T ];H1) 6 C31(f, u0),(2.9a)

‖ut‖L2(H2) + ‖pt‖L2(H1) 6 C32(f, u0).(2.9b)

2.3.2. A priori estimate for (Pε).

Proposition 2.3. Let uε be the solution of (Pε).

(1) For uε0 ∈ Hσ and f ∈ L2(V σ∗), we have:

‖uε‖2L∞(L2) + ‖uε‖2L2(H1) + ε−1‖uεn‖2L2(L2(Γ)) 6 C1(f, uε0).

(2) For uε0 ∈ V σ with ‖uε0 · n‖L2(Γ) 6 C
√
ε and f ∈ L2(L2), we have:

‖uεs‖2L2(L2) + ‖uε‖2L∞(H1) + ε−1‖uεn‖2L∞(L2(Γ)) 6 C2(f, uε0) + Cε−1‖uε0‖2L2(Γ).

(3) For uε0 ∈ V σ∩H2(Ω)N , ‖uε0·n‖H1/2(Γ) 6 Cε, f ∈ C([0, T ];L2) and ft ∈ L2(L2),

we have:

‖uεt‖2L∞(L2) + ‖uεt‖2L2(H1) 6 C31(f, uε0) + C‖ε−1uε0 · n‖2H1/2(Γ),(2.10a)

‖
√
tuεtt‖2L2(L2) + ‖

√
tuεt‖2L∞(H1) 6 C32(f, uε0) + C‖ε−1uε0 · n‖2H1/2(Γ).(2.10b)

P r o o f. Substituting v = uε and v = uεt into (2.5) yields the a priori estimates

(1) and (2), respectively.

In the following, we prove (3). There exists a pε0 ∈ H1(Ω) satisfying

(2.11)

{
(∇pε0,∇q) = (f(0) + ∆uε0,∇q) ∀ q ∈ H1

0 (Ω),

pε0 = ε−1uε0 · n+ E(uε0)n · n ∈ H1/2(Γ) on Γ, ∇pε0 · n = 0 on γ.

Then pε0 fulfills the estimate

(2.12) ‖pε0‖H1 6 C(ε−1‖uε0 · n‖H1/2(Γ) + ‖uε0‖H2).
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We define u̇ε0 := f(0) + ∆uε0 − ∇pε0. By the definition of pε0, it is easy to verify

that ∇ · u̇ε0 = 0 in weak sense, i.e., u̇ε0 ∈ Hσ. Then we have: for all v ∈ V σ,

(2.13) (u̇ε0, v) + aΩ(uε0, v) + ε−1(uε0 · n, vn)Γ = (f(0), v).

In fact, (2.12) yields

‖u̇ε0‖L2 6 C(ε−1‖uε0 · n‖{H1/2(Γ) + ‖uε0‖H2 + ‖f(0)‖L2).

By Proposition 2.1, there exists a unique weak solution u̇ε ∈ C([0, T ];Hσ) ∩
L2(0, T ;V σ) such that

(2.14)






(u̇εt(t), v) + aΩ(u̇ε(t), v)

+ ε−1(u̇εn(t), vn)Γ = (ft(t), v) ∀ v ∈ V σ, t ∈ (0, T ),

u̇ε(x, 0) = u̇ε0 in Ω,

satisfying

(2.15) ‖u̇ε‖2L∞(L2) + ‖u̇ε‖2L2(H1) 6 C31(f, uε0) + C‖ε−1uε0 · n‖2H1/2(Γ).

Define Uε(t) := uε0 +
∫ t

0 u̇ε(s) ds. Apparently, we have Uε(0) = uε0. Integrat-

ing (2.14) with respect to t and using (2.13), we obtain

(Uεt(t), v) + aΩ(Uε(t), v) + ε−1(Uεn(t), vn)Γ = (f(t), v) ∀ v ∈ V σ, t ∈ (0, T ).

By the uniqueness of the weak solution, we conclude uε = Uε, uεt = Uεt = u̇ε and

(2.16) (uεtt(t), v) + aΩ(uεt(t), v) + ε−1(uεt(t) · n, vn)Γ
= (ft(t), v) ∀ v ∈ V σ, t ∈ (0, T ).

Obviously, (2.10a) follows from (2.15). Substituting v = uεtt into (2.16), multiplying

by t, integrating with respect to t, and combining the result with (2.15), we conclude

(2.10b). �

R em a r k 2.3 (Regularity of uε). By a similar argument to Theorems 2.4 and 2.5

[10], we can obtain any regularity of uε from t = 0. However, we have a breakdown of

the regularity of uε on ∂Ω at t = 0. In order to derive ‖uεtt‖L2(L2)6C (by substituting

v = uεtt into (2.16), and integrating with respect to t), we need uεt(0) ∈ H1(Ω)N

and ε−1‖uεt(0) ·n‖L2(Γ) 6 C, which cannot be realistically assumed. Hence, we only

have
√
tuεtt ∈ L2(L2).
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R em a r k 2.4 (Regularity of pε). Consider the stationary Stokes problem with

penalty: {
−∆u∗

ε +∇p∗ε = f∗, ∇ · u∗
ε = 0 in Ω,

u∗
ε = 0 on γ, σ(u∗

ε , p
∗
ε)n+ ε−1u∗

εnn = 0 on Γ.

For sufficiently smooth γ and Γ, given f∗ ∈ Hm(Ω)N (m ∈ N), we have the regularity

(cf. [28]): ‖u∗
ε‖Hm+2 + ‖p∗ε‖Hm+1 6 C‖f∗‖Hm . Then it follows from (2.10) that

‖uε‖C([0,T ];H2) + ‖pε‖C([0,T ];H1) 6 C31(f, u0) + C‖ε−1uε0 · n‖H1/2(Γ),(2.17a)

‖
√
tuεt‖L2(H2) + ‖

√
tpεt‖L2(H1) 6 C32(f, uε0) + C‖ε−1uε0 · n‖H1/2(Γ).(2.17b)

3. The error estimate of the penalty method

In the previous section, we have derived variational forms for (P) and (Pε) in

(2.3) and (2.5), respectively, and have proved their well-posedness and a priori esti-

mates. However, the formulations (2.3) and (2.5) are not suitable for the derivation

of an error estimate, which is the aim of this section, because the test function

spaces involved are different. Therefore, we need other formulations for (P) and

(Pε) which (u, p) and (uε, pε) satisfy. To this end, we introduce Lagrange multipli-

ers λ = −σ(u, p)n · n and λε = ε−1uεn on Γ to find that (u, p, λ) satisfies: for all

t ∈ (0, T ),

(3.1)






(ut(t), v) + aΩ(u(t), v) + bΩ(v, p(t)) + c(λ(t), vn) = (f(t), v) ∀ v ∈ V,

bΩ(u(t), q) = 0 ∀ q ∈ Q,

c(un(t), µ) = 0 ∀µ ∈ Λ∗,

and that (uε, pε, λε) satisfies: for all t ∈ (0, T ),

(3.2)





(uεt(t), v) + aΩ(uε(t), v) + bΩ(v, pε(t))

+c(λε(t), vn) = (f(t), v) ∀ v ∈ V,

b(uε(t), q) = 0 ∀ q ∈ Q,

c(uεn(t), µ) = εc(λε(t), µ) ∀µ ∈ Λ∗.

In the following, we establish error estimates between (P) and (Pε) based on (3.1)

and (3.2). Since pε(t) /∈ Q̊, we divide the pressure pε(t) into a constant function

kε(t) and a zero-mean function p̊ε(t), where

kε(t) =
1

|Ω|

∫

Ω

pε(t) dx, p̊ε(t) = pε(t)− kε(t) ∈ Q̊.
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Then we define errors for the velocity, pressure and Lagrange multiplier:

eu(t) := u(t)− uε(t), ep(t) := p(t)− p̊ε(t), eλ(t) := λ(t)− (λε(t)− kε(t)).

Before beginning the detailed proof, we explain the main difference of the error

analysis between the stationary and non-stationary cases. In the stationary case,

the estimates of ‖ep‖L2 and ‖eλ‖H−1/2(Γ) follow from the H
1-norm estimate of eu

by the inf-sup conditions of b(·, ·) and c(·, ·) (see [12], [28]). However, for the non-
stationary case, we need to deal with the estimates of eut, ep and eλ at the same

time, which makes the argument of the stationary case inapplicable. In this paper,

we first prove sub-optimal error estimates O(
√
ε) of eu and λ−λε. Then we improve

the error estimate to the quasi-optimal O(ε|log ε|), by dividing the estimate of eu
into three cases: (i) 0 < t < ε, (ii) ε < t < 1 and (iii) t > 1. Case (i) follows from the

energy estimate of eu and the sub-optimal error estimates. In case (ii), owing to the

a priori estimates with weight
√
t and ε < t < 1, we get the error bound O(ε|log ε|).

Moreover, this error bound can be extended to case (iii).

3.1. The sub-optimal error estimate.

Theorem 3.1. Assume that ‖u0 − uε0‖L2 6 Ci1
√
ε, u0 ∈ V σ

n and f ∈ L2(L2).

Then we have

(3.3) ‖eu‖L∞(L2) + ‖eu‖L2(H1) +
√
ε‖λ− λε‖L2(L2(Γ)) 6 C

√
ε.

In addition, we assume that ‖u0 − uε0‖H1 6 Ci1
√
ε, ‖uε0 · n‖L2(Γ) 6 Cε, u0 ∈

V σ
n ∩H3(Ω)N , f(0) ∈ H1(Ω)N , and ft ∈ L2(L2). Then we have

(3.4) ‖eut‖L2(L2) + ‖eu‖L∞(H1) +
√
ε‖λ− λε‖L∞(L2(Γ)) 6 C

√
ε.

P r o o f. In view of

bΩ(v, pε(t)) + c(λε(t), vn) = bΩ(v, p̊ε(t)) + c(λε(t)− kε(t), vn),

subtracting (3.2)1 from (3.1)1 we get:

(3.5) (eut(t), v) + aΩ(eu(t), v) + bΩ(v, ep(t)) + c(eλ(t), vn) = 0 ∀ v ∈ V.

Substituting v = eu(t) into (3.5), by virtue of eu(t) · n = un(t)− uεn(t) = 0− ελε(t)

on Γ we calculate

(3.6)
1

2

d

dt
‖eu(t)‖2L2 + aΩ(eu(t), eu(t)) + 0 + c(eλ(t),−ελε(t)) = 0.
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Noting that c(kε(t), ελε(t)) = kε(t)(uεn(t), 1)Γ = kε(t)(∇ · uε(t), 1)Ω = 0, we deduce

(3.7) c(eλ(t),−ελε(t)) = ε‖λ(t)− λε(t)‖2L2(Γ) − εc(λ(t) − λε(t), λ(t)).

Then (3.6) can be rewritten as

(3.8)
1

2

d

dt
‖eu‖2L2 + aΩ(eu, eu) + ε‖λ− λε‖2L2(Γ) = εc(λ− λε, λ).

Applying the Schwarz inequality to the right-hand side of (3.8), integrating with

respect to t, and using Korn’s inequality (2.1), we obtain

(3.9) ‖eu(t)‖2L2 +

∫ t

0

‖eu(s)‖2H1 ds+ ε

∫ t

0

‖λ(s)− λε(s)‖2L2(Γ) ds

6 Cε

∫ t

0

‖λ(s)‖2L2(Γ) ds+ C‖eu(0)‖2L2 .

By Proposition 2.2 (2), Remark 2.2 and the trace theorem, the data u0 ∈ V σ
n and

f ∈ L2(L2) imply the following regularity for λ:

‖λ‖L2(L2(Γ)) 6 C‖λ‖L2(H1/2(Γ)) 6 CC2(u0, f).

Together with (3.9) and the initial error ‖u0 − uε0‖L2 6 Ci1
√
ε, we conclude (3.3).

Next, substituting v = eut(t) into (3.5) yields (in view of un = 0 and uεn = ελε)

(3.10) ‖eut(t)‖2L2 +
1

2

d

dt
aΩ(eu(t), eu(t)) + 0 + c(eλ(t),−ελεt(t)) = 0.

Similarly to (3.7), we see that

(3.11) c(eλ(t),−ελεt(t)) =
ε

2

d

dt
‖λ(t)− λε(t)‖2L2(Γ) − εc(λ(t)− λε(t), λt(t)).

Integrating (3.10) with respect to t yields

(3.12)

∫ t

0

‖eus(s)‖2L2 ds+ ‖eu(t)‖2H1 + ε‖λ(t)− λε(t)‖2L2(Γ)

6 Cε

∫ t

0

‖λs(s)‖2L2(Γ) ds+ ‖eu(0)‖2H1 + ε‖λ(0)− λε(0)‖2L2(Γ).

Now we estimate the right-hand side of (3.12). The second term is the initial error

bounded by Ci1
√
ε. To the third term we apply the triangle inequality and estimate

‖λε(0)‖L2(Γ) and ‖λ(0)‖L2(Γ) separately. By assumption ‖uε0 · n‖L2(Γ) 6 Cε, we get
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‖λε(0)‖L2(Γ) 6 C. For ‖λ(0)‖L2(Γ), we see that λ(0) = σ(u0, p(0))n ·n, where p(0) is
the solution to ∆p(0) = ∇ · f(0) in Ω with the boundary condition p(0) = E(u0)n ·n
on Γ and ∇p(0) · n = 0 on γ. As a result, ‖p(0)‖H1 6 C(‖u0‖H2 + ‖f(0)‖H1), and it

follows from the trace theorem that ‖λ(0)‖L2(Γ) 6 C(‖u0‖H2 + ‖f(0)‖H1). Thus the

second term is bounded by Cε. By Proposition 2.2 (3), Remark 2.2, and the trace

theorem, we have

‖λt‖L2(L2(Γ)) 6 C‖λt‖L2(H1/2(Γ)) 6 CC32(u0, f),

which implies that the first term is bounded by Cε. Hence, the right-hand side of

(3.12) is bounded by Cε and we conclude (3.4). �

3.2. The quasi-optimal error estimate. Under stronger assumptions than in

Theorem 3.1, we prove the quasi-optimal error estimate.

Theorem 3.2. We make the same assumption as in Theorem 3.1. Moreover, we

assume that ‖u0−uε0‖L2 6 Ci2ε, ‖uε0 ·n‖H1/2(Γ) 6 Cε, and f ∈ C([0, T ];L2). Then

we have

(3.13) ‖eu‖L∞(L2) + ‖eu‖L2(H1) + ‖
√
teu‖L∞(H1) + ‖

√
teut‖L2(L2) 6 Cε|log ε|.

R em a r k 3.1. Because of the nonlocal compatibility condition, it is unreal-

istic to assume ‖uεt(0)‖H1(Ω) 6 C and thus we only get an a priori estimate

for uεtt with weight
√
t (see Proposition 2.3 (3)). Moreover, the initial error ‖λ(0)−

ε−1uε0 · n + kε(0)‖L2(Γ) 6 C
√
ε seems non-trivial to ensure. For the above two

reasons, we obtain the error estimate for eut with weight
√
t, and derive the error

estimate O(ε|log ε|) instead of O(ε).

P r o o f. Instead of (3.7) and (3.11), we deduce that

c(eλ(t),−ελε(t)) = ε‖eλ(t)‖2L2(Γ) − εc(eλ(t), λ(t) + kε(t)),(3.14a)

c(eλ(t),−ελεt(t)) = εc(eλ(t), eλt(t))− εc(eλ(t), λt(t) + kεt(t))(3.14b)

=
ε

2

d

dt
‖eλ(t)‖2L2(Γ) − εc(eλ(t), λt(t) + kεt(t)).

It follows from (3.6), (3.10) and (3.14) that

1

2

d

dt
‖eu‖2L2 + aΩ(eu(t), eu(t)) + ε‖eλ(t)‖2L2(Γ) = εc(eλ(t), λ + kε(t)),(3.15a)

‖eut(t)‖2L2 +
1

2

d

dt
aΩ(eu, eu) +

ε

2

d

dt
‖eλ‖2L2(Γ) = εc(eλ(t), λt(t) + kεt(t)).(3.15b)
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For u0, uε0 and f satisfying the assumptions, we have a priori estimates (2.9) and

(2.17). By the trace theorem, we see that

λ ∈ C([0, T ];H1/2(Γ)), kε ∈ C([0, T ];R),(3.16a)
√
tλt ∈ L2(0, T ;H1/2(Γ)),

√
tkεt ∈ L2(0, T ;R).(3.16b)

Owing to the weight
√
t of (3.16b), we divide the estimate into three cases:

(i) 0 6 t 6 ε, (ii) ε 6 t 6 1, and (iii) t > 1.

(i) For 0 6 t 6 ε, the right-hand side of (3.15a) is bounded by

(3.17) εc(eλ(t), λ(t) + kε(t)) 6
ε

2
‖eλ(t)‖2L2(Γ) +

ε

2
‖λ(t) + kε(t)‖2L2(Γ).

It follows from (3.15a), (3.17), and Korn’s inequality (2.1) that

(3.18) ‖eu(t)‖2L2 +

∫ t

0

‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ) ds

6 Cε

∫ t

0

‖λ(s) + kε(s)‖2L2(Γ) ds+ ‖u0 − uε0‖2L2

6 Cε2 (by (3.16a) and t 6 ε).

In addition, by (3.4), we have ‖eu(t)‖H1 6 C
√
ε for all t ∈ (0, ε], which implies

‖
√
teu(t)‖H1 6 Cε|log ε| ∀ t ∈ (0, ε].

(ii) For ε 6 t 6 1, we need a function w whose trace equals λ + kε on Γ× [0, T ].

To this end, we consider the elliptic problem

∆ϕ(t) =
1

|Ω|

∫

Γ

(λ(t) + kε(t)) dΓ in Ω, ∇ϕ(t) · n = λ(t) + kε(t) on Γ.

Setting w = ∇ϕ, we see that

(3.19) wn(t) = λ+ kε, wt · n = λt + kεt on Γ.

By (3.16), we have ϕ ∈ C([0, T ];H2) and
√
tϕt ∈ L2(H2), which implies

(3.20) w ∈ C([0, T ];H1),
√
twt ∈ L2(0, T ;H1).

Substituting v = w and v = wt into (3.5), together with (3.19) and (3.20), we deduce

that

εc(eλ, λ+ kε) = −ε(ut − uεt, w)− εaΩ(u− uε, w),(3.21a)

εc(eλ, λt + kεt) = −ε(ut − uεt, wt)− εaΩ(u− uε, wt).(3.21b)
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With the help of (3.21a) and Korn’s inequality (2.1), integrating (3.15a) from ε to t

yields

(3.22)
1

2
‖eu(t)‖2L2 +

∫ t

ε

(C‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ)) ds

6
1

2
‖eu(ε)‖2L2 − ε

∫ t

ε

[(us − uεs, w) + aΩ(u− uε, w)] ds

6
1

2
‖eu(ε)‖2L2 − ε(eu(t), w(t)) + ε(eu(ε), w(ε))

+ ε

∫ t

ε

(eu, ws) ds− ε

∫ t

ε

aΩ(eu, w) ds,

where we have applied integration by parts. By (3.18), the first and third terms in

the right-hand side of (3.22) are bounded by

(3.23) ‖eu(ε)‖2L2 6 Cε2, ε|(eu(ε), w(ε))| 6 Cε2.

Applying the Schwarz inequality to the second and last terms gives

|ε(eu(t), w(t))| 6
1

4
‖eu(t)‖2L2 + ε2‖w(t)‖2L2 ,(3.24a)

ε

∫ t

ε

aΩ(eu(s), w) ds 6
C

2

∫ t

ε

‖eu(s)‖2H1 ds+
ε2

2C

∫ t

ε

‖w(s)‖2H1 ds.(3.24b)

It remains to estimate ε
∫ t

ε (eu, ws) ds, which is bounded by

(3.25) ε

∫ t

ε

(eu, ws) ds 6 ε

∫ t

ε

1√
s
‖eu(s)‖L2

√
s‖ws(s)‖L2 ds

6
1

C

1

|log ε|2
∫ t

ε

1

s
‖eu(s)‖2L2 ds+ Cε2|log ε|2‖

√
twt‖2L2(L2).

Since eu(s) = eu(ε) +
∫ s

ε
∂reu(r) dr for s ∈ [ε, t], we calculate

‖eu(s)‖L2 6 ‖eu(ε)‖L2 +

∥∥∥∥
∫ s

ε

∂reu(r) dr

∥∥∥∥
L2

6 ‖eu(ε)‖L2 +

∫ s

ε

‖∂reu(r)‖L2 dr

6 ‖eu(ε)‖L2 +

(∫ s

ε

1

r
dr

)1/2(∫ s

ε

r‖∂reu(r)‖2L2 dr

)1/2

6 Cε+ C
(
log

s

ε

)1/2(∫ s

ε

r‖∂reu(r)‖2L2 dr

)1/2
.
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By
∫ t

ε
s−1 log εs−1 ds = 1

2 (log ts
−1)2, ε 6 e−1, and 0 < ε 6 t 6 1, we deduce

(3.26)

∫ t

ε

1

s
‖eu(s)‖2L2 ds 6 Cε2|log ε|+

∫ t

ε

1

s
log

s

ε
ds

∫ t

ε

r‖∂reu(r)‖2L2 dr

6 C|log ε|2
(
ε2 +

∫ t

ε

s‖∂seu(s)‖2L2 ds

)
.

Putting together (3.26) and (3.25), we obtain

(3.27) ε

∫ t

ε

(eu, ws) ds 6 C

(
ε2 +

∫ t

ε

s‖∂seu(s)‖2L2 ds

)
+ Cε2|log ε|2‖√sws‖2L2(L2).

Combining (3.23), (3.24a), (3.24b), and (3.27) with (3.22) yields

(3.28)
1

2
‖eu(t)‖2L2 +

∫ t

ε

(C‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ)) ds

6 Cξ

(
ε2 +

∫ s

ε

s‖∂seu(s)‖2L2 ds

)
+ Cξ−1ε2|log ε|2.

Multiplying (3.15a) by t and integrating from 0 to t yields (by (3.21b), (2.1), and

(3.19))

tC‖eu(t)‖2H1 + εt‖eλ(t)‖2L2(Γ) +

∫ t

0

s‖eus(s)‖2L2 ds

6 C

∫ t

0

(‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ)) ds

− ε

∫ t

0

[s(eus(s), ws(s))− aΩ(eu(s), ws(s))] ds

6 C

∫ t

0

(‖eu‖2H1 + ε‖eλ‖2L2(Γ)) ds+ Cε

(∫ t

0

s‖eus‖2L2 ds

)1/2

+ Cε

(∫ t

0

s‖eu‖2H1 ds

)1/2
.

This together with (3.18), (3.28) (with sufficiently small ξ) implies

‖eu(t)‖2L2 +

∫ t

ε

(‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ)) ds

+

∫ t

0

s‖eus(s)‖2L2 ds+ t‖eu(t)‖2H1 + εt‖eλ(t)‖2L2(Γ) 6 Cε2|log ε|2.

(iii) When t > 1, according to Remarks 2.1 and 2.3, we have the regularity λt ∈
L2(1, T ;H1/2(Γ)) and kεt ∈ L2(1, T ;R), which yields wt ∈ L2(1, T ;H1). Now, we

see that

ε

∫ t

1

(eu, ws) ds 6 ε

∫ t

1

‖eu(s)‖L2‖ws(s)‖L2 ds,
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which is much simpler than (3.25). Hence, the argument is easier than that in case

(ii) and we have

‖eu(t)‖2L2 +

∫ t

ε

(‖eu(s)‖2H1 + ε‖eλ(s)‖2L2(Γ)) ds

+

∫ t

0

s‖eus(s)‖2L2 ds+ t‖eu(t)‖2H1 + εt‖eλ(t)‖2L2(Γ) 6 Cε2|log ε|2.

Combining the estimates obtained for the cases (i)–(iii), we conclude (3.13). �

4. The finite element approximation

We introduce a regular triangulation Th to Ωh, where h := max
K∈Th

diam(K) denotes

the mesh size. In this paper, the P1/P1-stabilization (or P1b/P1) finite element

approximation is considered. We set the finite element spaces for P1/P1 (or P1b/P1)

element as follows:

Vh = {vh ∈ C(Ωh)
N ; vh ∈ P1(K)N ∀K ∈ Th, vh = 0 on γh} for P1/P1,

Vh = {vh ∈ C(Ωh)
N ; vh ∈ P1(K)N ⊕B(K)N ∀K ∈ Th, vh = 0 on γh} for P1b/P1,

Qh = {qh ∈ C(Ωh)
N ; qh ∈ P1(K) ∀K ∈ Th}, Q̊h = Qh ∩ L2

0(Ωh),

where P1(K) is the set of linear polynomials in a triangle K and B(K) stands for

the bubble function space on K. We denote by Sh the triangulation of Γh inherited

from Th. The Dirichlet boundary condition u|γ = 0 has been approximated by

uh|γh
= 0, the error of which has been well studied in the literature. In this paper,

we focus on dealing with the slip boundary condition. For simplicity, we ignore the

difference between γ and γh (namely, we assume γ = γh) in the following argument.

We consider the backward approximation for time differentiation. For an integer

M ∈ N+ (M ≫ 1), we denote by τ := T/M the time-step size. For tj = jτ with

j = 0, 1, . . . ,M , we set (uj , pj) := (u(tj), p(tj)), and use ∂τu
j := (uj − uj−1)/τ to

denote the backward approximation. Given the initial value u0h ∈ Vh, the finite

element approximation problem reads

(4.1) (Pε,h)





find (uj
h, p

j
h) ∈ Vh ×Qh, j = 1, . . . ,M, such that

(∂τu
j
h, vh)Ωh

+ aΩh
(uj

h, vh) + bΩh
(vh, p

j
h)

+ε−1ch(u
j
h · nh, vh · nh) = (f̃ j, vh)Ωh

∀ vh ∈ Vh,

bΩh
(uj

h, qh) = ηh2(∇pjh,∇qh)Ωh
∀ qh ∈ Qh,

392



where f̃ is a continuous extension of f to Ωh (note that Ω 6= Ωh) and η is a pressure

stabilization parameter, which is set to be 0 for the P1b/P1 element and to be 1 for

the P1/P1 element. We assume f ∈ C([0, T ];L2) so that τ
M∑
j=1

‖f̃ j‖2L2(Ωh)
6 C. The

bilinear form ch(·, ·) is defined below.
We consider two types of ch(·, ·) to approximate c(·, ·): for any λh, µh ∈ Λh =

{vh · nh on Γh ; vh ∈ Vh},

ch(λh, µh) =

{
cNh (λh, µh) := (λh, µh)Γh

(non-reduced integration),

cRh (λh, µh) :=
∑

S∈Sh

|S|λh(mS)µh(mS) (reduced integration),

where mS denotes the barycentre of a boundary element S. We set ‖µh‖2ch :=

ch(µh, µh). Note that c
R
h (·, ·) is the barycentre formula approximation to cNh (·, ·).

For the bilinear forms aΩh
(·, ·) and bΩh

(·, ·), the following inequalities hold:
⊲ Korn’s inequality (cf. [3], [13]): there exists a constant C such that

(4.2) aΩh
(vh, vh) > C‖vh‖2H1(Ωh)

∀ vh ∈ Vh.

⊲ Inf-sup condition (cf. [8], [20]): there exists a constant C such that

(4.3) sup
vh∈V̊h

bΩh
(vh, qh)

‖vh‖Vh

+ Cηh‖∇qh‖L2(Ωh) > C‖qh‖L2(Ωh) ∀ qh ∈ Q̊h,

where V̊h := {vh ∈ Vh ; vh = 0 on Γh}.

Proposition 4.1. There exists a unique solution {(um
h , pmh )}Mm=1 ⊂ Vh × Qh to

(Pε,h) satisfying

(4.4) ‖um
h ‖2L2(Ωh)

+ 2τ

m∑

j=1

[‖uj
h − uj−1

h ‖2L2(Ωh)
+ ‖uj

h‖2H1(Ωh)
+ ηh2‖∇pjh‖2L2(Ωh)

]

+ ε−12τ

m∑

j=1

‖uj
h · nh‖2ch 6 C‖u0

h‖2L2(Ωh)
+ Cτ

m∑

j=1

‖f̃ j‖2L2(Ωh)
.

Assume that u0
h satisfies ε

−1‖u0
h · nh‖2ch 6 C. Moreover, for the P1/P1 element,

we assume there exists a p0h ∈ Qh such that bΩh
(u0

h, qh) = ηh2(∇p0h,∇qh)Ωh
for all

qh ∈ Qh. For the P1b/P1 element, we assume bΩh
(u0

h, qh) = 0 for all qh ∈ Qh. Then
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we have

(4.5) τ

m∑

j=1

‖∂τuj
h‖2L2(Ωh)

+ ‖um
h ‖H1(Ωh) + ε−1‖um

h · nh‖2ch + ηh2‖∇pmh ‖2L2(Ωh)

+

m∑

j=1

[ηh2‖∇(pjh − pj−1
h )‖2L2(Ωh)

+ ε−1‖(uj
h − uj−1

h ) · nh‖2ch
+ ‖uj

h − uj−1
h ‖H1(Ωh)]

6 C

(
τ

m∑

j=1

‖f̃ j‖2L2(Ωh)
+ ‖u0

h‖2H1(Ωh)
+ ε−1‖u0

h · nh‖2ch + ηh2‖∇p0h‖2L2(Ωh)

)
.

P r o o f. Since (Pε,h) is a finite dimensional linear problem, it is sufficient to

show that u0
h = 0 and f̃m = 0 for all m implies (um

h , pmh ) = (0, 0). For m = 1,

(Pε,h) is equivalent to: for all (vh, qh) ∈ Vh ×Qh,

(4.6)
1

τ
(u1

h, vh)Ωh
+ aΩh

(u1
h, vh) + bΩh

(vh, p
1
h)− bΩh

(u1
h, qh)

+ ηh2(∇p1h,∇qh)Ωh
+ ε−1ch(u

1
h · nh, vh · nh) = 0.

We prove that (4.6) implies (u1
h, p

1
h) = (0, 0). In fact, substituting (vh, qh) = (u1

h, q
1
h)

into (4.6) yields (by Korn’s inequality (4.2))

1

τ
‖u1

h‖2L2(Ωh)
+ C‖u1

h‖2H1(Ωh)
+ ηh2‖∇p1h‖2L2(Ωh)

+ ε−1‖u1
h · nh‖2ch 6 0,

which implies u1
h = 0 and η∇p1h = 0. It remains to prove ph = 0.

Case 1. For the P1/P1 element (η = 1), ∇p1h = 0 means p1h is a constant function,

i.e., p1h ≡ C. Since u1
h = 0 and η∇p1h = 0, we see that p1h satisfies

0 = bΩh
(vh, p

1
h) = C

∫

Γh

vh · nh dΓh ∀ vh ∈ Vh,

which yields C = 0. Therefore (u1
h, p

1
h) = (0, 0).

Case 2. For the P1b/P1 element (η = 0), it follows from u1
h = 0 that 0 =

bΩh
(vh, p

1
h) for all vh ∈ Vh. By the inf-sup condition (4.3), we get ‖p1h‖L2(Ωh)/R = 0,

which means p1h ≡ C. Then, by an argument similar to Case 1, we have C = 0.

Thus, (u1
h, p

1
h) = 0.

We have proved (u1
h, p

1
h) = (0, 0). By induction, it is not difficult to verify that

(um
h , pmh ) = 0 for any m. Hence, we conclude the unique existence of the solution to

(Pε,h).
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Next, we show the a priori estimates (4.4) and (4.5). In view of

(4.7)
(a− b

τ
, a
)

ω
=

1

2τ
[(a, a)ω + (a− b, a− b)ω − (b, b)ω],

substituting (vh, qh) = (uj
h, p

j
h) into (Pε,h) and summing up with respect to j im-

plies (4.4). Substituting (vh, qh) = (∂τu
j
h, ∂τp

j
h) into (Pε,h) and summing up with

respect to j yields (with help of (4.7)):

2τ

m∑

j=1

‖∂τuj
h‖2L2(Ωh)

+ aΩh
(um

h , um
h )

+

m∑

j=1

aΩh
(uj

h − uj−1
h , uj

h − uj−1
h ) + ηh2‖∇pmh ‖2L2(Ωh)

+ ηh2
m∑

j=1

‖∇(pjh − pj−1
h )‖2L2(Ωh)

+ ε−1‖um
h · nh‖2ch

+ ε−1
m∑

j=1

‖(uj
h − uj−1

h ) · nh‖2ch

= 2τ
m∑

j=1

(f̃ j, ∂τu
j
h)Ωh

+ aΩh
(u0

h, u
0
h) + ηh2‖∇p0h‖2L2(Ωh)

+ ε−1‖u0
h · nh‖2ch .

Combining this with (f̃ j , ∂τu
j
h)Ωh

6 1
2‖∂τu

j
h‖H1(Ωh) +

1
2‖f̃ j‖2L2(Ωh)

and Korn’s in-

equality (4.2), we obtain (4.5). �

Now we turn our attention to the error analysis of discretization. First, we in-

troduce a projection lemma, which directly follows from [12], [28] for the stationary

case.

Lemma 4.1 (Theorems 4.1 and 5.1 of [12]). Let (ũm, p̃m) be a continuous exten-

sion of (um, pm) to Ω̃ := Ω ∪ Ωh with f̃m = ũm
t − ν∆ũm +∇p̃m for m = 1, . . . ,M .

There exists a unique (Puũm, P pp̃m) ∈ Vh ×Qh such that

aΩh
(Puũm, vh) + bΩh

(vh, P
pp̃m) + ε−1ch(P

uũm · nh, vh · nh)

= (f̃m − ũm
t , vh) ∀ vh ∈ Vh,

bΩh
(Puũm, qh) = ηh2(∇P pp̃m,∇qh)Ωh

∀ qh ∈ Qh.

Moreover, the following error estimates hold:

⊲ For the non-reduced integration ch(·, ·) = cNh (·, ·),

‖Puũm − ũm‖Vh
+ ‖P pp̃m − p̃m‖Qh/R + ηh‖∇P pp̃m‖L2(Ωh) 6 C(h+

√
ε+ h/

√
ε).
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⊲ For the reduced integration ch(·, ·) = cRh (·, ·),

‖Puũm − ũm‖Vh
+ ‖P pp̃m − p̃m‖Qh/R + ηh‖∇P pp̃m‖L2(Ωh) 6 C(h+

√
ε+ hβ/

√
ε),

where β = 2 if N = 2 and β = 1 if N = 3.

We make the following assumptions on (u, p) and the initial error ‖ũ0−u0
h‖L2(Ωh):

(Ae1) u ∈ C2([0, T ];L2) ∩ C1([0, T ];W 2,r), where r = ∞ if ch(·, ·) = cRh (·, ·) with
N = 2, otherwise r = 2.

(Ae2) ‖ũ0 − u0
h‖L2(Ωh) 6 Ch. For the P1b/P1-element, bΩh

(u0
h, qh) = 0 for all

qh ∈ Qh.

R em a r k 4.1 (Regularity assumption for FEM). As stated in Remark 2.1, the

assumption Ae1) requires nonlocal compatibility conditions for f(0) and u0. How-

ever, (Ae1) can be satisfied in a time interval (ta, T ) for some ta > 0 with smooth

f and u0. Analogously to [23], we assume (Ae1) and deduce the error estimate for

finite element discretization.

Defining the discretization errors of velocity and pressure by

emh,u := um
h − ũm, emh,p := pmh − p̃m,

where (ũm, p̃m) is stated in Lemma 4.1, we state the results of error estimate.

Theorem 4.1. Under the assumptions (Ae1) and (Ae2), for 1 6 m 6 M we

have

‖emh,u‖2L2(Ωh)
+ τ

m∑

j=1

‖ejh,u‖2Vh
6 C(τ + h+

√
ε+ hβ/

√
ε)2,(4.8a)

τ

m∑

j=1

tj−1‖∂τejh,u‖2L2(Ωh)
+ tm−1‖emh,u‖2Vh

+ τ

m∑

j=1

tj−1‖∂τejh,p‖2Qh/R
(4.8b)

6 C(τ + h+
√
ε+ hβ/

√
ε)2,

where β = 1 for ch(·, ·) = cNh (·, ·) with N = 2, 3, and ch(·, ·) = cRh (·, ·) with N = 3.

It can be improved to β = 2 when ch(·, ·) = cRh (·, ·) and N = 2.

P r o o f. With the decomposition ejh,u = uj
h − Puũj + Puũj − ũj and ejh,p =

pjh − P pp̃j + P pp̃j − p̃j , and by virtue of Lemma 4.1, we only need to estimate

Ej
h,u := uj

h − Puũj and Ej
h,p := pjh − P pp̃j .
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Obviously, {(Ej
h,u, E

j
h,p)}mj=1 satisfies: for all (vh, qh) ∈ Vh ×Qh,

(∂τE
j
h,u, vh)Ωh

+ aΩh
(Ej

h,u, vh) + bΩh
(vh, E

j
h,p)(4.9a)

+ ε−1ch(E
j
h,u · nh, vh · nh) = (ũj

t − ∂τP
uũj , vh)Ωh

,

bΩh
(Ej

h,p, qh) = ηh2(∇Ej
h,p,∇qh)Ωh

.(4.9b)

Substituting vh = Ej
h,u into (4.9) and summing up with respect to j, with help of

(4.7) and Korn’s inequality (4.2), we calculate:

(4.10) ‖Em
h,u‖2L2(Ωh)

+
m∑

j=1

‖Ej
h,u − Ej−1

h,u ‖2L2(Ωh)
+ 2τC

m∑

j=1

‖Ej
h,u‖2H1(Ωh)

+ 2τηh2
m∑

j=1

‖∇Ej
h,p‖2L2(Ω) + 2τε−1

m∑

j=1

‖Ej
h,u · nh‖2ch

6 ‖E0
h,u‖2L2(Ωh)

+ 2τ

m∑

j=1

(ũj
t − ∂τP

uũj , Ej
h,u)Ωh

.

The estimate of ‖E0
h,u‖2L2(Ωh)

follows from (Ae2) and Lemma 4.1:

‖E0
h,u‖2L2(Ωh)

6 ‖ũ0 − u0
h‖L2(Ωh) + ‖ũ0 − Puũ0‖L2(Ωh) 6 Ch+ C(h+

√
ε+ hβ/

√
ε).

We divide ũj
t − ∂τP

uũj into two parts:

(4.11) ũj
t − ∂τP

uũj = (ũj
t − ∂τ ũ

j) + (∂τ ũ
j − Pu∂τ ũ

j) =: Ij1 + Ij2 .

In view of Ij1 = 1
τ

∫ tj
tj−1

(t− tj−1)ũtt(t) dt, we deduce that

(4.12) ‖Ij1‖L2(Ωh) 6 Cτ‖ũ‖C2([tj−1,tj ];L2).

Lemma 4.1 yields the estimate of Ij2 :

‖Ij2‖L2(Ωh) 6 C‖∂τ ũj‖W 2,r (h+
√
ε+ hβ/

√
ε) 6 C(h+

√
ε+ hβ/

√
ε+ τ).

Then, applying the Schwarz inequality to the last term of (4.10), and using the

estimate of ‖Ij1‖L2(Ωh) and ‖Ij2‖L2(Ωh), we obtain the error estimate for E
m
h,u:

(4.13) ‖Em
h,u‖2L2(Ωh)

+ 2τC

m∑

j=1

‖Ej
h,u‖2H1(Ωh)

+ 2τηh2
m∑

j=1

‖∇Ej
h,p‖2L2(Ω)

+ 2τε−1
m∑

j=1

‖Em
h,u · nh‖2ch 6 C(τ + h+

√
ε+ hβ/

√
ε)2.

Together with Lemma 4.1, we conclude (4.8a).
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To prove (4.8b), substituting vh = ∂τE
j
h,u into (4.9) and multiplying (4.9) by tj−1,

we have

tj−1‖∂τEj
h,u‖2L2(Ωh)

+
tj−1

2τ
[D(aΩh

(Ej
h,u, E

j
h,u)) + ηh2

D(‖∇Ej
h,p‖2L2(Ωh)

) + ε−1
D(‖Ej

h,u · nh‖2ch)]

= tj−1(ũ
j
t − ∂τP

uũj, ∂τE
j
h,u)Ωh

,

where

D(aΩh
(Ej

h,u, E
j
h,u)) := aΩh

(Ej
h,u, E

j
h,u) + aΩh

(Ej
h,u − Ej−1

h,u , Ej
h,u − Ej−1

h,u )

− aΩh
(Ej−1

h,u , Ej−1
h,u ),

D(‖Ej‖2) := ‖Ej‖2 + ‖Ej − Ej−1‖2 − ‖Ej−1‖2.

Summing up the above equality with respect to j gives (note that t0 = 0)

2τ

m∑

j=1

tj−1‖∂τEj
h,u‖2L2(Ωh)

+ tm−1‖E(Em
h,u)‖2L2(Ωh)

+

m∑

j=1

tj−1‖E(Ej
h,u − Ej−1

h,u )‖2L2(Ωh)

+ ηh2tm−1‖∇Em
h,p‖L2(Ω) + 2τηh2

m∑

j=1

tj−1‖∇(Ej
h,p − Ej−1

h,p )‖2L2(Ω)

+ ε−1tm−1‖Em
h,u · nh‖2ch + ε−1

m∑

j=1

tj−1‖(Ej
h,u − Ej−1

h,p ) · nh‖2ch

6 τ

m−1∑

j=1

aΩh
(Ej

h,u, E
j
h,u) + ηh2τ

m−1∑

j=1

‖∇Ej
h,p‖L2(Ω) + ε−1τ

m−1∑

j=1

‖Ej
h,u · nh‖2ch

+ 2τ

m∑

j=1

tj−1(ũ
j
t − ∂τP

uũj , ∂τE
j
h,u)Ωh

.

Noting that C‖Ej
h,u‖2H1(Ωh)

6 ‖Ej
h,u‖2L2(Ωh)

6 C1‖Ej
h,u‖2H1(Ωh)

and applying the

Schwarz inequality to the last term, we obtain (using (4.11)–(4.13))

(4.14) 2τ

m∑

j=1

tj−1‖∂τEj
h,u‖2L2(Ωh)

+ tm−1[‖Em
h,u‖2H1(Ωh)

+ ηh2‖∇Em
h,p‖2L2(Ω) + ε−1‖Em

h,u · nh‖2ch ]
6 CT (τ + h+

√
ε+ hβ/

√
ε)2.
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By inf-sup condition (4.3) and (4.9a), we derive the error estimate of pressure (note

that vh = 0 on Γ for vh ∈ V̊h):

‖Em
h,p‖L2(Ωh)/R

6 sup
vh∈V̊h

(
(ũm

t − ∂τP
uũm, vh)Ωh

− (∂τE
m
h,u, vh)Ωh

− aΩh
(Em

h,u, vh)
)
/‖vh‖H1(Ωh)

+ ηCh‖∇Em
h,p‖L2(Ωh)

6 C(‖∂τEm
h,u‖L2(Ω) + ‖Em

h,u‖H1(Ω) + ‖ũm
t − ∂τP

uũm‖L2(Ω)) + ηCh‖∇Em
h,p‖L2(Ωh).

Then, applying (4.13) and (4.14) to the right-hand side, we find that

τ

m∑

j=1

tj−1‖Ej
h,p‖2L2(Ωh)/R

6 CT (τ + h+
√
ε+ hβ/

√
ε)2.

Together with (4.14) and Lemma 4.1, we conclude (4.8b). �

R em a r k 4.2. The error estimates (4.8a) and (4.8b) indicate the optimal choice

of ε and h, which is stated as follows

⊲ For the non-reduced integration (ch(·, ·) = cNh (·, ·)), we choose ε = Ch and have

the error O(
√
h+τ ).

⊲ For the reduced integration (ch(·, ·) = cRh (·, ·)), when N = 3 we choose ε = Ch and

obtain the error O(
√
h+τ). When N = 2, setting ε = Ch2 the error is upgraded

to O(h+τ ).

5. The numerical experiment

We consider (P) in an annular domain Ω = {(x, y) ; 1 6 x2 + y2 < 4} with
boundaries Γ = {(x, y) ; x2 + y2 = 4} and γ = {(x, y) ; x2 + y2 = 1}. Here, f and
u0 are chosen so that the exact solution is given by

u(x, y, t) = ((t2 +1)y(x2 + y2 − 1),−(t2 +1)x(x2 + y2 − 1)), p(x, y, t) = (t2 +1)xy.

We easily see that n = 1
2 (x, y)

T and un = 0 on Γ. Since g := (I − n⊗ n)σ(u, p)n 6= 0

on Γ, we need to add
∫
Γ g · vT dΓ to the right-hand sides of (3.1)1 and (3.2)1.

Correspondingly, we add
∫
Γh

g̃m · vhT dΓh to the right-hand side of (4.1)1, where

g̃m := (I − nh ⊗ nh)σ(u(tm), p(tm))nh is an approximation of g(tm).

We solve (P) by the penalty method with finite element approximation, and test

both the non-reduced (cN (·, ·)) and reduced (cR(·, ·)) integration schemes for the
penalty term. In the following, we show the errors of numerical solutions for the case
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of the P1/P1 element. The numerical results of the P1b/P1 element are not shown,

because they are almost identical with those of the P1/P1 element.

First, fixing h and τ , we plot the errors of the non-reduced and reduced schemes in

Figure 1, where N and R stand for the non-reduced and reduced scheme, respectively.

From this, we can observe that the orders of the convergence of both the schemes

are almost O(ε), which verifies our theoretical results (see Theorem 3.2). Note that

the error saturates as ε decreases because h and τ are fixed. Moreover, we observe

that the non-reduced integration scheme fails to converge for ε ≪ h, which does not

occur for the reduced integration scheme. It suggests that the reduced scheme is

more stable for small ε than the non-reduced one.
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pL2

Figure 1. The errors of velocity in the L2 and H1 norms and pressure in the L2 norm
(denoted by uL2, uH1 and pL2, respectively) are plotted for different ε with h

and τ fixed. The slopes of the triangles represent the order O(ε).

Next, we plot the errors depending on h in Figure 2. According to Theorem 4.1

and Remark 4.2, the optimal choice is to let ε = Ch for the reduced scheme (N = 3)

and the non-reduced scheme (N = 2, 3) and ε = Ch2 for the reduced scheme (N = 2).

We observe that the convergence orders of the non-reduced scheme are O(h), which is

better than our theoretical result O(
√
h) (see Remark 4.2). For the reduced scheme,

we see that the convergence order of the velocity in the H1 norm is O(h), which

corresponds to our theoretical result (see Remark 4.2). Moreover, the numerical

experiment shows the convergence order of the velocity in the L2 norm is O(h2). It

is noted that the L2 error of the velocity saturates as h decreases in the graph on

the right of Figure 2, because we have fixed τ = 0.01.
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Figure 2. The relative errors are plotted for different h. We set ε = 0.1h for the non-reduced
scheme and ε = 0.1h2 for the reduced scheme and fix τ = 0.01. The slope in the
left figure represents the order O(h). The lower slope in the right figure represents
the order O(h), the higher one represents O(h2).

Finally, we verify the errors depending on τ . Theorem 4.1 shows that for fixed ε

and h, the convergence orders are estimated to be O(τ), which is confirmed by our

numerical examples, see Figure 3.
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Figure 3. The errors are plotted for different τ with h and ε fixed. The slopes represent
the order O(τ ).

401



References

[1] E.Bänsch, K.Deckelnick: Optimal error estimates for the Stokes and Navier-Stokes
equations with slip-boundary condition. M2AN, Math. Model. Numer. Anal. 33 (1999),
923–938. zbl MR doi

[2] E.Bänsch, B.Höhn: Numerical treatment of the Navier-Stokes equations with slip
boundary condition. SIAM J. Sci. Comput. 21 (2000), 2144–2162. zbl MR doi

[3] S.C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts
in Applied Mathematics 15, Springer, New York, 2002. zbl MR doi

[4] A. Çağlar: Weak imposition of boundary conditions for the Navier-Stokes equations.
Appl. Math. Comput. 149 (2004), 119–145. zbl MR doi

[5] I.Dione, C. Tibirna, J. Urquiza: Stokes equations with penalised slip boundary condi-
tions. Int. J. Comput. Fluid Dyn. 27 (2013), 283–296. MR doi

[6] I.Dione, J.M.Urquiza: Penalty: finite element approximation of Stokes equations with
slip boundary conditions. Numer. Math. 129 (2015), 587–610. zbl MR doi

[7] C.Geuzaine, J.-F. Remacle: Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309–1331. zbl MR doi

[8] V.Girault, P.-A.Raviart: Finite Element Methods for Navier-Stokes Equations. Theory
and Algorithms. Springer Series in Computational Mathematics 5, Springer, Berlin,
1986. zbl MR doi

[9] F.Hecht: New development in freefem++. J. Numer. Math. 20 (2012), 251–265. zbl MR doi
[10] J.G.Heywood, R.Rannacher: Finite element approximation of the nonstationary

Navier-Stokes problem. I. Regularity of solutions and second-order error estimates
for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275–311. zbl MR doi

[11] V. John: Slip with friction and penetration with resistance boundary conditions for the
Navier-Stokes equations—numerical tests and aspects of the implementation. J. Com-
put. Appl. Math. 147 (2002), 287–300. zbl MR doi

[12] T.Kashiwabara, I.Oikawa, G. Zhou: Penalty method with P1/P1 finite element approx-
imation for the Stokes equations under the slip boundary condition. Numer. Math. 134
(2016), 705–740. zbl MR doi

[13] P.Knobloch: Discrete Friedrich’s and Korn’s inequalities in two and three dimensions.
East-West J. Numer. Math. 4 (1996), 35–51. zbl MR

[14] P.Knobloch: Variational crimes in a finite element discretization of 3D Stokes equations
with nonstandard boundary conditions. East-West J. Numer. Math. 7 (1999), 133–158. zbl MR

[15] W.Layton: Weak imposition of “no-slip” conditions in finite element methods. Comput.
Math. Appl. 38 (1999), 129–142. zbl MR doi

[16] A.Logg, K.-A.Mardal, G.Wells, Editors: Automated Solution of Differential Equations
by the Finite Element Method. The FEniCS Bbook. Lecture Notes in Computational
Science and Engineering 84, Springer, Heidelberg, 2012. zbl MR doi

[17] H.Saito, L. E. Scriven: Study of coating flow by the finite element method. J. Comput.
Phys. 42 (1981), 53–76. zbl doi

[18] Y.Shibata, R. Shimada: On a generalized resolvent estimate for the Stokes system with
Robin boundary condition. J. Math. Soc. Japan 59 (2007), 469–519. zbl MR doi

[19] Y.Stokes, G. Carey: On generalized penalty approaches for slip, free surface and related
boundary conditions in viscous flow simulation. Int. J. Numer. Meth. Heat and Fluid
Flow 21 (2011), 668–702. doi

[20] M.Tabata: Uniform solvability of finite element solutions in approximate domains. Japan
J. Ind. Appl. Math. 18 (2001), 567–585. zbl MR doi

[21] M.Tabata: Finite element approximation to infinite Prandtl number Boussinesq equa-
tions with temperature-dependent coefficients—Thermal convection problems in a
spherical shell. Future Gener. Comput. Syst. 22 (2006), 521–531. doi

402

https://zbmath.org/?q=an:0948.76035
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1726716
http://dx.doi.org/10.1051/m2an:1999126
https://zbmath.org/?q=an:0970.76056
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1762035
http://dx.doi.org/10.1137/S1064827598343991
https://zbmath.org/?q=an:0804.65101
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1894376
http://dx.doi.org/10.1007/978-0-387-75934-0
https://zbmath.org/?q=an:1100.76034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2030987
http://dx.doi.org/10.1016/S0096-3003(02)00960-8
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3171814
http://dx.doi.org/10.1080/10618562.2013.821114
https://zbmath.org/?q=an:1308.76162
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3311462
http://dx.doi.org/10.1007/s00211-014-0646-9
https://zbmath.org/?q=an:1176.74181
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2566786
http://dx.doi.org/10.1002/nme.2579
https://zbmath.org/?q=an:0585.65077
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0851383
http://dx.doi.org/10.1007/978-3-642-61623-5
https://zbmath.org/?q=an:1266.68090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3043640
http://dx.doi.org/10.1515/jnum-2012-0013
https://zbmath.org/?q=an:0487.76035
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0650052
http://dx.doi.org/10.1137/0719018
https://zbmath.org/?q=an:1021.76028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1933597
http://dx.doi.org/10.1016/S0377-0427(02)00437-5
https://zbmath.org/?q=an:06654608
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3563279
http://dx.doi.org/10.1007/s00211-016-0790-5
https://zbmath.org/?q=an:0854.65098
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1393064
https://zbmath.org/?q=an:0958.76043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1699239
https://zbmath.org/?q=an:0953.76050
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1707832
http://dx.doi.org/10.1016/S0898-1221(99)00220-5
https://zbmath.org/?q=an:1247.65105
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3075806
http://dx.doi.org/10.1007/978-3-642-23099-8
https://zbmath.org/?q=an:0466.76035
http://dx.doi.org/10.1016/0021-9991(81)90232-1
https://zbmath.org/?q=an:1127.35043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2325694
http://dx.doi.org/10.2969/jmsj/05920469
http://dx.doi.org/10.1108/09615531111148455
https://zbmath.org/?q=an:0985.65142
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1842928
http://dx.doi.org/10.1007/BF03168591
http://dx.doi.org/10.1016/j.future.2005.04.008


[22] M.Tabata, A. Suzuki: A stabilized finite element method for the Rayleigh-Bénard equa-
tions with infinite Prandtl number in a spherical shell. Comput. Methods Appl. Mech.
Eng. 190 (2000), 387–402. zbl MR doi

[23] M.Tabata, D.Tagami: Error estimates for finite element approximations of drag and lift
in nonstationary Navier-Stokes flows. Japan J. Ind. Appl. Math. 17 (2000), 371–389. zbl MR doi

[24] R.Temam: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea
Publishing, Providence, 2001. zbl MR doi

[25] R.Verfürth: Finite element approximation of steady Navier-Stokes equations with mixed
boundary conditions. RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 461–475. zbl MR doi

[26] R.Verfürth: Finite element approximation of incompressible Navier-Stokes equations
with slip boundary condition. Numer. Math. 50 (1987), 697–721. zbl MR doi

[27] R.Verfürth: Finite element approximation of incompressible Navier-Stokes equations
with slip boundary condition. II. Numer. Math. 59 (1991), 615–636. zbl MR doi

[28] G.Zhou, T.Kashiwabara, I.Oikawa: Penalty method for the stationary Navier-Stokes
problems under the slip boundary condition. J. Sci. Comput. 68 (2016), 339–374. zbl MR doi

Authors’ addresses: Guanyu Zhou, Department of Applied Mathematics, The Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-Ku, Tokyo, 162-8601 Japan, e-mail: zhoug
@rs.tus.ac.jp, koolewind@gmail.com; Takahito Kashiwabara, The Graduate School of
Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914,
Japan, e-mail: tkashiwa@ms.u-tokyo.ac.jp; Issei Oikawa, Faculty of Science and Engi-
neering, Waseda University, 3-4-1 Okubo, Shinjuku, 169-8555 Tokyo, Japan, e-mail: oikawa
@aoni.waseda.jp.

403

https://zbmath.org/?q=an:0973.76056
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1808485
http://dx.doi.org/10.1016/S0045-7825(00)00209-7
https://zbmath.org/?q=an:1306.76026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1794176
http://dx.doi.org/10.1007/BF03167373
https://zbmath.org/?q=an:0981.35001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1846644
http://dx.doi.org/10.1090/chel/343
https://zbmath.org/?q=an:0579.76024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0807327
http://dx.doi.org/10.1051/m2an/1985190304611
https://zbmath.org/?q=an:0596.76031
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0884296
http://dx.doi.org/10.1007/BF01398380
https://zbmath.org/?q=an:0739.76034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1124131
http://dx.doi.org/10.1007/BF01385799
https://zbmath.org/?q=an:06607354
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3510584
http://dx.doi.org/10.1007/s10915-015-0142-0

