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(e) of Fig. 5 show the behavior of the #J = a/2 cut of the radiated 
field for the following anisotropic slabs: sapphire (Fig. 4); Epsilam-10 
(Fig. 5(a)); pyrolitic boron nitride (Fig. 5(b)); and biaxial materials 
((c)-(e) of Fig. 5). 

The numerical computations have shown, in the case of an electric 
.%oriented point source, that the radiated pattems present a symmetry 
with respect to the vertical axis (0 = a/2) and a phenomenon of 
crouching of the radiation maxima that progressively widen towards 
the radiation region on the horizon plane ( B  = 0, a), reaching it 
when (45) holds. The radiated pattems depend not on E ~ , ,  pyy, pzz 
but only on the parameters d ,  h, cyy,  E+,, pZ,. Finally, we observe 
that the electric far field in the #J = a/2 _cut sustained by an electric 
&oriented point source depends on the G,, term and, therefore, on 
the parameters eZZ, pyy, p.. . 

V. CONCLUSION 
In this paper we have studied the circuit modeling of a planar 

structure with a general anisotropic slab by using a transmission-line 
analogy. This important result has been found when the constitutive 
parameters assume the double or simple diagonal form, circuit 
modelization is always possible. For g and p of a more general 
form, this circuit representation is still possible, provided that the 
constitutive tensors have the same principal coordinates. Moreover, 
we have applied this result to two study cases: 1) the unbounded 
gyrotropic medium, vertically polarized, described by the double 
diagonal tensors 5 and p and 2) the biaxial anisotropic grounded 
slab embedded in an ugbounded isotropic half-space, fed by an 
electric planar deep point source. Case 2) has been extensively 
investigated by deriving in a closed analytical form the spectral 
(Fourier) dyadic Green function of the structure and by obtaining 
important information on the properties of radiation of the structure 
together with conditions to control the radiation on the horizon plane. 

Finally, numerical evaluations of planar structure radiated fields, 
backed with a slab of different anisotropic material, have been 
presented along with important information on the electromagnetic 
constants of the medium, the thickness of the slab, the position of 
the source, and the working frequency. 
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A Pencil-MUSIC Algorithm for Finding Two-Dimensional 
Angles and Polarizations Using Crossed Dipoles 

Yingbo Hua 

Abstract- We study the problem of finding two-dimensional (2-D) 
angles of wave arrival and wave polarizations using a uniform rectangular 
array of crossed dipoles. The method we present in this paper effectively 
exploits the redundancy in this array via 2-D moving-window smoothing 
to handle coherent sources and to achieve optimum noise sensitivity. 
The method combines the computational advantages of the MUSIC and 
matrix pencil approaches. The method is shown in simulation to be nearly 
optimum compared with the Cramer-Rao bound. 

I. INTRODUCTION 
The problem of using a diversely polarized array for wave direction 
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s z ( t )  = 

finding has been addressed very recently in several articles [1]-[5]. 
The major motivation behind this is the fact that a diversely polarized 
array can provide higher estimation accuracy than a (corresponding) 
uniformly polarized array. This observation has been supported by a 
number of specific algorithms [ 11-[4] based on diversely polarized 
arrays as well as by the analysis of the Cramer-Rao bound [SI. The 
algorithms that have been developed so far for diversely polarized 
arrays are specific implementations of the ML (maximum likelihood) 
method [3], the MUSIC method [4], [ 5 ] ,  and the ESPRIT method 
i l l ,  PI. 

While significant progress has been made in understanding and 
utilizing diversely polarized arrays, there still exist important prob- 
lems to be solved. In this paper, we will study a uniform rectangular 
array of crossed dipoles. The importance of this array obviously 
comes from its simplicity. While the previously mentioned methods 
are general enough to be applicable to this array, the method we 
will show is more efficient because it is designed for this array. 
Specifically, the redundancy of the array is exploited via a moving- 
window approach to handle coherent sources, and the advantage of 
MUSIC is enhanced by computing generalized eigenvalues instead 
of using a search procedure. 

In Section I1 we will formulate the wave model and the outputs 
of the crossed dipoles. In Section I11 the pencil-MUSIC algorithm 
will be developed and discussed. In Section IV we will show the 
simulation results that compare the performance of the matrix pencil 
method with the Cramer-Rao bound. It will be seen that nearly 
optimum performance is achieved by the new method. 

- sz ( t ,  0, 0) 
s, ( t ,  Ax, 0) 
... 
s , ( t ,  ( M  - l ) A x ,  0) 

... (13) 

S Z ( t ,  0, ( N  - 1)AY) 
s z ( t ,  Az, ( N  - 1)Ay) 

... 

... 

... 
- s z ( t ,  ( M  - l ) A z ,  ( N  - 1)Ay)-  

11. THE WAVE MODEL AND ARRAY OUTPUT 

Assume I narrow-band transverse electromagnetic (TEM) waves 
impinge upon the array. The ith wave can be expressed by 

et(r, t )  = eoz ~ ( t )  exp (-jut + j k c  . r ) ,  (1) 

where et(r, t) denotes the ith electric field at the spatial position 
r ,  eoz the unit 2-D vector defining the polarization of the ith wave, 
a , ( t )  the (complex) amplitude of the ith wave, which varies slowly 
with time compared with the frequency U ,  and k, the wave number 
vector, defined by 

(2) 
2n 
x k,  = --U,,, 

in which X is the common wavelength, and -url the unit vector 
defining the traveling direction of the ith wave. k,  . r is the inner 
product (in the most conventional way) of k, and r .  

The polarization vector, eoz, can be decomposed as follows: 

eoz = e+,u+, + eozuot (3) 

or, equivalently, 

eot = ezzuz + eYzuy  + ezzuz ,  (4) 

where U+, ue, U,, uy, and uz are unit space vectors in azimuth, ele- 
vation, x, y. and z directions, respectively. The subscript i indicates 
the correspondence to the ith wave. U+ and are related to U,, uy, 
and uz as follows: 

U& = cos02cosqhpu, +cos0,sinqh,uY - sinB,u, (5)  

u + ~  = -sin + cos qh,uv. (6) 

After substituting (5) and (6) into (3) and then comparing (3) and 
(4), we have 

e,, = COS 0, COS q5,eoz - sin qh,e+, (7) 

~ 

37 1 

e,, = -sinO,eel. (9) 

The polarization of a TEM wave is often specified by two real 
parameters, yl(O 5 yt 5 7r/2) and vE(-n 5 q1 5 r), as follows: 

(10) ee, = E sin yc exp ( j . rz )  

e+% = Ecosy, ,  ( 1 1 )  

where E is an arbitrary (nonzero) complex constant. Clearly, the 
polarization can be determined by the ratio of e+,, denoted by A,. As 
implied by (7) and (8), A, is a one-to-one linear function of the ratio 
of e,% to eyl ,  denoted by t , ,  provided the wave directions are known. 

The array we consider consists of M x N crossed dipoles on a uni- 
form rectangular grid with spacing Ax and Ay in the x and y direc- 
tions. We denote the (complex envelope) outputs of the crossed dipole 
at (Axm, Ayn) by s , ( t ,  Axm,  Ayn) and sy(t, Axm,  Ayn). Then 
we define the array output vector: 



I 

312 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 41, NO. 3, MARCH 1993 

The superscript 
i.e., 

denotes transpose, and @ the Kronecker product, 

P, 8 Q, = [::a ] 
... 
P*QiY-l 

a, and fit  are angles of the ith wave with the x and y axes. The 
one-to-one function between (a,, fit) and e,) can be easily 
derived. The above compact expressions for the array outputs are 
very useful for developing a pencil-MUSIC algorithm for finding the 
wave directions and polarizations, as will be shown next. 

111. THE PENCIL-MUSIC ALGORITHM 
We start with the array output covariance matrix, which is defined 

as 

where E{.} denotes the expectation, and the asterisk the conjugate 
transpose. Using (14), it follows that 

where R, = E{a(t)a(t)*}.  For coherent waves for which rank 
(R, )  is less than the number of waves, the covariance matrix R, 
is ill conditioned. Hence, we cannot expect the performance of any 
methods (such as [I] and [Z]) based on the eigendecomposition of R, 
to be good in the coherent case. In order to overcome the coherent 
case and increase the noise robustness, we exploit the redundancy in 
the 2-D array of uniformly distributed crossed dipoles. For a uniform 
linear array problem, the redundancy was effectively exploited in 
[ 1 I] by averaging subcovariance matrices corresponding to subarrays. 
The following represents an extension of the previous work from a 
uniform 1-D array to a uniform 2-D array. We first define 

where each submatrix, R(i, j ) ,  has the dimension MN x MN. Then 
we write 

. . . . . .  I & , O ( i , j )  & , l ( i 7 j )  " '  " '  Ro, N - l ( i ,  j )  
Ri,o(i,j) R i , i ( i , j )  R I ,  ~ - i ( i ,  j )  

R ( i , j )  = . * .  ... . . . . . . . . .  
... ... . . . . . . . . .  I R ~ - i , o ( i ,  j )  R ~ - i , i ( i ,  j )  . . . . . .  RN-I ,  N-l(i7 j )  

where R,,l,"z(i, j )  is the (n l ,  n2)th M x M submatrix and is expressed as 

A. Enhanced Matrix 

subcovariance matrices): 
Let J and K be two positive integers less than M and N respectively. We now define the 2511 x 2JK enhanced matrix (via averaging 

where B(i, j )  is a ( K  x K) block matrix defined by 

in which the ( k l ,  k2)th block, & I ,  k Z ( i ,  j ) ,  has the dimension J x J and is defined by 

. . . . . .  T J ,  j ( k 1 ,  k2 ,  i ' ,  j ' )  ~ j ,  j+i ( k l ,  11.2, i ' ,  j ' )  T j , i + J - I ( k l ,  k2,  i ' ,  j ' )  

. . . . . .  r j + i , j + J - i ( k l ,  k2,  i'. j ' )  
... ... T J + i , j ( k l ,  k2 ,  i ' ,  j ' )  ~ j + i , j + i ( k l ,  k2 ,  i ' ,  j ' )  

. . . . . . . . .  
... . . .  . . . . . . . . .  

T J + J - i , j ( k l ,  k2, i', j ' )  T j + J - i , J + i ( k l ,  k2,  i ' ,  j ' )  . . . . . .  ~ j + j - l , j + ~ - l ( k l ,  k2,  i ', j ' )  
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Note that H(i,  j )  is a smoothed version (sum) of the (K x K) block 
submatrices along the diagonal axis of R(i ,  j ) ,  and %I, kZ(e', j )  
is a smoothed version (sum) of the J x J submatrices along the 
diagonal axis of Rkl,kz(i ,  j ) .  Therefore, it is not necessary to 
compute the whole covariance matrix R, of the (larger) dimension 
2 M N  x 2 M N  to obtain the enhanced matrix of the (smaller) 
dimension 2JK x 2 J I i .  

B. Structure of Enhanced Matrix 

With the above definitions, we now discuss the inherent structure 
of the enhanced matrix. Based on (25) and (16)-(23), we know that 
the ( m l ,  m2)th element of Rnl, n ~ ( i ,  j )  is 

T m l ,  mz(n1, n 2 , i ,  j )  
=[pm1 n l  

1 q1 , ... ,P?'P?'] ~ a ( i ,  j)bY2qY, ... , P P ' ~ ~ ' I * ,  ( 3 2 )  

where 

EzRaE: (i, j )  = (1, 1 )  

( i ,  j )  = ( 2 ,  1 )  
~~~~~~ (i, j )  = (l, 2 ,  (33) 

E,R,ES, ( i ,  j )  = (2, 2). 

Using (32) and (33) in (29)-(31), one can verify the following: 

(34) 

where 

p:  = 11, p , ,  . . . , . . . , p(-lIT (36) 

P = diag (PI, PZ, . . , PZ) (39) 

C .  Conditions on J and K 
We now derive the conditions on J and h- under which H, is 

always of the rank I (the desired rank [9]). First, we can see from (34) 
(the necessary condition) that if rank (R,) = I and rank (Kb,) = I, 
then rank (H,) = I. This condition is also a necessary condition 
when E, = E,. 

The least favourable case for 3, to have the rank I is whenR, has 
the rank 1 (e.g., all waves are perfectly correlated). For such case, 
we can write 

Ra = 44*, (41) 

where 4 is an I x 1 vector with no element equal to 0. (A zero element 
in 4 would mean that there are fewer than I waves impinging on the 
array.) Then we can write za from (38) into 

- 
R, = @a*, (42) 

where 

= [+, PC$,** . ,P~-~C$ ,  Qd, P Q d , * - - , P M - J Q 4 ,  .* . ,  ..., 
QNPKC$, pQN-K4, . . . , pM-JQN-K4]  

= @o K i F ,  (43) 

in which 

(46) p:' = [l, p ; ,  . . . , . * .  , p y K y  

It can be shown that provided ( p i ,  4 ; )  for i = 1, 2 , . . . , I  are 
distinct pairs (as they should be), K:, has the rank I if the following 
sufficient condition is satisfied: 

I < M - J + l  
I <  N - h-+ 1 

The above condition is also necessary in the sense that IC;, can have 
rank less than I if the condition is not satisfied. 

and IC;, both of the full rank I,@ is of the full rank, and 
- so is Ha. Therefore, (48) is sufficient (and somewhat necessary) for 
R, to be of rank I regardless of the wave coherency or polarization. 

Following the discussion on K;,, we know thatK6, has the rank 
I under the sufficient (and somewhat necessary) condition 

Given 

(49) 

Therefore, it follows that, under the conditions of (48) and (49), 
the enhanced matrix R, is always of the desired rank I. 

D. MUSIC 

Having established the enhanced matrix a, and understood its 
internal structure, one can follow a standard MUSIC approach and 
derive the following MUSIC algorithm. 

Compute the estimated covariance matrix R, (via averaging over 
time or snapshots). Considering an additive white noise in the 
array output, we can write (for a large number of snapshots, a 
large number of crossed dipoles, or high SNR) 

R, !z R, + 2 2 1 ,  (50) 

where 2 2  is the noise variance, and I the identity matrix. 
Compute the eigendecomposition: 

R s -  -UAU* (51) 

where 

Note that asymptotically A1 > As > . . . > XI >  AI+^ = * .  . = 
Xz JK = 2 2 .  Using this property, the number of waves can be 
found. More sophisticated methods for the detection problem 
are available via [12]. 
SearchforIpeakpositions{(8,, &, +*, fjz)fori  = 1, 2 , . . . , I }  
of the 4-D spectrum: 

(54) 

where U,l and i i , 2  are the top and bottom J K  x 1 subvectors 
of U, respectively. Note that t is a complex function of y and 
7 and that p' and q' are functions of 9 and 4 (as defined before 
but with the subscript i dropped). Also note that the search can 
be reduced to a 2-D search problem. This is because the MUSIC 
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Deviation, Absolute Bias and CREi of 81 vs SNR 
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(c) (4 
Fig. 1. 200-run sample deviations and biases (in absolute value) of estimatedangles and polarizations compared with the Cramer-Rao 
bound. The verticalscales are in degrees. “0” represents the deviation, “+” thebias, and the straight lines are the CRB: (a) for 
81;  (b) for&; (c) for 71; (d) for 11. 

spectrum P(0,  4 ,  y, q )  is a quadratic function of t ,  and t is a 
linear function of the polarization constant A. This means that 
the optimum X (then optimum t or optimum y and 9) can be 
derived as a closed-form function of 0 and 4. With the closed- 
form function substituted for t in (54), the MUSIC spectrum 

From the following matrix pencils and compute their generalized 
eigenvalues): 

U 8 1  - t U s 2  

Upl - P U p 2  becomes 2-D. A similar approach was used in [4]. 

E. Pencil-MUSIC 
While the MUSIC algorithm is much more efficient than the ML 

method, further improvement of computation can be made by solving 
a matrix pencil problem, instead of a searching procedure, as shown 
below. 

Follow the steps in the MUSIC algorithm until the I principal 

Let Os = [il, iiz,...,iiI] = [;::I, where the two submatri- 

eigenvectors U, for i = 1, 2,. . ; , I  are obtained. 

ces Usl and U s 2  have the dimension J K  x I. 

U q 1  - q U q 2  

where 

1 
I USl with its lst, (1 + J) th , .  . . , 

U S z  with its lst, ( 1  + J) th , .  . . , 
(1 + (K - 1)J) th  rows deleted 

(1 + (A- - 1)J) th  rows deleted 
UTsl with its J th ,  2Jth, .  . . , I i J t h  rows deleted 
U s 2  with its J th ,  2Jth,  . . . , KJth rows deleted 
U s l  with its first J rows deleted 
U 8 2  with its first J rows deleted 1 
I u p 1  = 

U P 2  = [ 
u q 1  = 
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I csl with its last J rows deleted 
Us:! with its last J rows deleted uq2 = 

To justify the above matrix manipulations, we first note that 
in the noiseless case or asymptoptically, the range of U, is the 
same as that of R,, i.e., 

(55) 

where Q is a nonsingular I x I matrix. Then it follows that 

Us1 - tUs2 = KL,(EX - tEy)Q, (56) 

which implies that t; for i = 1, 2, . . . ,I are the generalized 
eigenvalues (rank reducing numbers [6]) of the matrix pencil 
Usl- tUs:! .  Considering the second and third matrix pencils 

where 

q;/ = [ I ,  q; ,  . . . , . . . , q ; - y  

If condition (49) is made more strict by assuming 

I S J - 1  
IS I i -1 ,  

then both KL,,, and KL,,, are of the full rank I. Then it 
follows from (57) and (58) that p, for i = 1, 2 , .  . ,I and q. for 
i = 1, 2, . . . , I are the generalized eigenvalues (rank reducing 
numbers) of the matrix pencils Up1-pU,2 and Uq1-qU,2, 
respectively. Several algorithms for computing the generalized 
eigenvalues are available in [ 131. A noise robust version is called 

Having obtained the estimates of t, for i = 1,  2,  . . . , I, p ,  for 
i = 1, 2 , . . ’ , I ,  and qE f o r i  = 1, 2 , . . . , I ,  we need to have 
them correctly paired. They can be paired by maximizing the 
function P(0 ,  4, y, Q) with respect to the available t , ’ s ,  p , ’ s ,  
and qz ’s. Note that this maximization can be reduced to 2-D, as 
discussed before. The 2-D pairing can be made by selecting the 
I largest values of the MUSIC spectrum computed for all I 2  
possible pairs between the pl’s and qt ’s .  (Note that the pairing 
between the tt’s and ( p z ,  q Z ) ’ s  can be similarly done). Due to 
noise, this method does not guarantee that each p r  has a mate 
of qz  and vice versa. Alternatively, one can do the following. A 
best mate is chosen from I q,’s for p l ,  and then a best mate from 
the remaining I - 1 q 2 ’ s  for p z ,  and so on. The latter method (for 
pairing p,’s and q,’s) requires (I(I + 1))/2 - 1 computations 
of the MUSIC spectrum, as opposed to I 2  for the former one. 
Having found and paired ( t l ,  p , ,  q z )  for i = 1,  2 , s . .  ,I, the 
wave angles (0* ,  4%) and polarizations (rZ, q r )  can be straight- 
forwardly computed according to the discussions in Section 
11. 

TLS-ESPRIT [lo]. 

IV. SIMULATIONS 
To illustrate the noise performance, we assume a 20 x 20 square 

array of crossed dipoles with the spacing between crossed dipoles 
being a quarter of the wavelength and two TEM waves impinging 
on the array with the angles (01, qh) = (40’, 40’) and (02,  4 2 )  = 
(45’, 45’) andpolarizations (71, ~ 1 )  = (45’, -90”) and ( 7 2 ,  )72) = 
(45’, 90’). The first wave is counterclockwise circularly polarized, 
and the second is clockwise. The complex wave amplitudes are equal 
to 1 with zero phase; i.e., a l ( t )  = a 2 ( t )  = 1. We used one- 
snapshot outputs of the array for the simulation. White Gaussian 
noise was added to the array output. Two hundred independent runs 
were executed to compute sample means and sample deviations of 
the estimated angles and polarizations. The two integers J and Ii 
were chosen to be 3, which is the smallest number satisfying the 
conditions of (48) and (63). Increasing J and K would increase 
the computations. The sample deviations and biases of the estimated 
81, 41, 71, and Q I  (all in degrees) are shown in parts (a)-(d) 
of Fig. 1 together with the associated Cramer-Rao bounds. The 
computation of the Cramer-Rao bound assumes that the noise is 
complex white Gaussian with zero mean and variance 2 2 ,  and 
the unknown parameters are {Os, h,  ?;, Q,, la,(t)l, arg ( ~ ( t ) ) ;  for 
i = 1, 2 , .  . . ,I}. (Note that the amplitudes are chosen to be unknown 
deterministic because only one snap-shot case is considered here. For 
large numbers of snap shots, the random amplitudes should be a better 
model, i.e., provide tighter CRB. Also note that the square root of the 
bound on variance is used as the bound on deviation.) It can be seen 
from these figures that the deviations are very close to the bound until 
the S N R  is zero dB. The SNR is defined as -1Olog,, ( 2 ~ ’ ) .  The 
fact that the biases are much smaller than the deviations, as shown 
in these figures, means that the Cramer-Rao bound must be a good 
approximation of the exact lower bound on estimation variation (or 
deviation) [14]. The performance of the method broke down quickly 
when the SNR was lower than zero dB. The sample deviations and 
biases for the second wave are similar to those for the first wave and 
hence are omitted here. 

V. CONCLUSIONS 
We have studied the problem of estimating 2-D angles and polar- 

izations based on a uniform rectangular array of crossed dipoles. 
A pencil-MUSIC algorithm has been developed. This algorithm 
represents a generalization of the matrix pencil approach [6], [7] 
and the moving-window smoothing approach [ 111, and a refinement 
of MUSIC. The method can effectively handle coherent sources. 
Our simulation has shown that this method has nearly optimum 
performance compared with the Cramer-Rao bound. 
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The RCS of a Microstrip Dipole Deduced 
from an Expansion of Pole Singularities 

George W. Hanson and Dennis P. Nyquist 

Abstract-The singularity expansion method (SEM) is applied to the 
steady-state analysis of plane wave scattering from microstrip dipoles. 
The current induced on the antenna is expanded in a series of natural 
modes, where the amplitude of each term in the expansion is expressed as 
a coupling coefficient weighted by a simple frequency pole. Natural modes 
occur at pole singularities of the antenna current in the complex frequency 
plane, and are found by a numerical root search of a homogeneous matrix 
equation. This formulation results in an accurate and efficient calculation 
of the radar cross section (RCS) of microstrip dipoles which exhibit some 
appreciable resonant characteristics, where it is found that the current 
resonance dominates the response of the antenna. The SEM applied here 
yields good physical insight into the scattering behavior of such antennas. 
Results obtained with the SEM analysis are compared with a full-wave 
method of moments (MOM) solution. 

I. INTRODUCTION 
Microstrip antennas frequently find application on vehicles since 

they are lightweight, conformal, and relatively inexpensive. Because 
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Fig. 1. Microstrip dipole geometry. 

they are often found on the exterior of vehicles, determination of 
their RCS is important. While the radiation and input properties 
of microstrip dipoles have been studied extensively, their scattering 
properties have only recently been addressed [ 11, although scattering 
from microstrip patch antennas has been considered by several 
authors [2]-[4]. 

In this work, the RCS of a microstrip dipole based upon a pole- 
singularity expansion (PSE) of the antenna current is presented. The 
current expansion is formed as a series of natural modes, where 
a “natural mode” refers to a complex resonant frequency and the 
associated current distribution. The amplitude of each term in the 
series is given by a coupling coefficient weighted by a simple 
frequency pole. The coupling coefficients, which are overlap integrals 
between the natural modes of the antenna and the incident excitation, 
are similar in form to the “class 1” coupling coefficients used in the 
well-known singularity expansion method (SEM) [5]-[7], although 
their evaluation is complicated by the presence of the Green function 
for the microstrip environment. 

The RCS of several microstrip dipole configurations is presented, 
and results are compared with a full-wave MOM solution. The 
efficiency and accuracy of this method, as well as the range of its 
applicability, are discussed. It is found that the PSE method provides 
good physical insight into the dominant scattering phenomena for 
dipoles printed on generally lossy thin substrates. 

11. THEORY 
The geometry of a microstrip dipole is shown in Fig. 1. The 

dielectric cover and substrate, regions 1 and 2, respectively, are 
assumed to be linear, isotropic, and homogeneous, with relative 
permitivity E,, and loss tangent tan 6, for the ith region. The wave 
number and intrinsic impedance in each region are IC, = &IC0 and 
qz = qo/fi, where ( k o ,  70)  are their free-space counterparts. For 
the results presented here the cover region is assumed to be free 
space, and the substrate is nonmagnetic. 

The electric field in the cover maintained by currents in the cover is 

where E“(? I F ’ )  is an appropriate electric dyadic Green function 
for the layered geometry [8]. Scattering from a microstrip dipole is 
deduced from the EFIE 
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