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Abstract: Proteins are macromolecules essential for living organisms. However, to perform their
function, proteins need to achieve their Native Structure (NS). The NS is reached fast in nature.
By contrast, in silico, it is obtained by solving the Protein Folding problem (PFP) which currently
has a long execution time. PFP is computationally an NP-hard problem and is considered one of
the biggest current challenges. There are several methods following different strategies for solving
PFP. The most successful combine computational methods and biological information: I-TASSER,
Rosetta (Robetta server), AlphaFold2 (CASP14 Champion), QUARK, PEP-FOLD3, TopModel, and
GRSA2-SSP. The first three named methods obtained the highest quality at CASP events, and all
apply the Simulated Annealing or Monte Carlo method, Neural Network, and fragments assembly
methodologies. In the present work, we propose the GRSA2-FCNN methodology, which assembles
fragments applied to peptides and is based on the GRSA2 and Convolutional Neural Networks
(CNN). We compare GRSA2-FCNN with the best state-of-the-art algorithms for PFP, such as I-TASSER,
Rosetta, AlphaFold2, QUARK, PEP-FOLD3, TopModel, and GRSA2-SSP. Our methodology is applied
to a dataset of 60 peptides and achieves the best performance of all methods tested based on the
common metrics TM-score, RMSD, and GDT-TS of the area.

Keywords: protein folding problem; fragments assembly; convolutional neural network; golden ratio
simulated annealing

MSC: 49K35; 90C27; 68T07

1. Introduction

Three-dimensional structures of proteins provide valuable information for understand-
ing their biological functions. Proteins are formed by a polymeric chain of amino acids
(aa). Formations with a small amount of aa are called peptides or small proteins. There are
twenty different aa reported in the literature [1]. The study of small proteins or peptides
has great relevance due to their applications, such as in pharmaceutical research and drug
design [2–7].

The main objective of the Protein Folding problem (PFP) is to obtain the Native Struc-
ture (NS) of a protein using its amino acid sequence only. The NS of a protein is the
native state in which the protein performs its biological functions. The main computational
methods reported in the literature for predicting the three-dimensional structure of proteins
are those based on the assembly of fragments of known proteins. The best results were
obtained by I-TASSER [8], Rosetta [9], and AlphaFold [10] as reported in the CASP (Critical
Assessment of Protein Structure Prediction) competition. The fragment-based method
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consists of assembling small structures of known proteins to build a new structure [11].
An important objective is to obtain adequate fragments given a predicted protein target.
Currently, these methods use neural networks for fragment selection and assembly. An-
other important process is the refinement method for assembling structures; Simulated
Annealing (SA) is commonly used in this process [12,13]. Hybrid Simulated Annealing
(HSA) algorithms have obtained good results in the prediction of small proteins or peptides;
for example, the methods that include Monte Carlo or Simulated Annealing algorithms
are I-TASSER [8], Rossetta [9], QUARK [14], PEP-FOLD3 [15], GRSA [16], GRSA2 [17],
GRSA2-SSP [18], and AlphaFold [10]. An important aspect of HSA algorithms is that the
computational cost increases in proportion to the length of the amino acid sequence. Con-
versely, the works in the references [16–18] are all based on another HSA algorithm called
Golden Ratio Simulated Annealing (GRSA), which has a cooling scheme that improves the
computational times compared to the classical SA.

It is important to mention that the protein prediction community has obtained very
good results. Nevertheless, the problem of obtaining the NS from the amino acid sequence
is still open.

In this paper, we propose a methodology named GRSA2-FCNN. The process of
GRSA2-FCNN is to predict and assemble fragments structures using Convolutional Neural
Networks (CNN) and refine the structural protein with the GRSA2 algorithm [17] to obtain
the three-dimensional structure of proteins. GRSA2-FCNN stands for Fragments, CNN,
and GRSA2 algorithm. We applied this methodology to a set of small proteins or peptides.
To evaluate the results of the predictions, we use metrics to assess their three-dimensional
structure. The metrics used are TM-score [19] and Root Mean Square Deviation (RMSD),
and GDT-TS [20].

This paper is organized as follows. First, we present an introduction to the fragment-
based method and SA algorithms. Second, in the Section 2, we review the definition of
PFP and some relevant protein prediction research in the literature. We also introduce
a brief explanation of CNN and HSA algorithms. Then, we describe the GRSA2-FCNN
methodology. In the Section 4, we present the experimental results comparing the GRSA2-
FCNN algorithm with those in the literature, and we describe the performance of our
methodology. Finally, we discuss our conclusions.

2. Background

Protein prediction aims to find the best three-dimensional structure or NS of a protein.
This is a problem studied in different areas such as computational sciences, molecular
biology, and bioinformatics. Finding the three-dimensional structure of a protein from its
amino acid sequence is a highly relevant problem for the scientific community, in which the
process that nature performs so quickly and efficiently is analyzed. The PFP encompasses
the following important points for protein structure prediction [21]:

• To understand the physical code in which an amino acid sequence dictates its NS.
• Design an algorithm that quickly and efficiently finds the NS.

Designing an algorithm to obtain the NS is the principal objective in relation to the PFP.
Therefore, there are different strategies in the state-of-the-art, which are mainly divided
into two types [22]:

• To determine the NS using only amino acid sequence information.
• To determine the NS using protein structure information, such as the secondary

structure (SS) or fragments of other known proteins.

2.1. Protein Structure Prediction

Finding the three-dimensional structure of a protein known as the NS is very difficult
due to the unlimited number of combinations that it can take; even with faster and more
advanced computers, for finding the NS in proteins, the execution time is still very far
from that obtained by nature in a very short time. This problem is known as Levinthal’s
paradox [23].
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The aforementioned methods Rosetta [9], I-TASSER [8], QUARK [14], PEP-FOLD3 [15],
and AlphaFold [10] have shown promise for predicting the three-dimensional structure of
proteins with good results.

The Rosetta method [9] predicts protein structures by using the primary and secondary
structures; the algorithm employs an assembly of fragments using SA to yield native
protein conformations. I-TASSER predicts protein structures using four steps: threading
templates, assembly of structural fragments, refinement of models, and structure-based
protein function annotation [8,24]. The Quark algorithm uses an assembly of fragments
of small structures and applies an SA for refinement [14]. PEP-FOLD3 is a framework
that predicts peptides between 5 to 50 aa and has three principal steps. Firstly, it starts
with an amino acid sequence for predicting the a priori probability from each fragment of
the peptide to obtain a structural alphabet profile. Secondly, Forward-Backtrack or Taboo
sampling algorithms are applied to generate a sub-optimal series of states or trajectories;
finally, it identifies the clusters and the scoring of the conformation to generate the five best
models [15].

The TopModel method is a fully automated meta-method that uses top-down con-
sensus and deep neural networks for selecting templates. This method combines sev-
eral state-of-the-art strategies, for example, threading, alignment, and model quality
estimation [25].

AlphaFold [10] uses deep-learning-based methods and combines three Neural Net-
works (NN): the first NN predicts the distance between pairs of residues within the protein;
the second NN is applied to estimate the accuracy of the candidate structures. Finally,
the third NN is used to generate the NS protein structure. The combination of these NNs
uses two memory-augmented SA with neural fragment generation [26] with GDT-net
potential and distance potential [27]. In addition, a repeated gradient descent of distance
potential [28] was applied. At the CASP14 event, AlphaFold2 [29] obtained excellent perfor-
mance. AlphaFold2 uses very sensitive homology detection methods such as MMseqs2 [30]
to find homologous templates.

However, even with the aforementioned methods, it has not been possible to obtain the
NS for proteins or peptides. Therefore, even at present, these methods are still improving
their prediction strategies. Strategies that have had outstanding results, such as Alphafold,
use deep-learning techniques [29].

2.2. Deep Learning and CNN

One of the most popular Deep Learning (DL) algorithms is CNN, which uses convolu-
tional operation for the automatic extraction of features from datasets. CNN consists of
convolutional stages, pooling stages, and fully connected layers. CNN has succeeded in
tackling several challenges, such as those described in [31–33]. There are three important as-
pects of a CNN: equivalent representations, sparse interactions, and parameter sharing [34].
There are several CNN architectures [35]; these include AlexNet, ZefNet, GoogLeNet,
and ResNet.

2.3. HSA Algorithms

SA [12,36] is an algorithm inspired by the heating of metals, which has been applied
to NP-hard problems such as PFP [37]. The SA algorithm is applied to solve optimization
problems. This algorithm searches for solutions by minimizing or maximizing its objective
function. A Hybrid Simulated Annealing algorithm of SA applied to PFP is GRSA [16]
which, similarly to SA, minimizes the energy of a protein structure. In addition, GRSA
improves upon the SA cooling process.

In particular, the cooling scheme of GRSA decreases its temperature according to the
cuts of temperatures calculated by the golden number (φ); the temperature decrement
is controlled by the α parameters, which have a range of values of 0.7 ≤ α < 1 and are
related to each temperature cut. In addition, a stop criterion is implemented for reducing
the exploration cost and the execution time.



Axioms 2022, 11, 729 4 of 19

GRSA2 enhances the Golden Ratio Simulated Annealing algorithm (Algorithm 1). This
algorithm has a perturbation phase in which decomposition and a soft collision (line 11)
are implemented. In addition, an acceptance criterion (lines 13 to 16) is applied. Algorithm
2 shows the perturbation process which determines a new solution. GRSA2 was applied to
a set of peptides and mini proteins in the GRSA2-SSP [18] algorithm and compared with
the state-of-the-art. GRSA2 is an algorithm that has been able to refine peptide structures
with good results [17]. However, this application was limited to small peptides in the alpha
class [18]—i.e., when applied to peptides of class none and beta, GRSA2 obtained poor
quality results.

Algorithm 1 GRSA2 algorithm Procedure

1: Data: Tf, Tfp, Ti, E, S, α, KE
2: α = 0.70
3: φ = 0.618
4: KE = 0
5: Tfp = Ti
6: Tk = Ti
7: Si = generateSolution()
8: while Tk ≥ Tf do //Temperature cycle
9: while Metropolis length do //Metropolis cycle
10: Eold = E(Si)
11: Sj = GRSA2pert(Si)
12: EP = E(Sj)
13: if (EP ≤ Eold + KE) then
14: Si = Sj
15: KE = ((Eold + KE) – EP) *random[0,1]
16: end if
17: end while //End Metropolis cycle
18: GRSA_Cooling_Schema(Tfp)
19: GRSA_Stop_Criterion()
20: end while //End Temperature cycle
21: end Procedure

Algorithm 2 GRSA2pert Function

1: GRSA2pert(Si)
2: moleColl, b
3: if b > moleColl then
4: Randomly select one particle Mω
5: if Decompositioncriterionmet
6: Sj = Decomposition(Si)
7: else if
8: Sj = SoftCollition(Si)
9: end if
10: end if
11: return Sj
12: end Function

SA and HSA algorithms are used in the refinement process of protein prediction. In
this work, GRSA2 is used for the refinement of three-dimensional structures.

2.4. Performance Evaluation

The metrics TM-score [19], RMSD, and Global Distance Test-Total Score (GDT-TS)
are commonly used to evaluate PFP methodologies [20]. They are used by the scientific
community, particularly in CASP competitions [19], for evaluating structural quality. They
are described in the following subsections.
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2.4.1. TM-Score

The TM-score scoring function was proposed by Zhang et al. and is defined in
Equation (1) [19]:

TM − score = Max

 1
LN

LT

∑
i=1

1

1 +
(

di
d0

)2

 (1)

where LN is the length of the native structure, LT is the length of the residues (amino
acid) aligned to the structure predicted, di is the distance between the i-th pair of aa, d0 is
a scale to normalize the match difference, and Max represents the maximum value after
optimal special superposition.

2.4.2. GDT-TS

GDT-TS is also used to evaluate the similarity between a predicted protein structure
and a reference structure. The value ranges from 0 (a meaningless prediction) to 1 (a
perfect prediction).

The scoring function of GDT-TS is defined in Equation (2):

GDT − TS =
(GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)

4
(2)

where GDT_P1, GDT_P2, GDT_P4, and GDT_P8 denote the percent of residues under
distance cutoff identifying multiple maximum substructures associated with different
threshold cutoffs (1, 2, 4, and 8 Å) [19]. Reference [19] notes that the metric GDT_TS is
defined as the average coverage of the target sequence of the substructures with the four
different distance thresholds.

2.4.3. RMSD

The RMSD metric is used for measuring the difference between two protein structures;
the minor value of Å is the best result.

The scoring function of RMSD is defined in Equation (3):

RMSD =

√
1
N

n

∑
i=1

di
2 (3)

where N is the number of atoms, and di is the distance between two atoms in the i-th pair.
The RMSD is usually calculated with the backbone of the structure [38].

3. GRSA2-FCNN Methodology

This section describes the GRSA2-FCNN methodology that we propose for the pre-
diction of the three-dimensional structure of a protein starting from the character-based
representation of the sequence of their aa.

The methodology works by processing short subsequences of six aa, consisting of four
stages. As shown in Figure 1, the input of the proposed method consists of the sequence of
aa identified by letters that define the primary structure of the protein. Using this input,
the main stages of the proposed GRSA2-FCNN methodology are as follows:

• Amino acid sequence (Stage 1): The amino acid sequence of the target protein is
the input for our method. In this stage, the fragments database contains a set of
fragments that are classified according to their predominant alpha, beta, and loop
secondary structures.

• Fragments prediction with CNN (Stage 2): The fragments database of stage 1 is used as
the input for training a CNN, which performs the prediction of fragments (alpha, beta,
and loop) and their torsion angles, which are the internal angles of the backbone of a
protein (phi φ, psi ψ, and omegaω). A CNN is used to map aa sequences, described
by their character-based representation, into their corresponding 3D configurations,



Axioms 2022, 11, 729 6 of 19

which are described by the torsion angles φ, ψ, and ω of the bonds of their atoms.
These inputs are short sequences of six amino acids only. We chose to work with
sequences of this length to maintain low computational requirements. The notation
used to represent the input and output of this stage is:

Input[a1, a2, a3, a4, a5, a6]

Output[φ1ψ1ω1, φ2ψ2ω2, . . . , φ6ψ6ω6]

where an indicates the name of the n-th amino acid in the input sequence, and φ, ψ,
andω represent the n-th triplet of the torsion angles for an.

• Assembly of fragments (Stage 3): The predicted fragments (vector of torsion angles)
are concatenated to build a new model of the target sequence. This is to say, the
preliminary predictions of the individual segments are concatenated one after the
other to build a large vector of torsion angles that corresponds to the complete protein.
In this process, the torsion angles of the fragments are assembled in cuts of six amino
acids based on the sequence of the aa target. If eventually, the size of the target
sequence is not proportional to the size of the fragments, some angles cannot be
predicted. In this case, random values are used. This and other issues are solved in
the next stage.

• Refinement by GRSA2 (Stage 4): The full preliminary model, formed by the concate-
nation of fragments from stage 3, is refined with the energy minimization algorithm
GRSA2. The result of this stage is the final tertiary structure of the target protein.
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Figure 1. Example of GRSA2-FCNN method for peptide prediction.

The input of the proposed method consists of the sequence of aa identified by letters
that define the primary structure of the protein. The main stages of the proposed GRSA2-
FCNN methodology are shown in Figure 1.

To summarize, our methodology is very simple in comparison to state-of-the-art
methods and starts from an amino acid sequence that describes the primary structure. Next,
with the amino acid sequence known, a CNN makes the construction of a new model of
enchained fragments and is ready for a refinement stage with GRSA2, which obtains the
final three-dimensional structure. Sections 3.1–3.3 provide details on each stage of our
proposed model.
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3.1. Fragments Prediction with CNN (FCNN)

We use a CNN in stage 2, which we call Fragment CNN (FCNN), that processes short
fragments of six aa, one at a time. The fragments are taken from a database generated by
Flib [39]. The latter database is a fragment library of known three-dimensional structures
taken from the Protein Data Bank [40]. In addition, each fragment is made by making
cuts in the known structures. Thus, we can conform to a set of alpha, beta, and loop
fragments [39]. To obtain our database fragments, we use 12,368 alpha-like fragments,
9953 beta-like fragments, and 3576 loop-like fragments. This database is used as input data
for our CNN. The fragments predicted by this network are described by their amino acid
sequence and their respective torsion angles φ, ψ, and ω. The dataset was divided into
80% for training and 20% for validation. This was done for each type of fragment.

The CNN architecture (see Figure 2) contains four one-dimensional layers (1D CNN)
with a configuration of a kernel size of four, and a ReLU activation function followed by a
dropout with a value of 0.1. Then, there is a maxpooling layer with a size equal to two. In
turn, each convolutional layer contains four 1D filters.
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Figure 2. FCNN Architecture.

After the set of convolutional blocks, the data representation is flattened and passes
through a dropout regularizer with a dropout rate of 0.1, and then on to two fully connected
layers of 128 and 256 neurons, respectively, with a ReLU activation function. The training
configuration used was an Adam optimizer [41], mean square error as a loss function,
200 epochs, and a batch size with a value of eight. Finally, the data representation is fed to
the output layer of 18 neurons with a ReLU activation function, which produces the final
prediction for the 18 torsion angles of the protein. The configuration and parameters of this
CNN were determined by extensive experimentation.

For learning the FCNN parameters, we minimized the Mean Square Error (MSE) loss
function, which measures the average distance in absolute terms between the predicted
and the expected torsion angles φ, ψ, andω. Specifically, we minimized the MSE which is
equal to a function lm for the m-th training sample, which is computed with Equation (4).

minimize lm =
18

∑
j=1

∣∣∣y(m)
j − ŷ(m)

j

∣∣∣ (4)

where the index j denotes each of the 18 torsion angles, i.e., φ, ψ, andω for each of the six
aa in the sequences, ym denotes the ground truth for the m-sample, and ŷm its corresponding
prediction. In turn, the MSE for the whole training set is computed by Equation (5).

l =
1
M

M

∑
m=1

lm (5)

where M indicates the size of the training set.
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As mentioned above, we used the Adam optimizer [41], consisting of 200 epochs, in
batches of eight samples.

3.2. Assembly of Fragments

The construction of the new protein model in stage 3 is based on the assembly of
fragments (i.e., concatenation) of the individual short fragments. FCNN predicts the torsion
angles for the target sequence. Each fragment predicted by the FCNN is assembled one
by one according to the position of their amino acid sequence. To do this, the FCNN
uses the Flib database to train a prediction model, which predicts the torsion angles for
each fragment of the amino acid sequence target. In other words, these torsion angles
represent an initial model Si = [φ1, Ψ1, X1,ω1, φ2, Ψ2, X2,ω2,..., φn, Ψn, Xn,ωn], where the
corresponding angles for each amino acid are determined by the subindex from 1 to n. For
example, in the case of a peptide with 27 aa, it is constructed with four fragments whose
length is six aa. The remaining aa are started with a random value generated by the GRSA2
algorithm during the refinement phase. Figure 3 shows two examples of the initial models
with the fragments generated by FCNN, the 1pef peptide in (a) has a majority alpha SS and
1e0q (b) has a majority beta SS.
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3.3. Refinement by GRSA2

GRSA2 in stage 4 refines the model obtained in the previous stage. The main features
of this algorithm are: First, a fast-cooling SA is implemented. In the cooling scheme to
lower the temperature value, the alpha parameter is used in a range of values from 0.75 to
0.95 with five golden ratio sections, which are determined by experimentation [16]. Finally,
different perturbation strategies are applied to explore the solutions space. The search for
solutions is based on perturbation decomposition and soft collision to find a new structure
with lower energy.

Figure 4 shows four models obtained by the GRSA2 refinement, and the native struc-
ture evaluated with the TM-score and GDT-TS metrics.



Axioms 2022, 11, 729 9 of 19

Axioms 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 
Figure 3. Two examples (a,b) of the initial models with the fragments generated by FCNN. 

3.3. Refinement by GRSA2 
GRSA2 in stage 4 refines the model obtained in the previous stage. The main features 

of this algorithm are: First, a fast-cooling SA is implemented. In the cooling scheme to 
lower the temperature value, the alpha parameter is used in a range of values from 0.75 
to 0.95 with five golden ratio sections, which are determined by experimentation [16]. Fi-
nally, different perturbation strategies are applied to explore the solutions space. The 
search for solutions is based on perturbation decomposition and soft collision to find a 
new structure with lower energy. 

Figure 4 shows four models obtained by the GRSA2 refinement, and the native struc-
ture evaluated with the TM-score and GDT-TS metrics. 

 
Figure 4. Three-dimensional models of peptides refined by GRSA2 (red) and the native structure 
(green). (a–d) show the superposition of the native and prediction structure for the peptides 1pef, 
1egs, 1gjf, and 1dep, respectively. 

4. Results 
We carried out experiments with the proposed GRSA2-FCNN methodology and 

compared it with I-Tasser, Quark, Rosetta, PEP-FOLD3, TopModel, AlphaFold2, and 

Figure 4. Three-dimensional models of peptides refined by GRSA2 (red) and the native structure
(green). (a–d) show the superposition of the native and prediction structure for the peptides 1pef,
1egs, 1gjf, and 1dep, respectively.

4. Results

We carried out experiments with the proposed GRSA2-FCNN methodology and
compared it with I-Tasser, Quark, Rosetta, PEP-FOLD3, TopModel, AlphaFold2, and
GRSA2-SSP. The instances (peptides) that we used in this experiment have a length that
varies from 9 to 49 aa in their primary structure. Consequently, the varying number of aa
also varies the number of torsion angles. Specifically, the number of torsion angles is within
the range [47–304] for each peptide instance. Table 1 shows the peptides dataset that we
used in this work. It contains 60 instances, which are represented with their PDB code and
ordered by the number of aa. These instances according to their SS are classified into alpha
(mostly alpha structures), beta (mostly beta structures), and none (structures with no alpha
or beta majority). Also, we included the experimental method (named Exp in Table 1) used
to obtain the structure of the protein in the Protein Data Bank. The peptides (PDB code) are
taken from [15,17,42,43].

Table 1. Peptides Dataset.

N PDB-Code N◦ aa Var. Type SS Exp N PDB-code N◦ aa Var. Type SS Exp

1 1egs 9 49 none NMR 31 1t0c 31 163 none NMR
2 1uao 10 47 beta NMR 32 2gdl 31 201 alpha NMR
3 1l3q 12 62 none NMR 33 2l0g 32 183 alpha NMR
4 2evq 12 66 beta NMR 34 2bn6 33 200 alpha NMR
5 1le1 12 69 beta NMR 35 2kya 34 210 alpha NMR
6 1in3 12 74 alpha NMR 36 1wr3 36 197 beta NMR
7 1eg4 13 61 none X-ray 37 1wr4 36 206 beta NMR
8 1rnu 13 81 alpha X-ray 38 1e0m 37 206 beta NMR
9 1lcx 13 81 none NMR 39 1yiu 37 212 beta NMR

10 3bu3 14 74 none X-ray 40 1e0l 37 221 beta NMR
11 1gjf 14 79 alpha NMR 41 1bhi 38 216 none NMR
12 1k43 14 84 beta NMR 42 1jrj 39 208 beta NMR
13 1a13 14 85 none NMR 43 1i6c 39 218 alpha NMR
14 1dep 15 94 alpha NMR 44 1bwx 39 242 alpha NMR
15 2bta 15 100 none NMR 45 2ysh 40 213 beta NMR
16 1nkf 16 86 alpha NMR 46 1wr7 41 222 beta NMR
17 1le3 16 91 beta NMR 47 1k1v 41 279 alpha NMR
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Table 1. Cont.

N PDB-Code N◦ aa Var. Type SS Exp N PDB-code N◦ aa Var. Type SS Exp

18 1pgbF 16 93 beta X-ray 48 2hep 42 268 alpha NMR
19 1niz 16 97 beta NMR 49 2dmv 43 229 alpha NMR
20 1e0q 17 109 beta NMR 50 1res 43 268 beta NMR
21 1wbr 17 120 none NMR 51 2p81 44 295 alpha NMR
22 1rpv 17 124 alpha NMR 52 1ed7 45 247 beta NMR
23 1b03 18 109 beta NMR 53 1f4i 45 276 alpha NMR
24 1pef 18 124 alpha X-ray 54 2l4j 46 250 beta NMR
25 1l2y 20 100 alpha NMR 55 1qhk 47 272 alpha NMR
26 1du1 20 134 alpha NMR 56 1dv0 47 279 alpha NMR
27 1pei 22 143 alpha NMR 57 1pgy 47 304 none NMR
28 1wz4 23 123 alpha NMR 58 1e0g 48 294 none NMR
29 1yyb 27 160 alpha NMR 59 1ify 49 290 none NMR
30 1by0 27 193 alpha NMR 60 1nd9 49 303 alpha NMR

Note: The rows of the table are sorted according to the number of aa. Var (variables) and Exp (Experimen-
tal Method).

GRSA2-FCNN was evaluated by processing each instance 30 times. The SMMP [44]
software package (version 3.0) was used to calculate a protein structure with the energy function
(ECEPP/2). The initial and final temperature parameters for each instance were determined by
an analytical tuning method [37]. The algorithms of the proposed methodology GRSA2-FCNN
were executed in the Ehecatl cluster in TecNM/IT Ciudad Madero, which has the characteristics:
Intel ® Xeon ® processor at 2.30 GHz, memory: 64 GB (4 × 16 GB) ddr4-2133, Linux CentOS
operating system, and FORTRAN and Python programming languages.

4.1. First Evaluation

To evaluate our methodology we use the metrics TM-score [19], RMSD [38], and Global
Distance Test-Total Score (GDT-TS) [20]. These metrics are commonly used in the CASP
competition for assessing the quality of the PFP methods. The TM-score has a range of
values [from 0 to 1] to measure the similarity between two protein structures. Values above
0.5 and close to 1 in the TM-score indicate high structural similarity, whereas values below
0.5 indicate low structural similarity. In the case of GDT-TS, a protein is considered more
perfect when its metric is closer to 1. RMSD is the oldest metric used in the PFP area, and a
protein is considered with the best structure when the RMSD value is close to 0.

First, in Figure 5 we show the behavior of GRSA2-FCNN, where the 60 instances were
classified by type of main secondary structure alpha, beta, and none. In the none secondary
structure, there is no case where alpha or beta has a significant majority. GRSA2-FCNN
obtained better results for the case of peptides with more alpha structures having high
values in TM-score and GDT-TS and small values in RMSD. Conversely, peptides with
majority beta structures have the lowest values for TM-score and GDT-TS, and the highest
values in RMSD.

Figures 6–8 show the results of GRSA2-FCNN compared with the state-of-the-art
algorithms, which were executed in their servers. Instances are numbered from {1} to {60}
by sequence from 9 to 49 aa and divided into three ranges for groups of five for each figure:
up to 15, from 16 to 30, 31 to 40, and over 40. In every instance, each algorithm is labeled
with a color and the one with the best result for each instance in its respective metric is
labeled with a letter W, representing the winning method for the group. For the TM-score
metric, we present in Figures 6–8 the mean of the five best scores for each algorithm and the
mean of the corresponding scores in GDT-TS and RMSD. For each algorithm, we performed
a W-count to determine the most frequent winner.
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Figure 8. Comparison of GRSA2-FCNN versus I-TASSER, AlphaFold2, Rosetta, QUARK, PEP-FOLD3,
TopModel, and GRSA2-SSP (from 31 to 40 aa). (a,d,g) show the average of the five best predictions
of TM-score; (b,e,h) present their corresponding GDT-TS metric for each instance; (c,f,i) display the
RMSD results.

In Figure 6, we show the results achieved for the smaller peptides (up to 15 aa), where
AlphaFold2 obtained seventeen Ws (four in TM-score, nine in GDT-TS, and four in RMSD),
while for I-TASSER there were four Ws (two in GDT-TS and two in RMDS), GRSA2-SSP
had seven Ws (three in GDT-TS and four in RMSD), and PEP-FOLD3 had five Ws (one in
TM-score and four in RMSD). GRSA2-FCNN obtained thirteen Ws (ten in TM-score, one
in GDT-TS, and two in RMSD). The three best algorithms for instances with up to 15 aa
were AlphaFold2, GRSA2-FCNN, and GRSA2-SSP. The performance of GRSA2-FCNN is as
good as that of AlphaFold2. In this test, Quark, Rosetta, and TopModel are not included
because they are not designed to predict instances with lengths lower than 20, 27, and
30 aa, respectively.

Figure 7 shows the results obtained for peptides of lengths between 16 and 30 aa.
AlphaFold2 achieved fifteen Ws (three in TM-score, seven in GDT-TS, and five in RMDS),
I-TASSER had twelve Ws (four in TM-score, five in GDT-TS, and three in RMSD), GRSA2-
SSP had two Ws (one in GDT-TS and one in RMSD), QUARK obtained only two Ws (one in
TM-score and one in RMSD), and PEP -FOLD3 had four Ws (all of them in RMSD). The
GRSA2-FCNN methodology achieved twelve Ws (seven in TM-score, four in GDT-TS, and
one in RMSD). Therefore, for this case, the performance of GRSA2-FCNN is better than all
the alternatives when TM-score is used for the comparison.

Figure 8 presents the results for peptides of 31 to 40 aa. AlphaFold2 had twelve Ws
(five in TM-score, six in GDT-TS, and one in RMSD), I-TASSER was the best in seven Ws
(three in TM-score, three in GDT-TS, and one in RMSD), TopModel had thirteen Ws (four in
TM-score, four in GDT-TS, and five in RMSD), Rosetta obtained nine Ws (three in TM-score,
two in GDT-TS, and four in RMSD), GRSA2-SSP had no Ws, QUARK had two Ws in
RMSD, and PEP-FOLD3 one W in RMSD. In this case, GRSA2-FCNN obtained one W in
RMSD. In this test, TopModel was the best method in all the metrics. The performance of
GRSA2-FCNN was not good with this set of instances.

Figure 9 presents the results for peptides of over 40 aa. AlphaFold2 had fourteen Ws
(four in TM-score, five in GDT-TS, and five in RMSD), I-TASSER had eleven Ws (four in
TM-score, four in GDT-TS, and three in RMSD), TopModel had three Ws (one in GDT-TS
and two in RMSD), Rosetta obtained nine Ws (two in GDT-TS, three in TM-score, and four
in RMSD), GRSA2-SSP had one W in TM-score, and QUARK had one in RMSD. GRSA2-
FCNN obtained six Ws (three in TM-score and three in GDT-TS), and AlphaFold2 was
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the best method in all the metrics. The performance of GRSA2-FCNN was better than
TopModel, QUARK, PEP-FOLD3, and GRSA2-SSP.
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Figure 9. Comparison of GRSA2-FCNN versus I-TASSER, AlphaFold2, Rosetta, QUARK, PEP-FOLD3,
TopModel, and GRSA2-SSP (over 40 aa). (a,d,g) show the average of the five best predictions of
TM-score. (b,e,h) present the GDT-TS metric; and (c,f,i) show the RMSD results.

4.2. Second Evaluation

Figures 10 and 11 present a comparison according to secondary structure type and are
organized into two groups. The first group with instances of up to 30 aa and the second
group with instances of greater or equal to 30 aa. This is because the algorithms QUARK,
Rosetta, and TopModel cannot predict peptides less than 20, 27, and 30 aa respectively. In
the first group (Figure 10), we performed a comparison between AlphaFold2, I-TASSER,
PEP-FOLD3, GRSA2-SSP, and our proposed method GRSA2-FCNN, according to the type
of the main secondary structure of the peptides, considering alpha, beta, and none majority
structures. GRSA2-FCNN had good results in alphas and none structures in this group.
However, it is somewhat limited in beta structures.
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proposed method GRSA2-FCNN. In this comparison, our method did not perform so 
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Figure 10. Comparison by major secondary structure type of GRSA2-FCNN versus AlphaFold2,
I-TASSER, PEP-FOLD3, and GRSA2-SSP with TM-score and GDT-TS. (a,d,g) show the set of type
Alpha, Beta, and None evaluated with TM-score (average of the five best predictions for each peptide).
(b,e,h) show GDT-TS for Alpha, Beta, and None. (c,f,i) present the RMSD results in Alpha, Beta,
and None.
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PEP-FOLD3, I-TASSER, GRSA2-SSP, QUARK, Rosetta, and TopModel; TM-score and GDT-TS were
used in this comparison. (a,d,g) show the set of type Alpha, Beta, and None; they were evaluated
with TM-score (average of the five best predictions for each peptide). (b,e,h) were made with GDT-TS
for Alpha, Beta, and None; and (c,f,i) have the RMSD results for Alpha, Beta, and None.

In the second group of over 30 aa (Figure 11), we performed a comparison between
AlphaFold2, I-TASSER, PEP-FOLD3, GRSA2-SSP, Rosetta, QUARK, TopModel, and our
proposed method GRSA2-FCNN. In this comparison, our method did not perform so well.

4.3. Third Evaluation

To analyze the performance of our algorithm for each secondary structure, we con-
sidered the length of the peptides, measured the correlation of the set of peptides in each
structure, and carried out hypothesis tests taking the TM-score as the main metric. In
Figure 12, we present the performance of our GRSA2-FCNN algorithm versus the length
of each peptide grouped by secondary structure alpha, beta, and none. Figure 12c shows
the alpha secondary structure, and the quality achieved by this algorithm decreases with
peptide length for the dataset. The trend shown in this figure is negative, which helps
to explain why the results are more accurate for the alpha structures, as the peptides are
shorter. Figure 12a,b show there is no clear trend for the none and beta secondary structures.
The correlation obtained for the three structures between quality metric versus the length
of the peptides were −0.5156, 0.0770, and −0.04057. These values confirm that the results
obtained by the proposed algorithm show a tendency only for small alpha peptides.

To compare the performance of our algorithm in each group by secondary structure, a
nonparametric Wilcoxon signed-rank test was performed with a critical value of 0.05 and
over for the p-value. For comparison, a ranking of algorithms was established according to
the number of times the best TM-score was obtained (Table 2). In group 1, the proposed
algorithm has, on average, a better result than AlphaFold2. These two algorithms were
compared by establishing the following hypothesis: H0: µ1 = µ2 where µ1 and µ2 are
the means for the GRSA2-FCNN and AlphaFold3 algorithms, respectively. Similarly,
for group 2, the proposed algorithm is compared with the next-best-ranked algorithm
establishing the same null hypothesis. In the third and fourth groups, where the proposed
algorithm ranks 5 and 4, respectively, the proposed algorithm was compared with the
next-best-ranked algorithm, i.e., I-TASSER and Rosetta. The box plots of results obtained
after the hypothesis test are shown in Figure 13.
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Table 2. Ranking of algorithms by TM-score.

Group 1 Group 2 Group 3 Group 4

1◦ GRAS2-FCNN 1◦GRAS2-FCNN 1◦ AlphaFold2 1◦ AlphaFold2
2◦ AlphaFold2 2◦ I-TASSER 2◦ TopModel 2◦ I-TASSER
3◦ PEP-FOLD3 3◦ AlphaFold2 3◦ Rosetta 3◦ Rosetta
4◦ I-TASSER 4◦ QUARK 4◦ I-TASSER 4◦ GRAS2-FCNN
5◦ GRSA2-SSP 5◦ PEP-FOLD3 5◦ GRAS2-FCNN 5◦ GRAS2-SSP

In Figure 13, the box plots obtained with the hypothesis test in alpha and beta struc-
tures are shown using the TM-score metric. These box plots are analyzed by groups and
secondary structures. In the case of alpha structures, the result for the alpha structures of
the proposed algorithm is as follows: in groups, 1, 2, 3, and 4, we note that the proposed
algorithm achieved the places 1st, tied with the best, 5th, and 4th, respectively. Moreover,
we observe that, as the groups are smaller, the proposed algorithm has a better performance.
In the first column of Figure 13, the results of the alpha structure are presented to compare
GRSA2-FCNN with the best of the state-of-the-art. In group 1, where our algorithm is
compared with AlphaFold2, we can observe that GRSA2-FCNN surpassed it. In group 2,
the TM-score average of the GRSA2-FCNN is slightly superior, however, the test hypothesis
results showed these two algorithms are equivalent; thus, we declared in this figure they
are tied. In groups 3 and 4, the TM-score average of I-TASSER and Rosetta surpassed
GRSA2-FCNN.

In the case of beta structures, size does not have an important impact, as was discussed
above. In group 1, GRSA2-FCNN competes against AlphaFold2, which performs better.
In group 2, it competes against I-TASSER and, as is shown in the box plots, I-TASSER
performs better. For groups 3 and 4, the proposed algorithm competes against I-TASSER
and Rosetta, respectively; the result is that, in these two groups, the algorithm has a poor
performance. Consequently, in these last two groups, the proposed algorithm should be
ranked in 5th and 4th place. The none structures could not be assessed because the number
of samples was too small; thus, boxplots were not obtained for these structures.
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The 60 peptides of the dataset evaluated for GRSA2-FCNN show similar performance
to the AlphaFold2 and I-TASSER for up to 30 aa. The fragments generated by CNN
significantly enhanced the initial model. Moreover, the refinement of the model improves
the final peptide prediction. In the case of the larger peptides of over 30 aa, GRSA2-FCNN
does not have the best performance when the comparison is by secondary structure Beta
and None. However, in the case of the Alpha structure, our method is competitive in group
3 in the comparison of the results obtained by I-TASSER with the set of instances proposed
in this paper.

5. Conclusions

In this work, we present the GRSA2-FCNN methodology for the prediction of three-
dimensional peptide structures that includes Golden Ratio Simulated Annealing and Con-
volutional Neural Networks. GRSA2-FCNN is compared to the state-of-the-art methods
I-TASSER, Rosetta, AlphaFold2, PEP-FOLD3, QUARK, TopModel, and GRSA2-SSP in an
experiment testing the performance of GRSA2-FCNN with a set of 60 instances.
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The evaluation and comparison of GRSA2-FCNN results with those of the state-of-
the-art algorithms were based on the metrics currently used in the protein folding problem
area for 60 instances. The dataset of peptides was divided into groups of up to 15 aa, 16 to
30 aa, 31 to 40 aa, and over 40 aa, and the results of each instance were analyzed. The
evaluation shows that GRSA2-FCNN performs very well for up to 30 aa compared to the
state-of-the-art. For the group of up to 15 aa, we found that GRSA2-FCNN was the second
best with AlphaFold2 the winner, while in the group from 16 to 30 aa, GRSA2-FCNN
had the same performance as AlphaFold2. In the group of 31 to 40 aa, AlphaFold2 and
TopModel were the best in obtaining the winning results. Finally, the group of over 40 aa
AlphaFold and I-TASSER were the best, although, GRSA2-FCNN had six good results.

Additionally, we compared GRSA2-FCNN to the state-of-the-art algorithms according
to the secondary structure type, which was divided into two groups, because the algorithms
QUARK, Rosetta, and TopModel can only predict peptides of over 20, 27, and 30 aa,
respectively. The performance of GRSA2-FCNN concerning the type of secondary structure
shows good results for predictions of peptides with mostly alpha type of up to 30 aa, while
in the case of instances of over 30 aa, our method is competitive only in alpha structures.
For the case of peptides that are mostly beta or none, the proposed algorithm gave limited
results compared to AlphaFold2, I-TASSER, Rosetta, and TopModel.

Finally, we made an evaluation using the TM-score metric, where we considered the
secondary structure versus the length (number of aa) of peptides. We show that, in the case
of alpha structure, the length of peptides impacts the quality of the results. Nevertheless, in
beta and none there is no clear trend between the performance metric and the length of the
peptides. Also, assessing with box plots for secondary structures alpha and beta, we show
that the proposed method achieves equivalent results for small peptides to those of the
state-of-the-art. However, it obtains poor results as the length of the peptides is increased.

We analyzed the results obtained by GRSA2-FCNN in comparison with the state-of-
the-art algorithms and concluded that, in the case of peptides, GRSA2-FCNN surpasses
PEP-FOLD3, QUARK, and GRSA2-SSP. The proposed methodology achieves very good
results with the set of instances presented in the paper and for peptides of up to thirty
aa. In conclusion, we find that our methodology is competitive with the other algorithms
evaluated in this paper.
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