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The axial coupling of the nucleon, gA, is the strength of its cou-
pling to the weak axial current of the Standard Model of parti-
cle physics, in much the same way as the electric charge is the
strength of the coupling to the electromagnetic current. This ax-
ial coupling dictates the rate at which neutrons decay to protons,
the strength of the attractive long-range force between nucleons
and other features of nuclear physics. Precision tests of the Stan-
dard Model in nuclear environments require a quantitative under-
standing of nuclear physics rooted in Quantum Chromodynam-
ics, a pillar of the Standard Model. The prominence of gA makes it
a benchmark quantity to determine theoretically – a difficult task
because quantum chromodynamics is non-perturbative, preclud-
ing known analytical methods. Lattice Quantum Chromodynam-
ics provides a rigorous, non-perturbative definition of quantum
chromodynamics that can be implemented numerically. It has
been estimated that a precision of two percent would be possi-
ble by 2020 if two challenges are overcome1,2: contamination of
gA from excited states must be controlled in the calculations and
statistical precision must be improved markedly2–10. Here we re-

port a calculation of g
QCD

A
= 1.271 ± 0.013, using an unconven-

tional method inspired by the Feynman–Hellmann theorem11 that
overcomes these challenges.

To demonstrate the efficacy of lattice Quantum Chromodynamics
(LQCD) for the broad nuclear physics research program, one must
begin by demonstrating control over the simplest quantities, such as
gA. In addition to those mentioned above, there are a number of
challenges in using LQCD to compute properties of nucleons and nu-
clei. The first challenge arises from the non-perturbative features of
Quantum Chromodynamics (QCD) itself. QCD describes the interac-
tions between quarks and gluons, the basic constituents of nucleons,
through the Lagrangian, LQCD = −G

2/(4g)+∑q ψ̄q[D/+mq]ψq , where
the quark fields, ψq , come in flavours q = {u,d, s, ...} with masses
mq = {mu,md,ms, . . .}. G2 describes the non-linear gluon self-
interactions while D/ includes the quark-gluon interactions, both with
a strength determined by the coupling, g. Most of nuclear physics de-
pends on only three or four input parameters from QCD: g, the light
quark masses, mu and md and in some cases, the strange quark
mass, ms. Once these parameters are fixed, and electroweak correc-
tions are added, all of nuclear physics – from the kiloelectronvolt en-
ergy levels in nuclei to the energy densities of the neutron star equa-
tion of state (a few hundred megaelectronvolts per cubic fermi (fm),
where 1 fm = 10−15 m) – can in principle be predicted from QCD.

At short distances (high energies), such as those explored by the
Large Hadron Collider at CERN, QCD has been rigorously tested, be-
cause in this energy regime, g ≪ 1 and perturbative methods are
applicable. At long distances of approximately 1 fm (low energies)
characteristic of nuclear physics, g is large and perturbation theory
fails to converge. Consequently, quarks and gluons are confined in
protons, neutrons and other hadrons observed experimentally. Fortu-

nately, non-perturbative calculations can be carried out in the strong-
coupling regime using LQCD, the only first-principles approach known
to control all sources of systematic uncertainty.

LQCD is the formulation of QCD on a finite four-dimensional space-
time lattice following the Feynman path integral description. Monte
Carlo methods are used to sample the resulting high-dimensional inte-
grals stochastically. The values of the lattice spacing, a, and finite size,
L, are chosen to encompass the characteristic length scales emergent
from QCD, such as the proton radius rp ∼ 0.8 fm. In state-of-the-art
calculations, typical lattice spacings are 0.04 ≲ a/rp ≲ 0.2 and typical
spatial extents are 3 ≲ L/rp ≲ 8. The continuum and infinite volume
limits are recovered through the extrapolation in several values of a
and L. Additionally, the input values of the quark masses in the LQCD
calculations do not typically reproduce their physical values. State-of-
the-art calculations now regularly access mcalc.

π ∼ 130 MeV, where the
pion (π), the lightest hadron, is used to calibrate the input light-quark
mass under the guidance of mnature

π = 139.6 MeV12. In this work, mπ

ranges between 130 and 400 MeV, allowing for a fully controlled inter-
polation (input parameters of the calculation are provided in Extended
Data Tab. II). The continuum and infinite volume extrapolations and
pion mass interpolations are necessary for all LQCD calculations in
order to compare with nature and make predictions.

Over the past decade, the LQCD community has determined
hadronic properties for mesons (which are QCD eigenstates com-
posed of one quark and one antiquark) with fully controlled systematic
uncertainties at the subpercent level, yielding some of the most strin-
gent tests on the structure of the Standard Model (SM). The Flavour
Lattice Averaging Group produces a world average of meson prop-
erties determined from LQCD13, similar to the Particle Data Group
(PDG) averages of experimental results12. In contrast to mesons,
stochastic sampling of the nucleon path integral results in an exponen-
tially smaller signal-to-noise ratio, hence requiring exponentially more
computational resources to replicate the precision achieved for meson
properties. In fact, only a handful of LQCD calculations involving nu-
cleons have demonstrated control over all sources of uncertainty14,15.
Insight provided by previous LQCD calculations of gA also identi-
fies the contamination of excited states as another major source of
uncertainty2–10. Excited state contamination, which results from the
imperfect coupling of the chosen creation operators to the state of
physical interest, is present in all lattice calculations, and has proven
to be particularly problematic for calculations of gA.

The standard method of calculating gA, as shown in Fig. 1a, relies
upon two independent separation times: the separation of the neu-
tron and proton (tsep), and the separation of the neutron and the in-
sertion of the weak axial current (tins). Although gA is independent
of both times, the contamination from excited states is time depen-
dent. This contamination shifts the calculated values of gA at small
time separations, but vanishes exponentially with respect to tins and
tsep − tins. Computational limitations restrict the calculations to have
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Figure 1 ∣ Feynman diagrams of gA. The decay of a neutron to a proton occurs when one of the down quarks (d) in the neutron is converted to an up (u) quark via
the vector and axial components of the weak current. Not depicted in these figures are the infinite set of diagrams describing the coupling of the gluons to the quarks,
gluons to gluons and the dynamical quark/anti-quark pairs popping in and out of the vacuum – it is this infinite set of graphs that requires the use of a computational
approach to QCD. The time, t, refers to calculational details discussed in the text. a, The standard method of computing gA relies upon three different times, the
creation time t = 0, the current insertion time tins and the separation time tsep. Controlling the excited state systematics requires varying both tins and tsep. b, Our

Feynman-Hellmann method11 sums over all possible interaction times (tins) of the external weak axial current, leading to an exponential enhancement of the signal.

fixed (and relatively small) neutron-proton separation times, requiring
multiple calculations with varying values of tsep to fully control the ex-
cited state contributions. However, the relative stochastic noise grows
exponentially with tsep while only vanishing with the square root of the
stochastic sample size. Therefore, overcoming the noise requires ex-
ponentially more computing resources, rendering the standard method
an expensive strategy.

In contrast, the method we use in this work11, inspired by the
Feynman-Hellmann Theorem, uses an explicit sum over all current
insertion times, tins (Fig. 1b), with the ability to vary t = tsep, at the
numerical cost of a single separation time of the standard method:
all excited state contributions depend only upon t and the computa-
tion must asymptote to gA in the large t limit (Fig. 2). By analysing
the spectrum and gA matrix element calculations simultaneously with
nonlinear regression, we demonstrate the ability to fully control excited
state contributions and determine precise values of gA, as suggested
by the agreement between the data (gray points with error bars) and
the fit Ansätze (gray bands). In Supplemental Material Sec. S.4, Ex-
tended Data Fig. 1 and Supplemental Figs. 9–15, we show this is true
for all ensembles (different choices of a, L, and mπ) in our calcula-
tion. In summary, this Feynman-Hellman inspired method11 provides
access to more data (t = tsep in Fig. 2) with a reduced computational
cost, allowing us to remove the unwanted excited state contamination
and utilize data at early times, where the signal-to-noise ratio is ex-
ponentially more precise, thus resolving both of the aforementioned
major challenges to determining gA.

What remains is to extrapolate the values of gA obtained from our
lattice calculations to the physical parameters. Effective Field Theory
(EFT)16 is employed to provide a rigorous prescription for perform-
ing the continuum and infinite volume extrapolations along with the
interpolation to the physical pion mass. First, one identifies the rel-
evant degrees of freedom for low-energy nuclear physics, which are
the nucleons and pions. Second, one identifies a small expansion pa-
rameter, ǫ, which often emerges through a ratio of length scales; for
pions, this is ǫπ = mπ/(4πFπ), where Fπ is the quantity known as
the pion decay constant. F nature

π is measured to be 92.1(1.2) MeV12,
and ǫnature

π ∼ 0.12. The resulting EFT may be systematically im-
proved: when working to O(ǫnπ) (where n = 0 denotes leading order,
n = 1 next-to-leading order, and so on), the truncation errors enter at
O(ǫn+1π ).

Chiral Perturbation Theory (χPT) is the EFT of pions17 and their in-
teractions with nucleons18, and describes all possible interactions be-
tween them that are consistent with the symmetries of QCD, ordered
by increasing powers of ǫπ . Although the forms of the interactions
are known, the strengths of the interactions are emergent low-energy
couplings, and can be determined only from experiment or LQCD cal-
culations. However, once the couplings are known, χPT can be used
to make predictions of new quantities, and in particular, can be used to
describe the simulated universes where the quark masses differ from
those in nature. This allows for a model-independent interpolation of
LQCD results to mnature

π .
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Figure 2 ∣ Demonstration of the improved method11 on the ensemble with
lattice spacing a ≈ 0.09 fm and mπ ≈ 220 MeV. The two sets of results for

g̊eff
A (t/a) correspond to different choices of annihilation operators for the

nucleon, denoted as SS and PS. At long times, both values must approach the
ground state value of g̊A asymptotically, whereas at short times, they couple
differently to the excited state contributions. The raw numerical results are
shown in grey and the grey bands represent the full fit to the data (points inside
the vertical grey bands are not included in the fits). Error bars correspond to
one standard error of the mean (s.e.m.). The solid black and white data points
are reconstructed from the two datasets, with the excited states (determined by
the fit) subtracted from the raw results. The solid blue band is the ground state
value of g̊A determined by the full fit. We make efficient use of points at small
Euclidean times, before the stochastic noise overwhelms the signal. The
agreement between the subtracted data and the asymptotic large-time value of
g̊A, even at short times, demonstrates our control over excited state
contributions. The time axis is given in dimensionless lattice units, with
a ≈ 0.09 fm corresponding to 3 × 10−25 s, so that t/a = 2 corresponds to

6 × 10−25 s.

χPT is also extended to account for artefacts arising from the fi-
nite periodic volume19. For the large volumes used in our calculation,
the small parameter controlling the finite-volume corrections scales
approximately as ǫL = e

−mπL. Extended Data Fig. 2 shows consis-
tency between the predicted finite-volume corrections and our results
at fixed pion mass.

Artefacts introduced by our calculation at non-zero lattice spacing
are also accounted for with EFT. Unlike dependence on ǫπ and ǫL,
which are governed purely by the long-distance dynamics of QCD,
the continuum extrapolation depends upon the specific discretization
of the QCD Lagrangian, or lattice action, employed in the calculation.
To parameterize these artefacts, one uses Symanzik’s EFT20 and ex-
pands the non-local discretized action around small lattice spacings,
giving a series of purely local interactions. The resulting effects in low-
energy dynamics can be systematically understood. The dependence
on the choice of discretization must vanish in the continuum limit since
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Previous peer reviewed works are available for LHPC053, CLS124, QCDSF135, RQCD146, ETMC157, PNDME162, ETMC178 and CLS179. The averaged

experimental determination is obtained from the Particle Data Group12. Uncertainties are one s.e.m.

the only interactions remaining are those of QCD. The lattice action
we have chosen21 was designed to minimise the leading discretiza-
tion errors, such that the leading corrections scale as O(a2), and to
preserve more of the underlying symmetries of QCD. This choice of
lattice action yields a mild continuum extrapolation (Extended Data
Fig. 3).

The final extrapolation of our results (Extended Data Table I) is pre-
sented in Fig. 3a. For quantities with mild pion mass dependence,
such as gA, a simple Taylor expansion in ǫπ or ǫ2π in addition to the
χPT extrapolation, provides a robust extrapolation/interpolation of the
results. We perform the extrapolation with several models and our final
result is determined as a model average, depicted in Extended Data
Figure 4, and described in detail in Supplemental Material Secs. S.6
and S.7 A. Our final result, gA = 1.271 ± 0.013, with the uncertain-
ties broken down to the different contributions of statistical (s), chiral
(χ), continuum (a), infinite volume (v), isospin breaking (I) and model-
selection (M) is

gA = 1.2711(103)s(39)χ(15)a(19)v(04)I(55)M . (1)

This value that is commensurate with the experimentally determined
value, gPDG

A = 1.2723(23)12,22–28.

Figure 3b summarises the improvement of the LQCD determina-
tion of gA achieved by this work. These results are derived from three
lattice spacings, five values of the pion (quark) masses and multiple
volumes, which control the three standard extrapolations (the input
values of parameters used in our calculation are provided in Extended
Data Table II). Additionally, we demonstrate that our result is robust
under different truncations/variations in the extrapolation function (Ex-
tended Data Fig. 5) and that the perturbative expansion converges
over the range of parameters used, as discussed in the Supplemen-
tal Material Sec. S.7 A and shown in Extended Data Fig. 6. Details
on the individual contributions to our total uncertainty may be found in
Supplemental Material Sec. S.7 B.

Our result, Eq. (1), is predominantly limited by statistics. This signi-
fies a straightforward path for improvement: more precise results at the
physical pion mass will reduce the statistical, extrapolation and model-
selection uncertainties, which are the three largest. An uncertainty
comparable to that of measurements may offer insight into the upward
trending value of gA observed in the most recent set of experiments12.
At the present, our result has a noticeable phenomenological impact,
as depicted in Extended Data Fig. 7. Using EFT, experimental re-

sults from collider and low-energy experiments can be used to place
bounds on right-handed BSM currents29 with our result placing one of
the most stringent bounds.
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ensemble ǫπ mπL a/w0 αS gA

a15m400 0.30374(53) 4.8451(49) 0.8804(3) 0.58801 1.216(06)

a15m350 0.27411(50) 4.2359(47) 0.8804(3) 0.58801 1.198(13)

a15m310 0.24957(36) 3.7772(48) 0.8804(3) 0.58801 1.215(12)

a15m220 0.18084(30) 3.9673(45) 0.8804(3) 0.58801 1.274(14)

a15m130 0.11340(74) 3.227(19) 0.8804(3) 0.58801 1.270(72)

a12m400 0.29841(52) 5.8428(39) 0.7036(5) 0.53796 1.217(10)

a12m350 0.27063(69) 5.1352(49) 0.7036(5) 0.53796 1.236(14)

a12m310 0.24485(50) 4.5282(41) 0.7036(5) 0.53796 1.214(13)

a12m220S 0.18419(57) 3.2523(76) 0.7036(5) 0.53796 1.272(28)

a12m220 0.18221(42) 4.2959(56) 0.7036(5) 0.53796 1.259(15)

a12m220L 0.18156(44) 5.3604(61) 0.7036(5) 0.53796 1.252(21)

a12m130 0.11347(50) 3.899(12) 0.7036(5) 0.53796 1.292(30)

a09m400 0.29818(53) 5.7965(46) 0.5105(3) 0.43356 1.210(08)

a09m350 0.26949(57) 5.0502(62) 0.5105(3) 0.43356 1.228(15)

a09m310 0.24619(44) 4.5035(38) 0.5105(3) 0.43356 1.236(11)

a09m220 0.18197(37) 4.6990(32) 0.5105(3) 0.43356 1.253(09)

Extended Data Table I ∣ Data and inputs for the chiral-continuum extrapolation. ǫπ , mπL, and renormalized values of gA determined in this work. The lattice

spacing a/w0 and strong coupling-constant αS are obtained as described previously21. We use a/w0 determined at the physical-mass for each lattice spacing. The
quantities ǫπ , a/w0, and mπL are used to guide the chiral, continuum, and infinite volume extrapolations respectively.
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HISQ gauge configuration parameters valence parameters

abbr. Ncfg volume
∼ a

[fm]
ml/ms

∼mπ5

[MeV]
∼mπ5L Nsrc L5/a aM5 b5 c5 amval.

l
σsmr Nsmr

a15m400 1000 163 × 48 0.15 0.334 400 4.8 8 12 1.3 1.5 0.5 0.0278 3.0 30

a15m350 1000 163 × 48 0.15 0.255 350 4.2 16 12 1.3 1.5 0.5 0.0206 3.0 30

a15m310 1960 163 × 48 0.15 0.2 310 3.8 24 12 1.3 1.5 0.5 0.01580 4.2 60

a15m220 1000 243 × 48 0.15 0.1 220 4.0 24 16 1.3 1.75 0.75 0.00712 4.5 60

a15m130 1000 323 × 48 0.15 0.036 130 3.2 5 24 1.3 2.25 1.25 0.00216 4.5 60

a12m400 1000 243 × 64 0.12 0.334 400 5.8 8 8 1.2 1.25 0.25 0.02190 3.0 30

a12m350 1000 243 × 64 0.12 0.255 350 5.1 8 8 1.2 1.25 0.25 0.01660 3.0 30

a12m310 1053 243 × 64 0.12 0.2 310 4.5 8 8 1.2 1.25 0.25 0.01260 3.0 30

a12m220S 1000 243 × 64 0.12 0.1 220 3.2 4 12 1.2 1.5 0.5 0.00600 6.0 90

a12m220 1000 323 × 64 0.12 0.1 220 4.3 4 12 1.2 1.5 0.5 0.00600 6.0 90

a12m220L 1000 403 × 64 0.12 0.1 220 5.4 4 12 1.2 1.5 0.5 0.00600 6.0 90

a12m130 1000 483 × 64 0.12 0.036 130 3.9 3 20 1.2 2.0 1.0 0.00195 7.0 150

a09m400 1201 323 × 64 0.09 0.335 400 5.8 8 6 1.1 1.25 0.25 0.0160 3.5 45

a09m350 1201 323 × 64 0.09 0.255 350 5.1 8 6 1.1 1.25 0.25 0.0121 3.5 45

a09m310 784 323 × 96 0.09 0.2 310 4.5 8 6 1.1 1.25 0.25 0.00951 7.5 167

a09m220 1001 483 × 96 0.09 0.1 220 4.7 6 8 1.1 1.25 0.25 0.00449 8.0 150

Extended Data Table II ∣ HISQ gauge configurations and valence sector parameters.The HISQ ensembles used in this work (with the abbreviated naming

convention2 (‘abbr.’), a15m310 stands for the ensemble with a ∼ 0.15 fm and mπ ∼ 310 MeV. The table also shows the number of configurations Ncfg, lattice volume,
approximate lattice spacing a, ratio of the input light and strange sea quark masses (ml/ms), approximate HISQ taste-5 pion mass, and approximate value of

mπ,5L. The values were obtained from Table I of ref.30 with increased number of configurations. With the HISQ gauge configurations, we generate Mobius
domain-wall propagators at a number of sources per configuration Nsrc, with the fifth dimensional extent L5/a, such that mres is minimized at aM5, with the Mobius

kernel defined by b5 and c5, and valence light-quark masses amval.
l . We also list the width σsmr and iteration count Nsmr of the SHELL SOURCE and the

GAUGE INV GAUSSIAN smearing algorithm in Chroma.
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Extended Data Figure 1 ∣ Correlator fit quality and stability. a, b, c Fit result for the effective mass (meff), axial (̊geff
A ) and vector (̊geff

V ) FH ratios overlayed on top of
correlator data. The black and white filled results are constructed ground state values determined by subtracting the excited state contributions from the raw
correlation functions under bootstrap resampling. d, The distribution of g̊A /̊gV under 5000 bootstrap resamples. The inner shaded green regions correspond to the
68% (dark green) and 95% (light green) confidence intervals. All 5000 bootstraps are shown with no evidence of outliers. e, f Stability of the correlation function

analysis under varying tmin and tmax for meff , g̊eff
A , and g̊eff

V . The corresponding P -values are shown in the bottom panel. The preferred simultaneous fit is
highlighted by the solid black symbol. Uncertainties are one s.e.m.
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mπL = {5.36, 4.30, 3.25}. The NLO finite-volume dependence predicted from the model averaged extrapolation (to all 16 data points) is displayed by the green
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Extended Data Figure 4 ∣ Model Extrapolation Plots. a, The model averaged extrapolation of gA as a function of ǫπ , determined as described in Supplemental
Material Sec. S.7 A. b, The determination of gA at the physical point from the model averaging procedure. The magenta histogram is the final determination of gA
constructed from a weighted average of the various models used in the extrapolation, appearing as the various distributions lying inside the final histogram. c–h, The
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All fits have 16 degrees of freedom as each prior is counted as a data point. The right panel shows the resulting Bayes factors normalized by the NLO Taylor ǫ2π Bayes
factor, which is found to be the largest among them. These normalized Bayes factors are used as relative weights in the model averaging procedure. The stability of
the extrapolation analysis is tested by adding additional discretization terms, omitting the predicted NLO finite volume corrections, increasing the prior widths on the
LO and all LECs, performing cuts on the pion masses considered as well as cuts on the discretization scales included. All variations are contained within 1σ of the
model average value, with most being significantly less than 1σ from the central value. Finally, we show the resulting extrapolation from the complete N3LO χPT
analysis and the NLO chiral perturbation theory analysis with ∆ degrees of freedom (χPT(∆)). The N3LO fit is not included in the average as it has 5 unknown LECs
and we have only 5 different pion mass values. The NLO χPT(∆) is not included as it requires input from phenomenology and is thus not a pure lattice QCD
prediction, and also the NNLO χPT(∆) extrapolation function is not known, so a test of stability and convergence is not possible. Uncertainties are one s.e.m.
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Extended Data Figure 6 ∣ Convergence of gA. Order-by-order contribution to the extrapolation of gA for the six different models that enter in the final model
averaged result (see Supplemental Material Sec. S.6). The LECs are determined by the full fit from each model. Higher orders are successively additively included,
producing the final reconstruction of the extrapolation when all contributions up to a given order are included.
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SUPPLEMENTAL INFORMATION
S.1. Data and software availability

An HDF5 file containing the lattice QCD correlation functions gen-
erated for this work is made available with the publication of this Letter.
Additionally, bootstrap distributions from the correlation function anal-
ysis are published in a comma-separated-values (CSV) file along with
the Jupyter notebook and chiral-continuum extrapolation Python li-
brary used to perform the physical-point extrapolation analysis. These
files along with installation instructions for the package may be found
at https://github.com/callat-qcd/project_gA31.

The software used for this work was built on top of the USQCD
Chroma software suite32 and the highly optimised QCD GPU library
QUDA33,34. We utilize the highly efficient HDF5 I/O Library35 with an
interface to HDF5 in the USQCD QDP++ package, added with Sci-
DAC 3 support (CalLat)36, as well as the MILC software for solving
for HISQ propagators and generating new ensembles. The HPC jobs
were efficiently managed with a bash job manager, METAQ37, capa-
ble of intelligently backfilling idle nodes in sets of nodes bundled into
larger jobs submitted to HPC systems. METAQ was also developed
with SciDAC 3 support (CalLat) and is available at the git repository
https://github.com/evanberkowitz/metaq.

S.2. Correlation functions from the
Feynman-Hellman theorem

The significant advancement of our work can be attributed to an un-
conventional computational method. This method was developed and
implemented on one of the ensembles used in this work (a15m310)11

and demonstrated on a larger subset in preliminary calculations38,39.
We briefly summarise the method here as it is central to our final re-
sult.

The Feynman-Hellmann (FH) theorem relates matrix elements to
linear variations in the energy eigenvalue with respect to an external
source, ∂En/∂λ = ⟨n∣Hλ∣n⟩ , where the Hamiltonian of the system is
modified appropriately asH =H0+λHλ. The Heisenberg representa-
tion illuminates the fact that correlation functions must be exponentially
damped by the energy eigenvalue under time evolution in Euclidean
spacetime. Therefore, on the lattice the energy can be determined
from the effective mass,

meff(t) = ln( C(t)
C(t + 1)) , (S1)

where the spectral decomposition of the two-point correlation function
is given by

C(t) = Nstates

∑
n=0

znz
†
ne
−Ent . (S2)

Applying the FH theorem to Eq. (S1) yields the correlation function we
construct to obtain the results in this Letter, which we denote the FH
ratio:

∂meff
λ
(t)

∂λ

RRRRRRRRRRRλ=0 = [
∂λCλ(t)
C(t) −

∂λCλ(t + 1)
C(t + 1) ]∣λ=0 . (S3)

The path integral representation of C(t) and ∂λC(t) for this calcu-
lation may be derived by sourcing the nucleon and current operators
into the generating functional, while applying the appropriate deriva-
tives with respect to each source.

There are other implementations of methods motivated by the FH
theorem40–42 which are similar, but our method is the most economical
implementation, at least for single nucleon properties. Our method di-
rectly calculates the −∂λC(t) correlation function11, without the need
to numerically implement the derivative or to disentangle the different
orders of the response of the correlation function to the perturbation,
as is required by other implementations.

While we are interested in the axial coupling of the ground state nu-
cleon, the nucleon operators couple to an infinite tower of states, and
therefore it is customary to filter out the ground state signal by expo-
nentially damping the excited state signals at large time separations.

By going to the Heisenberg representation, we derive the complete
spectral decomposition of − ∂λCλ(t)∣λ=0,

−∂λCλ(t) = Nstates

∑
n=0

[(t − 1)zngnnz
†
n + dn] e−Ent

+

Nstates

∑
n≠m=0

zngnmz
†
m

e−Ente
∆nm

2 − e−Emte
∆mn

2

e
∆mn

2 − e
∆nm

2

, (S4)

allowing us to analyse correlation functions even at small time separa-
tions. Here, gnn for n = 0 is the ground state coupling of the nucleon,

znz
†
n is the non-relativistically normalized relative probability of finding

the nucleon in the nth state and ∆nm = En−Em. The linear enhance-
ment of gnn is a direct manifestation of the FH theorem, in which the
first derivative of the spectrum (described by the two-point correlation
function) is taken, thereby generating a linear moment. Additionally,
excited state contributions in the linearly enhanced n > 0 terms are
analogous to contamination present in standard two-point correlation
functions, which are generically well under control. The remaining
contamination from lattice artefacts, dn and the sum over n ≠ m, are
not linearly enhanced and therefore are functionally distinct from the
signal of interest and can be cleanly removed. The artefacts, dn arise
from contact terms where the current insertion is at the same time as
the nucleon creation or annihilation operators, and also from the time
region where the current is earlier or later than the nucleon creation or
annihilation operators respectively11. At t = 1 the contribution from all
terms aside from dn exactly vanish, allowing for a robust estimate of
the contributions to −∂λCλ(t) from these undesired artefacts.

Inserting Eqs. (S2) and (S4) in to Eq. (S3), it is straightforward to
show that in the long-time limit, we recover the ground-state matrix
element of interest

lim
t→∞

∂meff
λ (t)
∂λ

RRRRRRRRRRRλ=0 = g00 . (S5)

The difference in Eq. (S3) leads to an additional suppression of the
excited states (and contact terms) beyond the standard exponential
suppression by the mass gap. This allows us to make use of numeri-
cal data very early in Euclidean time, before the stochastic noise over-
whelms the signal43,44, providing an effective exponential enhance-
ment of the signal for a fixed number of stochastic samples as com-
pared to the standard methods. In Extended Data Fig. 1 and Supple-
mental Figs. 9–15, we demonstrate our ability to fit early in Euclidean
time on all ensembles used in this work.

One potential drawback of our Feynman-Hellmann strategy is that
it requires new calculations of Feynman-Hellmann quark propagators
for each matrix element or momentum injection of interest. By con-
trast, the standard methods used in the literature provide the flexibility
to study arbitrary quark bi-linear matrix elements between the pro-
ton and neutron, with arbitrary momentum injection by the current,
without need for additional computational cost. On the other hand,
our Feynman-Hellmann method comes with an additional flexibility not
present in the standard methods: we can compute the matrix elements
of the same quark bi-linear currents in various hadronic states, such
as hyperons or multi-nucleon systems, without needing to recompute
the quark propagators coupling to the current. Using the standard
methods, the sink interpolating operator is fixed, so computing a new
sequential propagator is necessary for each final state.

S.3. Lattice action

For this work, we have chosen a mixed action (MA) in which the
discretizations for the generation of the gauge configurations and so-
lution of the quark propagators differ.21 Details of tuning the action and
its salient features are summarised here.

https://github.com/callat-qcd/project_gA
https://github.com/evanberkowitz/metaq
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A. Action Details

To control the continuum limit, infinite volume and physical pion
mass extrapolation, a set of LQCD ensembles with multiple lattice
spacings, multiple volumes and near physical pion masses must be
used. The only set of publicly-available gauge configurations that sat-
isfy these criteria are the Highly Improved Staggered Quark (HISQ)45

action ensembles with dynamical light, strange and charm quarks
(Nf = 2+ 1+ 1) generated by the MILC Collaboration30,46. They were
generated with near-physical values of the strange and charm quark
masses and three values of the pion mass,mπ ∼ {130, 220, 310}MeV.
For this work, we utilize ensembles with three different lattice spac-
ings of a ∼ {0.15, 0.12, 0.09} fm. Formally the HISQ action has lead-
ing discretization errors starting at O(αSa

2,a4), however improved
link-smearing greatly suppresses taste-changing interactions leading
to numerically smaller discretization errors. The gluons are simulated
using the tadpole-improved47, one-loop Symanzik gauge action48 with
leading discretization errors starting at O(α2

Sa
2,a4).

We performed a dedicated volume study at a ∼ 0.12 fm mπ ∼

220 MeV with three volumes. To control the pion mass extrapolation,
we generated six new HISQ ensembles with mπ ∼ {350, 400} MeV on
the same three lattice spacings (these ensembles are available to any
interested group upon request). Details of the HISQ ensembles are
presented in Extended Data Table II.

The valence quark propagators are solved with the Möbius Do-
main Wall Fermion (MDWF) action49–51 after applying the gradient-
flow smoothing algorithm52,53 to the HISQ configurations. The Möbius
kernel with gradient-flow smoothing reduces the residual chiral sym-
metry breaking such that mres < 0.1 ×mval.

l
for moderate values of L5

and thus the valence action has approximate chiral symmetry54 as it
satisfies the Ginsparg-Wilson relation55 with small corrections. The
values of b5 and c5 were chosen (Extended Data Table II) such that
the Möbius kernel is a rescaled Shamir kernel56,57 of the domain-wall
action58 (b5 − c5 = 1). The calculation of these MDWF propagators re-
quired the significant majority of computing cycles and were efficiently
solved using the QUDA library33 with parallel MPI Support34. After
absorbing mres into the quark mass through the PCAC relation, the
MDWF action has discretization errors beginning at O(a2,αSa

2)59.

B. Computational Details

The valence quarks are tuned so that the MDWF pion mass
matched the taste-5 HISQ pion mass within 2%, ensuring a unitary
theory in the continuum limit. Multiple sources per configuration are
used to increase our statistical samplings. On a given configuration,
for a series of evenly spaced time-locations, a seeded random ori-
gin is chosen, (x0,y0, z0, t0) along with its antipode, (x0,y0, z0, t0) +
L/2(1, 1, 1, 0) (modulo the periodic spatial boundary conditions). At
each point, a smeared source is generated to solve the MDWF quark
propagators using the SHELL SOURCE with the GAUGE INV GAUSSIAN

routine in Chroma32. The correlation functions are constructed with
two choices of sink smearing, a SHELL SINK with parameters match-
ing the source and a POINT SINK. The proton and neutron correlation
functions are constructed using the local interpolating operator with
the largest overlap on the positive-parity nucleon states60,61. We dou-
ble the statistics by generating analogous correlation functions for the
negative parity nucleon. Under a time-reversal transformation the nu-
cleon reverses parity, allowing us to average the forward propagating
nucleon correlation functions with the backward propagating negative-
parity nucleon correlation functions. Once constructed, all the corre-
lation functions are shifted to t0 = 0 and averaged. We observe no
correlation between different sources, resulting in statistical uncertain-
ties inversely proportional to

√
Nsrc as first observed and studied in

detail in previous work62. All parameter choices for the valence MDWF
action are presented in Extended Data Table II.

We have demonstrated the gradient-flow time (tgf ) independence

of MN /Fπ and FK/Fπ for our action21. In particular, we demon-
strate, with a reduced data set, that the extrapolation of FK/Fπ to
the physical point in the continuum is independent of flow time and
also consistent with the FLAG determination13. In this work, we also
study the flow-time dependence of gA. In Figure 1, we show ratios

of the axial over the vector FH ratios for the a15m310 and a09m310
ensembles with 196 configurations at a single source. The point-
sink (squares) and smeared-sink (circles) FH ratios are plotted with
tgf = {1.0, 0.6, 0.2} respectively from left to right. In both ensembles,
we observe minimal flow time dependence in the ratio of correlators.
Additionally the flow time is fixed to tgf = 1.0 in lattice units on all
gauge configurations, ensuring that any quantity extrapolated to the
continuum limit will be flow-time independent. For tgf = 1.0, we find it
sufficient to solve the gradient flow diffusion equation with 40 integra-
tion steps using the Runge-Kutta algorithm. Furthermore, we observe
smaller stochastic uncertainty at increasingly larger values of tgf due
to the gradient flow suppressing the ultraviolet noise. These conclu-
sions are consistent with the results observed in previous work21 for
other hadronic quantities (e.g. Fig. 3 therein).

We also study possible autocorrelations in our data set by binning
the FH ratio correlation functions for every ensemble used in this work.
Extended Data Figure 1 shows a representative example of a binning
study. We observe that the standard deviation of the raw correlation
function is stable under binning for bin sizes up to four, demonstrating
that no autocorrelations are present in the data. The complete binning
study is presented in the Supplemental Figs. 22–24. We do not bin
any of our data in this work.

S.4. Correlator analysis

The exact wavefunction for the ground state nucleon is unknown,
so lattice correlation functions are constructed with interpolating oper-
ators for the initial and final states. Therefore, the correlation function
describes a superposition of the ground state nucleon of interest and
nucleon excited states. Disentangling the ground state from the ex-
cited state contamination requires careful analysis of the correlation
functions, and has proved to be one of the major challenges for past
calculations of gA. As a result of the unique construction of the lattice
correlation function though our Feynman-Hellmann strategy, we have
access to measurements of the correlation function at both longer and
shorter separations between the initial and final states, allowing for a
more complete study of excited state contributions compared to pre-
vious works. Additionally, nucleon observables suffer from exponen-
tially severe decay in signal-to-noise, posing a serious challenge for
high precision calculations. Compared to previous works, exponen-
tially more precise data (at early times) is leveraged in this analysis to
combat the severe decay in the signal.

A. Analysis Strategy

For each ensemble, we perform a simultaneous fit to six correlation
functions which include the nucleon two-point correlation function, the
vector and axial-vector FH ratios [Eq. (S3)], and for each of these, two
different correlation functions corresponding to two different choices of
sink smearing for the quark fields. This greatly enhances the amount
of correlated data when determining a large subset of shared param-
eters (i.e. En and zn). Strategies for estimating the unknown parame-
ters were previously discussed11. In the present work, we first perform
a two-state Bayesian constrained fit to explore the parameter space in
t, and then take the central value of the resulting posterior distribution
as the initial guess to a final two-state unconstrained fit using non-
linear χ2 minimization. Preconditioning the unconstrained fit does not
change the final result, but serves as an effective method to explore
large parameter spaces, and minimises the iteration count required
for convergence. In principle, preconditioning the unconstrained fit
from the posterior distribution obtained from Bayes’ theorem provides
a strategy for avoiding unphysical local minima in the χ2 manifold. In
hindsight however, the data is well-behaved with relatively sharp min-
ima. Bayesian constrained fits with up to eight states were performed
resulting in consistent results11.

We assess the quality of the candidate fits by first considering only
results with P -values greater than 0.05 in order to discriminate against
fits of poor quality (e.g. Extended Data Fig. 1e,f). Next, we study the
effects of excited state contamination by varying the fit regions over
different time separation, and demand that the candidate fit lies in
the region of stability (Extended Data Fig. 1e,f). Finally we quantify
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Supplemental Data Figure 1 ∣ Gradient flow time dependence and Monte Carlo autocorrelation time study. a, b, The flow-time dependence from
tgf = {1.0, 0.6, 0.2} from left to right (dark to light). We observe flow time independence in the axial to vector correlation function ratios, and smaller stochastic noise
at larger flow times. c, d, The uncertainty of the mean under bootstrap resampling with successively larger bin sizes of Nbins = {1, 2, 3, 4} from left to right (dark to
light). We observe the uncertainty of the mean to be unchanged under binning, indicating that there are no autocorrelations present in our data. For all plots, the
circle and square data points correspond to the smeared- and point-sink correlation functions. Uncertainties are one s.e.m.

ensemble tC
min

tCmax tA
min

tAmax tV
min

tVmax g̊A g̊V χ2/dof [dof] P -value (ZA/ZV − 1) × 105
a15m400 6 11 3 11 5 11 1.213(06) 0.998(01) 1.3 [24] 0.14 4.20(17)

a15m350 4 12 2 12 4 12 1.195(13) 0.997(01) 1.3 [38] 0.11 3.00(19)

a15m310 4 14 4 10 4 15 1.216(11) 1.001(02) 1.1 [40] 0.32 1.77(24)

a15m220 3 11 4 9 4 9 1.275(13) 1.000(04) 1.5 [22] 0.07 3.7(1.3)

a15m130 2 10 2 6 2 7 1.262(53) 0.994(35) 1.6 [20] 0.05 1.87(52)

a12m400 5 10 5 11 7 11 1.237(10) 1.016(01) 1.5 [16] 0.07 4.22(13)

a12m350 7 14 5 11 5 14 1.255(14) 1.016(01) 0.93 [30] 0.57 2.75(10)

a12m310 5 12 4 12 6 12 1.239(13) 1.021(02) 1.5 [28] 0.06 1.86(13)

a12m220S 4 10 5 10 3 10 1.294(28) 1.018(03) 1.1 [22] 0.35 2.02(37)

a12m220 3 15 4 10 3 14 1.277(15) 1.015(02) 1.1 [44] 0.34 2.02(37)

a12m220L 4 12 4 12 5 10 1.277(21) 1.020(05) 1.4 [28] 0.09 2.02(37)

a12m130 2 13 3 13 2 12 1.318(29) 1.020(08) 1.1 [48] 0.24 0.45(77)

a09m400 8 18 6 15 7 15 1.238(08) 1.023(01) 0.98 [40] 0.50 5.10(10)

a09m350 7 16 8 16 7 14 1.258(15) 1.024(02) 1.3 [34] 0.09 3.40(14)

a09m310 9 16 3 12 7 17 1.266(11) 1.024(01) 1.0 [38] 0.40 2.09(16)

a09m220 9 15 3 14 6 12 1.280(09) 1.022(02) 1.3 [32] 0.09 1.86(17)

Supplemental Data Table I ∣ Correlator fit region and results, and renormalisation coefficients Fit regions for the two-point correlation function tCmin, t
C
max, the

axial FH ratio tAmin, t
A
max, and the vector FH ratio tVmin, t

V
max are given in lattice units. The resulting central value and standard deviation of the bare couplings are given

in columns g̊A and g̊V along with the χ2/dof and P -value of these fits. The last column gives the values of the ratio of renormalisation coefficients ZA/ZV at
µ ≈ 2.8GeV in the γµ scheme.



16

the uncertainty of our determination of the matrix element by draw-
ing 5000 bootstrap samples, and accept candidates that are Gaus-
sian distributed, as expected from the distribution of the (path integral)
mean as a consequence of the central limit theorem (Extended Data
Fig. 1e,f). The preferred fit is one which satisfies all the above require-
ments while sampling the largest fit region, such that we maximise the
amount of information extracted from these numerically intensive cal-
culations. As a final check, we overlay the preferred fit on top of the
data and observe agreement between model and data.

The list of fit regions and preferred results are given in Supplemen-
tal Table I. The complete correlator fit study plots are shown in Sup-
plemental Figs. 8–15, with the fit stability plots show in Supplemental
Figs. 16–21 and the bootstrap distributions of the resulting values of
ǫπ in Supplemental Figures 25–27. All stages of the analysis are im-
plemented using the Python library lsqfit63.

B. Discussion

Studying ground state stability as a function of tmin is the most ro-
bust way to demonstrate understanding and control of excited state
contributions. Such a study is only possible with the data set of the
current work because the Feynman-Hellmann strategy makes all pos-
sible source-sink separation times accessible. In contrast, all previous
calculations use conventional strategies to generate lattice correlation
functions, and thus do not generate enough source-sink separation
times to perform such a study.

The results of this study are shown in Extended Data Fig. 1e
and Figs. 16–18. Because excited states are always heavier than
the ground state, their contributions are more pronounced at smaller
source-sink separations. As a result, we observe that choosing
smaller values of tmin compared to the preferred fit (in solid black)
leads to results that are sometimes in tension, indicating that the
ground state signal is being contaminated by excited state artefacts at
these times. In contrast, the preferred fits are always consistent with
more conservative fits which only include data at larger values of tmin.
To further demonstrate the quality of the ground state determination,
we numerically subtract (under bootstrap) the excited state contribu-
tions determined in the analysis from the raw correlation functions and
plot these processed results, along with the asymptotic value of the
ground state (Fig. 2, Extended Data Figs. 1a,b,c and Supplemental
Figs. 8–15).

Surveying these figures reveals the existence of correlated statis-
tical fluctuations at ∼1 fm separation times and is the manifestation
of the signal-to-noise problem suffered by nucleon observables. In all
previous work, the nucleon axial and vector correlation functions (e.g.
Extended Data Fig. 1b,c and similar Supplemental figures) are con-
structed in this intermediate time separation region in order to avoid
contamination from excited state contributions, and may be affected
by these uncontrolled statistical fluctuations. Furthermore, the limited
number of source-sink separation times available in previous calcu-
lations makes the a posteriori identification of correlated fluctuations
extremely difficult.

In contrast, this work analyses data at much smaller separation
times, where the signal-to-noise has not yet degraded, in order to
extract the ground state signal. As a result, this analysis strategy is
robust against random statistical fluctuations. To provide more evi-
dence, Extended Data Fig. 1f and Supplemental Figs. 19–21 demon-
strate stability of the extracted ground state nucleon couplings under
varying tmax, showing that the result is insensitive to whether the fluc-
tuations are included as part of the fitted data. Additionally, utilizing
data at smaller time separations results in an exponentially more pre-
cise determination of the nucleon couplings and is the key to obtaining
the sub-percent uncertainty presented in this work.

In summary, the Feynman-Hellmann strategy for constructing lat-
tice correlation functions enables leverage over the full source-sink
time dependence in the analysis. We observe stability of the ground
state nucleon couplings under varying fit regions, demonstrating con-
trol over excited-state contamination. The asymptotic values of the
ground state are in good agreement with the excited-state subtracted
lattice correlation functions. The final bootstrapped results all yield
nearly ideal Gaussian distributions. With this preponderance of evi-
dence, we resolve the two major challenges identified from previous
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Supplemental Data Figure 2 ∣ Renormalisation coefficients versus cut-off
scale, and Gribov region study. a, Renormalisation coefficients from
RI-SMOM for the a ∼ {0.15, 0.12, 0.09} fm mπ ∼ 310 MeV ensembles as a
function of the renormalisation scale µ for intermediate γµ and /q schemes in
the Landau gauge. The axial coupling is itself a physical observable, and
therefore its value is independent of scale. The scale dependence observed for
µ ≤ 2.5 GeV comes from the infrared (IR) contamination of a light meson, and
in principle at high scales (UV) the coefficient receives large O(ap)
corrections. The intermediate region free of IR and UV contaminations is
coined the Rome-Southampton window. b, The statistical uncertainty of the
renormalisation coefficient for the a15m310 ensemble evaluated at
µ = 2.86 GeV in the γµ scheme is shown by the light red histogram. The
Landau gauge admits remnant gauge degrees of freedom resulting in the
Gribov distribution shown in dark red. Random global gauge transformations
are applied to the gauge fields, and the RI-SMOM perscription is repeated to
obtain the Gribov distribution. We observe that the systematic uncertainty
coming from Landau gauge fixing to be smaller than the statistical uncertainty.
Uncertainties are one s.e.m.

works, and demonstrate full control over systematic uncertainties at
unprecedented levels of precision.

S.5. Renormalisation

Discretization of the Dirac action leads to differences between
the local current used in the calculation and the conserved cur-
rent. We correct for this difference using the non-perturbative Rome-
Southampton renormalisation procedure64, with non-exceptional
kinematics65,66. Explicitly we compute

gA =
ZA

ZV

g̊A

g̊V
, (S6)

where ZA and ZV are the renormalisation factors of the axial and vec-
tor current, while g̊A and g̊V correspond to the bare (un-renormalized)
couplings. In Eq. (S6), we take advantage of the fact that ZV g̊V = 1.
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Furthermore, because of the good chiral property of our lattice dis-
cretization, we expect ZA = ZV up to small artefacts. We have
computed these factors in RI-SMOM schemes and with momentum
sources, as proposed in67, resulting in high statistical precision. We
observe the ratio of the renormalisation coefficients ZA/ZV to be
commensurate with unity at one part in 10,000, indicating that the lat-
tice action we use preserves chiral symmetry to very good approxima-
tion, see Supplemental Data Fig. 2. In this procedure, the renormalisa-

tion scale is given by µ =
√
q2 (q2 ≥ 0) and q is the vertex momentum

transfer. This result, together with the improved stochastic uncertainty
gained from simultaneously fitting the vector FH ratio, further reduces
the final uncertainty of our result.

Since the quark bi-linear matrix elements used to determine the
renormalisation coefficients are not gauge invariant, we perform these
calculations in Landau gauge. Landau gauge fixing however, is incom-
plete and the resulting coefficients will be evaluated at one of many
Gribov regions68. We sample the distribution of renormalisation co-
efficients over different Gribov regions by repeating the calculation
after performing random global gauge transformations to the gauge
fields. We observe that the systematic uncertainty from this effect is
subdominant to the statistical uncertainty of the renormalisation coef-
ficients (Supplemental Data Fig. 2). We performed a dedicated flow-
time study of ZA/ZV on a subset of the ensembles and find this ratio
is also flow-time independent.

S.6. Parameterization of the chiral, continuum and
infinite volume extrapolations

The results of these calculations (Extended Data Table I) must be
extrapolated to the physical point. gA is a dimensionless quantity and
therefore the entire extrapolation can be performed by using ratios of
physical quantities that form dimensionless variables without the need
for performing a scale setting. On each ensemble, we determine the
three quantities

ǫ2a =
1

4π

a2

w2
0

, mπL, ǫπ =
mπ

4πFπ

, (S7)

which are used to parameterise the continuum, infinite volume and
physical pion mass extrapolations. w0 is a gradient-flow scale that can
be precisely and accurately determined69 and Fπ is the pion decay
constant (with Fπ ∼ 92 MeV normalization). EFT methods can be
used to parameterise the dependence upon these variables.

A. χPT through N3LO

For a static quantity such as gA, Heavy Baryon χPT (HBχPT)18

can be used to parameterise the pion mass dependence. The con-
vergence issues of SU(3) HBχPT70–74 require two-flavor HBχPT75

to be used for a controlled extrapolation. The complete pion mass
dependence of gA is known through O(m3

π)75–77, which is next-to-
next-to-leading order (NNLO) in the chiral expansion. In terms of ǫπ ,
the pion mass dependence is given by

gA = g0 + c2ǫ
2
π − ǫ

2
π(g0 + 2g30) ln(ǫ2π) + g0c3ǫ3π , (S8)

where g0, c2 and c3 are low-energy constants (LECs) that must be
determined in the analysis. In this expression, we have set the χPT
renormalisation scale to µ = 4πFπ . The corrections to using a fixed
renormalisation scale enter at O(ǫ4π) which can be seen by expanding
Fπ/F in the above expression, where F = limmπ→0 Fπ .

The complete next-to-next-to-next-to-leading order (N3LO) calcula-
tion of gA has not been determined, however, the ln2(ǫπ) corrections
have been determined with a renormalisation group analysis78. Even
though the complete calculation has not been performed, the full pa-

rameterisation of these corrections is given by

δ
(4)
χ gA = ǫ

4
π[c4 + γ̃4 ln(ǫ2π)
+ (2

3
g0 +

37

12
g30 + 4g

5
0) ln2(ǫ2π)] . (S9)

The extrapolation formula was provided formula in terms ofmπ/F and
so the difference in the coefficient of the ln2(ǫ2π) term given here and
previously78 is attributed to using Fπ rather than F in the expression.
The LEC γ̃4 differs from γ4

78. Our data set is not sufficient to use the
full N3LO expression as it contains a total of 5 unknown LECs, and
we have results at 5 different values of mπ . We do, however, include
partial corrections from N3LO, like the c4 counter term (i.e. NNLO+ct),
to check the stability of the analysis, and the Bayesian Framework
allows us to use the full expression.

B. Including explicit delta degrees of freedom

The ǫπ dependence described above stems from the chiral La-
grangian with only pions and nucleons as explicit degrees of freedom.
There are many publications in the literature advocating for the explicit
inclusion of the delta resonances in the theory in order to accurately
describe properties of the nucleon. While the delta states are strong
resonances, in the large-Nc limit79,80, the splitting between them and
the nucleons vanishes. Further, the deltas are strongly coupled to the
nucleons and the mass gap between them (∆ ≡M∆−MN ) is compa-
rable to the pion mass, such that contributions from the delta states to
nucleon quantities can be poorly captured without explicitly including
them as dynamical states in the EFT81,82. In lattice QCD calculations
of nucleon quantities, the pion masses are still generally heavier than
in nature and for mπ ≳ 290 MeV, the deltas become stable, asymptotic
states. Finally, it has been observed that including explicit deltas in the
EFT leads to a milder pion mass dependence for gA

83.

This observation follows straightforwardly from the large-Nc

formalism84–91. Combining the large-Nc expansion with the chiral ex-
pansion leads to an improved perturbative expansion for many quan-
tities, including the baryon spectrum92, which has been observed nu-
merically with lattice QCD calculations73,74. It has been shown that
there are cancellations between nucleon and delta virtual corrections
for gA as well, which lead to the milder pion mass dependence93.

In the present work, an extrapolation including the deltas explicitly
is a phenomenological extrapolation as there are three new quantities
that are required to perform the chiral extrapolation, which we have not
determined in our calculation, and therefore, some knowledge from
experiment must be used to constrain them. One must know the delta-
nucleon mass splitting, ∆, as well as two additional axial couplings,
the ∆ → ∆ coupling and the ∆ → Nπ transition coupling which we
denote g̊∆∆ and g̊N∆, respectively (the mathrings denote the chiral
limit value of these couplings, just as g0 is the chiral limit value of gA).
These quantities are particularly challenging to compute due to the
resonant nature of the delta (for sufficiently light pion masses), and
require calculations of not only the external states, but also the πN

scattering phase shifts94–96. The first lattice QCD calculation of such
1 → 2 transitions has only recently been performed for mesons97–100.
For our mixed-action calculation, this problem is further exacerbated
by the non-unitary nature of the theory as these non-unitary effects
can go on-shell in the πN scattering system, thus precluding the use
of the known formalism101.

The continuum, infinite volume extrapolation function including
deltas in the SU(2) chiral expansion was first determined at NLO, and
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is given by83

gA = g0 + c
∆
2 ǫ
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32π
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2
N∆]
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) g2N∆ [ǫ2π 32
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∆ (7627g0 +
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g∆)]

− ǫ2∆ ln(4ǫ2∆
ǫ2π
)[76
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g0g

2
N∆ +

100

81
g∆g

2
N∆] , (S10)

where we have defined

ǫ∆ ≡
∆

4πFπ

, (S11)

and the new non-analytic function is given by

R (z) ≡ ⎧⎪⎪⎨⎪⎪⎩
√
1 − z ln ( 1−√1−z

1+
√

1−z
) + ln(4/z), z ≤ 1

2
√
z − 1arctan z + ln(4/z), z > 1

. (S12)

In order to use this extrapolation formula, we take the value of ∆ ≃
293 MeV from the experimental splitting of the nucleons and deltas.
As the pion mass is increased above the physical value, this splitting
is known to reduce70, but we do not account for this change in the
extrapolation. At this order in the expansion, it is sufficient to pick
a single value, with the difference appearing at higher orders in the
expansion. In order to constrain the two new axial couplings, we set
the central values to those predicted from the large-Nc expansion88,89

g̊N∆ = −
6

5
g0 , g̊∆∆ = −

9

5
g0 . (S13)

Our numerical results are insufficient to constrain these couplings, so
to study the sensitivity to them, we include them in the analysis under
the Bayesian Framework with prior widths varying between 5% and
40%.

The sign difference between these two axial couplings and g0 is
what leads to the milder pion mass dependence as this sign differ-
ence results in axial coefficients of the non-analytic terms in Eq. (S10)
being ∼ 2 times smaller. Another interesting feature of the delta-full ex-
trapolation is the presence of m3

π dependence with a fixed coefficient.
This does not appear until NNLO in the delta-less expansion, and with
an unknown LEC.

C. Taylor expansion

In addition to these two χPT-derived extrapolation functions, a sim-
ple Taylor expansion can also be considered. In particular, for a
quantity with mild pion mass dependence, such as gA, the Taylor ex-
pansion should provide an adequate description of the quark mass
dependence14. The most natural parameter for performing the Tay-
lor expansion is a reference light quark mass. Since the squared pion
mass scales approximately as the quark mass, a corresponding Taylor
expansion can be performed about ǫ2π . This is equivalent to dropping
the non-analytic contributions to Eq. (S8).

One can also consider a Taylor expansion in the parameter ǫπ .
This is not a natural expansion parameter as it scales approximately
as the the square root of the input quark masses. However, it has
been observed that the nucleon mass displays a remarkably linear
dependence upon the pion mass, such that phenomenological esti-
mate of the nucleon mass in lattice calculations is given by mN ≃

800 + mπ MeV70,102,103. This observation motivates us to consider
this Taylor expansion as an alternative model for describing the pion
mass dependence. As with the Taylor expansion in ǫ2π , we observe
that the choice of the reference point to perform the expansion has
insignificant impact on extrapolated value of gA when the NNLO (ǫ2π in
this case) expansion is considered.

D. Dependence upon mπL

The finite-volume corrections can be incorporated into the EFT
through an infrared modification of the pion propagators19. In the
asymptotically large volume limit, these corrections vanish at least as
fast as e−mπL. The leading volume corrections to gA can be parame-
terised as104

δL ≡ gA(L) − gA(∞)
=
8

3
ǫ2π [g30F1(mπL) + g0F3(mπL)] (S14)

where

F1(x) = ∑
n≠0

[K0(x∣n∣) − K1(x∣n∣)
x∣n∣ ] ,

F3(x) = −3
2
∑
n≠0

K1(x∣n∣)
x∣n∣ . (S15)

Kν(z) are modified Bessel functions of the second kind and g0 is the
leading order (LO) contribution to gA in the chiral expansion. In the
large mπL limit,

δL = 8g
3
0ǫ

2
π

√
2π
e−mπL√
mπL

+O(e−√2mπL,
1

(mπL)3/2 ) . (S16)

In order to asses the uncertainty arising from the FV corrections,
we can also model higher order contributions. The NNLO contribution
to gA also arises from single loop diagrams (rather than two loops).
It is therefore reasonable to model the finite volume corrections from
these terms as similar to those arising from the NLO contributions,
particularly the graph that gives rise to the F1 correction. Therefore,
we add an additional FV correction with the following form,

δL3
≡ f3ǫ

3
πF1(mπL) (S17)

where f3 is an unknown LEC.

We do not currently have any prior knowledge for what the value
of f3 is. Therefore, the prior central value for f3 is set to zero, while
the width is determined by an empirical Bayes study shown in Sup-
plemental Data Fig. 3. For the six models that enter the final result,
we vary the prior width from 0.5 to 40 and for each model, choose
the value with the largest Bayes factor. The priors for f3 are listed in
Supplemental Data Table II. When compared to the coefficient of the
leading finite volume discretization correction 8g0/3, the width of f3
is approximately 3 to 5 times wider when determined by the empirical
Bayes analysis, and provides a conservative estimate for the finite vol-
ume uncertainty. The complete finite volume correction considered is
defined to be

δ′L ≡ δL + δL3
. (S18)

There has been some discussion in the literature that gA may be
particularly susceptible to finite-volume corrections such that the lead-
ing χPT prediction for the volume dependence is grossly insufficient
to explain the observed volume dependence105–108. In Supplemental
Data Fig. 4, we plot the resulting NLO χPT prediction of the volume
dependence (determined in a NNLO fit to all 16 ensembles) as well
as the estimated NNLO corrections, Eq. (S18), alongside the three
a12m220 ensembles, which are in perfect accord.

E. Dependence upon ǫa

The discretization corrections can be incorporated into mixed-
action EFT (MAEFT)109,110 which is known for our MDWF on HISQ
action111–118 through next-to-leading order (NLO) in the chiral and
continuum expansion. Unfortunately, the MAEFT introduces new un-
known coefficients that are not well constrained by our results. How-
ever, we observe our results are well described by a simple Taylor
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Supplemental Data Figure 3 ∣ Empirical Bayes analysis for f3 prior width. The prior width of the dimensionless LEC f3 is plotted with the resulting Bayes factors
for the six models that enter in the final result. The red star marks the maximum Bayes factor and sets the prior width for f3 in the final analysis.

expansion in the discretization scale, with no discernible pion-mass-
dependent discretization effects. We are therefore able to supple-
ment the continuum HBχPT formula with corrections that parame-
terise the possible discretization effects to NNLO in the Symanzik
exapansion20119,

δa = a2ǫ
2
a + b4ǫ

2
aǫ

2
π + a4ǫ

4
a , (S19)

where the first term is an NLO correction and the second and third
term arise at NNLO in a power counting where ǫ2π ∼ ǫ

2
a. The coef-

ficients are unknown constants which must be determined in the ex-
trapolation analysis.

We also consider discretization corrections of the form

δ′a = a1
√
4πǫa + s2αsǫ

2
a , (S20)

where a1 = O(mres) and s2 = O(1). The first term could arise from
residual chiral symmetry breaking corrections arising from our use of
local axial and vector currents and the second term originates from
generic one-loop radiative gluon corrections at finite lattice spacing.

S.7. Extrapolation analysis

In the following sections, we discuss how the physical-point extrap-
olation is performed in order to obtain Eq. (1), the concluding result
of this work, followed by a discussion on all sources of uncertainty,
and end by studying the sensitivity of our final result under changes to
different inputs of the analysis.

A. Model averaging

The extrapolation analysis uses the various Ansätze described in
Sec. S.6. While χPT provides our best hope for a model-independent
extrapolation in the pion mass, it is not known a priori whether the
chiral expansion converges for a given quantity near the physical pion
mass. For this reason, we include all models equally in our model
average. Convergence of the chiral expansion will be discussed in
Sec. S.8.

Our main result comes from the Bayesian model averaging120 of a
set of six different models. This procedure accounts for model selec-
tion uncertainty, and avoids over-confident inferences resulting from

main parameters

Model g̃0 c̃0 c̃2 c̃3 c̃4 ã2 ã4 b̃4

χPT 1(50) – 0(50) 0(50) 0(1) 0(50) 0(1) 0(1)

Taylor ǫ2π 1.2(1.0) 1(50) 0(50) – 0(1) 0(50) 0(1) 0(1)

Taylor ǫπ 1.2(1.0) 1(50) 0(50) – 0(1) 0(50) 0(1) 0(1)

alternate parameters

Model g̃N∆ g̃∆∆ γ̃4 ã1 s̃2 f̃3

χPT −1.44(35) −2.16(52) 0(50) 0(10−3) 0(1) 0(23)

Taylor ǫ2π – – – 0(10−3) 0(1) 0(18)

Taylor ǫπ – – – 0(10−3) 0(1) 0(12.5)

Supplemental Data Table II ∣ Priors used in extrapolation analysis. The
priors used in the extrapolation analysis for all unknown constants. For the
lower order coefficients, we use unconstraining priors. For the NNLO
coefficients, we use O(1) priors. For the Taylor fits, the coefficient g0 is used to
parameterize the leading finite volume corrections. The impact of varying the
prior widths is discussed in Sec. S.7 C and show in Extended Data Fig. 5. The
choice of priors for the alternate parameters are discussed in Secs. S.7 B and
S.8 B.

trusting any single model. The six extrapolation models used are:

NNLO χPT ∶ Eq. (S8) + δa + δ
′

L (S21a)

NNLO+ct χPT ∶ Eq. (S8) + c4ǫ
4
π + δa + δ

′

L (S21b)

NLO Taylor ǫ2π ∶ c0 + c2ǫ
2
π + δa + δ

′

L (S21c)

NNLO Taylor ǫ2π ∶ c0 + c2ǫ
2
π + c4ǫ

4
π + δa + δ

′

L (S21d)

NLO Taylor ǫπ ∶ c0 + c1ǫπ + δa + δ
′

L (S21e)

NNLO Taylor ǫπ ∶ c0 + c1ǫπ + c2ǫ
2
π + δa + δ

′

L (S21f)

In Table II, we list all the priors used in the analysis of each of the
extrapolations.

Under the Bayesian framework, the model averaged posterior dis-
tribution of gA is determined by marginalising over the set of models{Mk},

P (gA∣D) =∑
k

P (gA∣Mk,D)P (Mk ∣D), (S22)

where P (Mk ∣D) is the posterior distribution of model k given data D
and is related to the likelihood of the model P (D∣Mk) through Bayes’
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Supplemental Data Figure 4 ∣ Finite volume dependence We plot the
predicted NLO finite volume corrections (top) for the mπ ∼ 220 MeV ensembles
at a ∼ 0.12 fm, with coefficients determined from an NNLO χPT analysis of all
16 ensembles, along with the numerical results on the a12m220S, a12m220
and a12m220L ensembles. In the bottom figure, we plot the same result except
using the analysis with the estimated NNLO FV correction as well.
Uncertainties are one s.e.m.

Theorem,

P (Mk ∣D) = P (D∣Mk)P (Mk)
∑l P (D∣Ml)P (Ml) . (S23)

In particular, the likelihood that the data is produced under model k is
given by the marginalising over all (continuous) parameters θk

P (D∣Mk) = ∫ P (D∣θk,Mk)P (θk ∣Mk)dθk (S24)

and as a result P (D∣Mk) is now explicitly a number and not a distribu-
tion. The act of marginalising over all parameters naturally penalises
over-parameterised models. In our average, we choose agnostic pri-
ors P (Mk) for all models listed in Eq. (S21a–S21f). Consequently, the
posterior mean E[gA] and variance Var[gA] for the model weighted
average follows

E[gA] =∑
k

E[gA∣Mk]P (Mk ∣D), (S25)

Var[gA] =∑
k

Var[gA∣Mk]P (Mk ∣D)
+ {∑

k

E2[gA∣Mk]P (Mk ∣D)} −E2[gA∣D], (S26)

where Var(gA) is a direct consequence of the law of total variance.
The first line of Eq. (S26) yields the expected value of the process
variance which we refer to as the model averaged variance while the
second line gives the variance of the hypothetical means which we
refer to as the model uncertainty. The weighted average is performed

Fit χ2/dof L(D∣Mk) P (Mk ∣D) P (gA∣Mk)
NNLO χPT 0.727 22.734 0.033 1.273(19)

NNLO+ct χPT 0.726 22.729 0.033 1.273(19)

NLO Taylor ǫ2π 0.792 24.887 0.287 1.266(09)

NNLO Taylor ǫ2π 0.787 24.897 0.284 1.267(10)

NLO Taylor ǫπ 0.700 24.855 0.191 1.276(10)

NNLO Taylor ǫπ 0.674 24.848 0.172 1.280(14)

average 1.271(11)(06)

Supplemental Data Table III ∣ Model selection analysis. We explore model
uncertainties by choosing six different models and studying the variation in the
extrapolation to the physical point. With the inclusion of priors, the augmented
χ2/dof listed assumes there to be 16 degrees of freedom (equal to the number
of data points) for all six models. L(D∣Mk) lists the log-likelihood distribution
logP (D∣Mk). The Taylor expansion fits are strongly favored over the χPT fits
as measured by the posterior of the model. In lsqfit, L(D∣Mk) is called the
log Gaussian Bayes Factor (logGBF). The final result is given with two
uncertainties: the first is the averaged variance (line one of Eq. (S26)) and the
second is the model uncertainty (line two of Eq. (S26)).

with lsqfit63.
The resulting physical point extrapolations are provided in Supple-

mental Data Tab. III and plotted in Extended Data Fig. 5, and the model
average extrapolation is presented in Extended Data Fig. 4. The con-
vergence of each model, the model average continuum, and infinite
volume extrapolations are presented in Extended Data Figs. 6, 3, and
2 respectively.

We present our final physical point extrapolation as a function of
pion mass in Fig. 3a. A comparison with other LQCD results2–9 is
presented in Fig. 3b

B. Uncertainty analysis

The final uncertainty budget receives contributions from statistical
uncertainty, extrapolation to the chiral, continuum and infinite volume
limits, the model selection uncertainty, and isospin symmetry breaking.

Statistical uncertainty

Statistical uncertainty incorporates the correlated uncertainties of
g̊A, g̊V , mπ , and Fπ , as well as the uncorrelated uncertainty of mπ

and Fπ obtained from the PDG12, which is used to evaluate the chiral-
continuum extrapolation at the physical point.

Chiral and continuum extrapolation uncertainty

The chiral extrapolation uncertainty is determined from the uncer-
tainty on the resulting LECs that control the ǫπ dependence and do
not vanish in the continuum limit. Uncertainty from the continuum ex-
trapolation includes statistical uncertainty from ǫa and the resulting
uncertainty on all LECs associated with corrections that vanish in the
continuum limit. Additional generic one-loop and chirally-suppressed
tree-level discretization errors are investigated in Fig. 5, labeled as
‘+O(αsa

2) disc.’ and ‘+O(a) disc.’ respectively, yielding insignificant
changes to the result and are therefore omitted from the final extrapo-
lation.

Infinite volume extrapolation uncertainty

We include the finite volume correction given by Eq. (S18). Specifi-
cally, the leading volume correction to gA derived from χPT104 is used
and higher-order finite volume corrections are estimated by Eq. (S17)
with an unkown LEC f3. The FV uncertainty is derived through the
uncertainties on the LECs that determine the infinite volume depen-
dence. In Extended Data Fig. 2a, we display the model averaged FV
correction along with the raw a12m220 ensembles on the three vol-
umes used. In panel b, we add to the model average extrapolation,
black horizontal ticks to denote the central value of the renormalized
values of gA from Extended Data Table I. In all but two ensembles, the
FV shift is significantly less than one sigma, with one data point shift-
ing about one sigma and the other closer to two sigma. As a cross
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check of our FV uncertainty, we compare two additional analyses: one
without FV corrections and one including only NLO corrections, which
are displayed in Extended Data Fig. 5 as “omit FV” and “NLO FV”
respectively. These both result in a relative difference with our final
analysis consistent with our estimated FV uncertainty.

Isospin breaking uncertainty

Finally, isospin breaking estimates both strong and electromagnetic
isospin breaking added in quadrature. Experimental results of gA in-
clude radiative corrections up to one-loop121,122, therefore, we esti-
mate the two-loop radiative corrections to be (αEM/π)2 ∼ 0.0005%.
Strong isospin breaking corrections can enter at O(md −mu) with the
leading correction to the axial current in the chiral Lagrangian appear-
ing at NLO91,123,124

δNLOj
µ
5,a =

bδ1(4πF )2 N̄{τξa ,χδ}SµN , (S27)

where Sµ is the spin operator, the spurion fields are

τξa =
1

2
(ξτaξ†

+ ξ†τaξ) , (S28)

χδ =
1

2
(ξ2Bδτ3ξ + ξ†2Bδτ3ξ

†) , (S29)

with ξ2 = Σ = exp{√2iφ/F}, 2δ = md −mu and B is the chiral con-
densate (scaled by F 2) related to the pion mass by the Gell-Mann–
Oakes–Renner relation125. However, this contribution vanishes for the
n → p transition used to determine gA as {τ+, τ3} = 0. In order to
contribute to gA, there needs to be two insertions of isospin breaking
corrections, such that the anti-commutator of τ+ and the isospin break-
ing contributions are non-vanishing. In QCD, the only isospin break-
ing parameter is the quark mass operator and so pure strong isospin

breaking corrections enter as O( (md−mu)2
(md+mu)2 ǫ

4
π) ∼ 0.002%. There can

also be mixed QED + QCD isospin breaking corrections which will

scale as O (αEM
md−mu

md+mu
ǫ2π) ∼ 0.004%.

Finally, QED corrections modify the values of mnature
π and F nature

π .
The π0 mass provides a good estimate of the pion mass in the isospin
limit13 and the QED corrections to F−π are given by

Fπ− = F
LQCD

π−
(1 + δRπ−

2
) , (S30)

where the correction has been estimated to be126

δRπ− = 0.0169(15) , (S31)

in good agreement with the χPT estimate127,128. We can make a con-
servative estimate of the uncertainty from these corrections by splitting
the difference of our extrapolated answers by using

ǫπ− =
mπ−

4πFπ−
, (S32)

ǫπ0 =
mπ0(1 + δRπ−/2)

4πFπ−
, (S33)

resulting in an uncertainty estimate of

∣gA(ǫπ0) − gA(ǫπ−)
2

∣ = 0.00038(14) , (S34)

which is a 0.03% uncertainty.

Model uncertainty

The model selection uncertainty is determined as described in
Sec. S.7 A.

Final uncertainty

The final model averaged uncertainty breakdown, including the un-
certainty arising from the different extrapolation functions, is presented
in the main text, Eq. (1). Broken down to the different contributions
of statistical (s), chiral (χ), continuum (a), infinite volume (v), isospin
breaking (I) and model (M), we have

gA = 1.2711(103)s(39)χ(15)a(19)v(04)I(55)M .

The total uncertainty arises from adding these uncertainties in quadra-
ture. More precise values at the physical pion mass will have the
largest impact in simultaneously reducing the extrapolation and model-
selection uncertainty. This demonstrates a straightforward path to-
wards a sub-percent precision, which may be able to offer insight to
the upward trending values of the measurements of gA, including the
most recent determination129.

C. Sensitivity analysis

Robustness of the final result is tested under changes in the ini-
tial prior distributions, and data. Specifically, subsets of data are ex-
plored to quantify sensitivity for different regions of pion mass and lat-
tice spacing.

Prior sensitivity

Our final result, displayed as the black square in Extended Data
Fig. 5, is robust and extrapolated with unconstraining priors. In this fig-
ure, the set of results labeled ‘2× LO width’ and ‘2× all widths’ explores
doubling the prior widths for the leading-order and all LECs respec-
tively. We observe indiscernible change to the final result when dou-
bling only the widths on the priors for the leading-order LECs, demon-
strating these priors to be unconstraining. Doubling the prior widths of
all LECs leads to insignificant changes in the final result, demonstrat-
ing that none of the priors are biasing the fit.

Pion mass sensitivity and posterior correlations

Next, we demonstrate that the heavy pion masses do not skew the
results by analysing subsets of our full data. We study the variation of
our final analysis if the two points close to the physical pion mass are
removed. The results of these extrapolation analyses are presented
in Extended Data Fig. 5. We observe that, as expected, when some
of the results are removed, the uncertainty grows, but the resulting
extrapolation is consistent with our main result within the 1-σ level.
In Supplemental Table IV, we show the impact of cutting these heavy
pion mass points for each of the models which enter our model aver-
age. We conclude there is no statistical justification for truncating the
heavy pion mass points. The impact of including or excluding these
heavier pion mass points on our final extrapolated uncertainty is al-
ready included through the use of varying orders in the various model
extrapolation functions. We also observe that the growth in the uncer-
tainty from the full data set to the mπ ≲ 310 MeV data set scales as
one would expect when going from 5 to 3 different pion masses.

Additionally, to assess the influence of the heavy pion mass region
on our extrapolated result, we use the resulting analyses to compute
the correlation between between the extrapolated result at the physi-
cal pion mass and at mπ = 400 MeV. For simplicity, we compute the
correlation in both cases in the continuum and infinite volume limits.
This correlation allows for the determination of the conditional mean
between these two points, which provides a measure of how much
the extrapolated answer at one point (physical pion mass) would shift,
given a fluctuation at the other point (heavy pion mass)

gA(ǫ(1)π , ǫ
(2)
π ) = ĝA(ǫ(1)π ) +C1,2 σ1

gA(ǫ(2)π ) − ĝA(ǫ(2)π )
σ2

, (S35)

where ĝA(ǫπ) is the expected value of gA at ǫπ given the analysis,

gA(ǫ(2)π ) − ĝA(ǫ(2)π ) is the hypothetical fluctuation at point 2, σi are
the continuum and infinite volume extrapolated uncertainties at the two
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Supplemental Data Figure 5 ∣ Sensitivity to cutting lattice spacings. We plot the resulting model average analysis when either the coarsest or finest ensembles
are cut from those considered, with the full data set in the middle for comparison. Uncertainties are one s.e.m.

mπ range ≲ 400 MeV ≲ 350 MeV ≲ 310 MeV

Fit weight, gA weight, gA weight, gA

NNLO χPT 0.033, 1.273(19) 0.044, 1.281(25) 0.076, 1.275(27)

NNLO+ct χPT 0.033, 1.273(19) 0.044, 1.280(25) 0.077, 1.275(27)

NLO Taylor ǫ2π 0.287, 1.266(09) 0.305, 1.278(12) 0.300, 1.282(15)

NNLO Taylor ǫ2π 0.284, 1.267(10) 0.306, 1.278(13) 0.300, 1.282(16)

NLO Taylor ǫπ 0.191, 1.276(10) 0.156, 1.288(14) 0.125, 1.290(17)

NNLO Taylor ǫπ 0.172, 1.280(14) 0.146, 1.288(16) 0.121, 1.290(18)

model average 1.271(11)(06) 1.281(15)(04) 1.283(18)(05)

Supplemental Data Table IV ∣ Effect of cutting heavy pion mass points.
The weights are determined from the log Bayes Factors as described in the
text. The mπ ≲ 400 MeV analysis is described in the text and listed in
Extended Data Fig. 5 as model avg. The model average results here
correspond to the same points in the figure.

points and the coefficientC1,2 is the correlation coefficient between gA

at ǫ
(1)
π and at ǫ

(2)
π .

The uncertainty of the continuum and infinite volume extrapolated
result at the heavy pion mass, σ400 is approximately the same as
the uncertainty on the input data points at that pion mass (∼ 0.009
compared to 0.006, 0.010 and 0.008 on the a15m400, a12m400
and a09m400 ensembles respectively, see Extended Data Table I).
Therefore, if we consider a hypothetical 1-σ fluctuation of the data at
mπ ∼ 400 MeV, the expected shift in our extrapolated value of gA at
the physical point is well approximated by

δg
phys.
A

= Cphys.,400 σphys. . (S36)

The model-averaged correlation coefficient, with weights given by the
model-selection analysis (Supplemental Data Table III), is given by

C
model avg.

phys.,400
= 0.37 . (S37)

The shift in the extrapolated value of gA at the physical pion mass,
due to a hypothetical 1-σ fluctuation at mπ ≃ 400 MeV is given by the

weighted average of C
(i)
phys.,400

σ
(i)
phys.

over the models, i, resulting in

δg
phys.
A

= 0.0030 × ĝA(ǫphys.π ) , (S38)

where ĝA(ǫphys.π ) is our final result, Eq. (1), or a 0.3% change.
We conclude that the physical-point extrapolation from the model-
averaged fit ansatz is relatively insensitive to fluctuations at larger pion
masses, leading further evidence for the robustness of our final result.

Lattice spacing sensitivity

To further check the sensitivity of our results on the continuum limit,
we perform the full analysis discarding, one at a time, each of the indi-

vidual a ∼ 0.15 fm and a ∼ 0.09 fm ensembles. In Fig. 5, we display the
resulting model average extrapolations with these two data cuts side-
by-side with the extrapolation of the full data set. The extrapolated
final results are also shown in Extended Data Fig. 5. Similar to the
pion mass cuts, removing results from one of the discretization scales
leads to a larger, but consistent result.

S.8. χPT convergence and inclusion of the ∆s

For sufficiently light pion masses, χPT provides a model indepen-
dent description of low-energy QCD. What is not known a priori is the
range of pion masses for which χPT is a converging, perturbative ex-
pansion about the chiral limit. As discussed in Sec. S.6 B, there is also
theoretical evidence that the explicit inclusion of the delta degrees of
freedom in the chiral Lagrangian will improve the convergence of gA.
We explore these extrapolations in more detail.

A. Convergence of the χPT expansion

We discuss the convergence of the χPT expansion without explicit
delta degrees of freedom. The first fit that results in an acceptable
χ2
aug/dof is the NNLO χPT fit. This fit has 3 LECs determined from our

5 different pion mass points. The convergence of the fit is displayed in
Extended Data Fig. 6a. Each curve is the sum of all contributions up to
the order listed. One observes large cancellations between the NLO
and NNLO contributions already at pion masses lighter than nature
(grey vertical line). The strong curvature of the NLO curve is driven
by competition between the counter term, c2 and the ln(ǫ2π) contri-
bution. Because of this competition, it is more difficult to assess the
convergence of the theory.

We are not able to perform a meaningful fit with the full N3LO for-
mula as there are 5 unknown LECs, and we have only 5 pion mass
points. However, we can check the convergence by adding just the
local counter term contribution, c4ǫ

4
π , the NNLO+ct χPT fit. The con-

vergence of this fit is depicted in Extended Data Fig. 6b. We see that
the addition of this term has negligible impact on the resulting extrapo-
lated value of gA for all pion masses depicted. The resulting order-by-
order contributions of this analysis and the resulting correlation matrix
for the LECs are given in Supplemental Data Table V.

Under the Bayesian Framework, we can perform the full N3LO fit. In
Supplemental Data Fig. 6, we show the resulting fit as well as the con-
vergence of the expansion. We first observe the uncertainty of the ex-
trapolation begins to grow significantly outside the region of constrain-
ing data, which is a clear sign of overfitting. One also observes that the
convergence of the expansion changes markedly from the NNLO+ct
χPT extrapolation, where now, the NNLO result is also quickly drop-
ping as a function of the pion mass for pion masses near and above
the physical pion mass. The full extrapolation has a mild pion mass
dependence, which also demonstrates there is a large cancellation
between different terms in the expansion. This is not surprising given
the large and positive coefficient of the ln2(ǫπ) contribution appearing
at N3LO, Eq. (S9). These results suggest that the χPT expansion may
be particularly poor for gA. However, a strong conclusion can not be
drawn without having results at more pion mass points. In particular,
having precise results in the lighter pion mass region is desirable. The
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Order-by-order contribution

order n δ(n)gA % of total LEC value

0 +1.236(34) 97.1(2.7) g0 1.236(34)

2 −0.026(30) − 2.0(2.4) c2 -23.0(3.5)

3 +0.062(14) + 4.9(1.1) c3 28.7(5.5)

4 +0.0000(2) + 0.0(0.0) c4 0.007(1.000)

Total 1.273(19)

LEC correlation matrix

LEC g0 c2 c3 c4

g0 1 -0.02010 -0.09365 0.03797

c2 -0.02010 1 0.97231 -0.99050

c3 -0.09365 0.97231 1 -0.99401

c4 0.03797 -0.99050 -0.99401 1

Supplemental Data Table V ∣ NNLO+ct χPT analysis results, We provide the
order-by-order contribution to gA and the resulting LEC correlation matrix from
the NNLO+ct χPT analysis.
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Supplemental Data Figure 6 ∣ The N3LO χPT extrapolation. We plot the
N3LO extrapolation of our results and resulting convergence of the expansion.
Uncertainties are one s.e.m.

resulting extrapolation is compared with our final result in Extended
Data Fig. 5.

B. Including the ∆s

We finally turn to an extrapolation including explicit ∆ degrees of
freedom. As discussed in Sec. S.6 B, it is expected the pion mass
dependence of gA predicted from χPT will be milder with the inclu-
sion of these states, due to cancellations between the nucleon and
delta virtual loops imposed by the large-Nc expansion. Including the
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Supplemental Data Figure 7 ∣ Bayes factors versus prior width. We plot
Bayes factors of the resulting NLO χPT(∆) fits versus the prior width (in %)
given to the two new axial couplings. An Empirical Bayes analysis selects the
18% as the optimal prior width.

deltas at NLO introduces two new axial coupling LECs and the extra
mass splitting parameter, for a total of 4 LECs. An input parameter
to the analysis is ǫ∆, defined in Eq. (S11). Our results do not di-
rectly constrain these two new axial couplings, and so the resulting fits
have larger uncertainties. We do not include the analysis with explicit
deltas in our set that are averaged as they require phenomenological
input, unlike all the fits which go in the final analysis. Nevertheless, it
is interesting to explore how the delta degrees of freedom impact the
analysis.

We begin by exploring how varying the prior width on the new axial
couplings impacts the analysis. We take the central values in Eq. (S13)
and vary the prior width of these couplings from 1% to 40%. In Sup-
plemental Data Fig. 7, we plot the resulting Bayes factors normalized
to the maximum Bayes factor which occurs with a 18% prior width on
g̊N∆ and g̊∆∆. It is interesting to note that the prior width motivated by
Empirical Bayes is comparable to the nominal 1/Nc correction which
would be ∼ 33%.

Next, we explore the convergence of the expansion when the delta
degrees of freedom are included. While we are taking ∆ ≃ 293 MeV,
ǫ∆ depends upon ǫa and ǫπ through the denominator of Fπ . We have
not parameterised this dependence, precluding our ability to plot the
resulting fit, but we can observe the values of the LECs that are deter-
mined with and without explicit delta degrees of freedom to compare
the size of the NLO contributions. This study can only be performed
for the NLO LEC c2, as we do not have the extrapolation function with
deltas beyond NLO. In Supplemental Data Table VI, we list the result-
ing value of c2 and the size of the NLO contribution for the analysis
with and without the delta. The NLO χPT( /∆) results in a very poor fit,
so we do not report the values of c2 or δgNLO

A . The NLO χPT(∆) does

result in a good fit with χ2
aug/dof = 0.49. The resulting fit is displayed

in the bottom entry of Extended Data Fig. 5. Comparing the NNLO
fits, which means either NLO χPT(∆) and NLO χPT( /∆) plus NNLO
χPT( /∆), we observe the value of c2(∆) is approximately half as big
as c2( /∆), indicating that the non-analytic terms are smaller when the
deltas are included. This suggests that the convergence will be im-
proved with the explicit inclusion of ∆ degrees of freedom.

In order to fully constrain this fit and test the convergence of the ex-
pansion with and without delta degrees of freedom, first, a calculation
including theN →∆ and ∆→∆ axial matrix elements is needed, and
second, the EFT including the deltas must be worked out to at least
one higher order in the expansion. This is a particularly interesting
question to resolve as the χPT( /∆) seems to be poorly converging, if
at all, as observed in the prior section.
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Order with delta without delta

c2 δgNLO
A c2 δgNLO

A

NLO -4.8(1.8) 0.28(13) – –

NNLO 12.1(8.2) 0.75(40) -23.0(3.5) -0.026(30)

Supplemental Data Table VI ∣ Effect of including delta degrees of freedom.
We list the resulting value of c2 and the NLO contribution to gA at the physical
point for two fits with and without the delta degrees of freedom. The NLO
χPT( /∆) fit has a sufficiently poor χ2

aug/dof we do not report the resulting LEC

and δgNLO
A values.
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Supplemental Data Figure 8 ∣ Correlator fit study I. Analogous to Extended Data Fig. 1a, b, c and d for the a15m400 and a15m350 ensembles. Unbiased
bootstrap fit curves with 68% confidence intervals. Results from one simultaneous fit are represented in each column. The resulting biased bootstrap histograms for
g̊A /̊gV follow at the bottom. In the histograms, regions mark the 68% and 95% confidence interval. Uncertainties are one s.e.m.
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Supplemental Data Figure 9 ∣ Correlator fit study II. Analogous to Extended Data Fig. 1a, b, c and d for the a15m130 and a12m400 ensembles. Uncertainties are
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Supplemental Data Figure 14 ∣ Correlator fit study VII. Analogous to Extended Data Fig. 1a, b, c and d for the a09m400 and a09m350 ensembles. Uncertainties
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are one s.e.m.
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Supplemental Data Figure 16 ∣ Correlator fit tmin stability study I. Analogous to Extended Data Fig. 1e. Solid circles accompanied by shaded bands are the
preferred simultaneous fits. Varying fit regions for the two-point correlator (◻), and axial (△), and vector (◇) effective derivatives are presented. Corresponding
P -values are presented, with the dashed red line at p = 0.05 discriminating statistical significance of the fit results. Uncertainties are one s.e.m.
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Supplemental Data Figure 17 ∣ Correlator fit tmin stability study II. Analogous to Extended Data Fig. 1e and Supplemental Fig. 16 for the remaining ensembles.
Uncertainties are one s.e.m.
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preferred simultaneous fits. Varying fit regions for the two-point correlator (◻), and axial (△), and vector (◇) effective derivatives are presented. Corresponding
P -values are presented, with the dashed red line at p = 0.05 discriminating statistical significance of the fit results. Uncertainties are one s.e.m.
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Supplemental Data Figure 20 ∣ Correlator fit tmax stability study II. Analogous to Extended Data Fig. 1f and Supplemental Fig. 19 for the remaining ensembles.
Uncertainties are one s.e.m.
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Supplemental Data Figure 21 ∣ Correlator fit stability study III. Analogous to Extended Data Fig. 1f and Supplemental Fig. 19 for the remaining ensembles.
Uncertainties are one s.e.m.
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Supplemental Data Figure 23 ∣ Autocorrelation study II. Analogous to Extended Data Fig. 1c and d. Uncertainties are one s.e.m.
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