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Recognizing the sex of conspecifics is important. Humans rely primar- 
ily on visual pattern recognition for this task. A wide variety of linear 
and nonlinear models have been developed to understand this task of 
sex recognition from human faces.' These models have used both pixel- 
based and feature-based representations of the face for input. Fleming 
and Cottrell (1990) and Golomb et a!. (1991) utilized first an autoencoder 
compression network on a pixel-based representation, and then a classi- 
fication network. Brunelli and Poggio (1993) used a type of radial basis 
function network with geometrical face measurements as input. O'Toole 
and colleagues (1991, 1993) represented faces as principal components. 
When the hidden units of an autoencoder have a linear output function, 
then the N hidden units in the network span the first N principal compo- 
nents of the input (Baldi and Hornik 1989). Bruce et al. (1993) constructed 
a discriminant function for sex with 2-D and 3-D facial measures. 

In this note we compare the performance of a simple perceptron and 
a standard multilayer perceptron (MLP) on the sex classification task. 
We used a range of spatial resolutions of the face to determine how the 
reliability of sex discrimination is related to resolution. A normalized 
pixel-based representation was used for the faces because it explicitly 
retained texture and shape information while also maintaining geometric 
relationships. We found that the linear perceptron model can classify 
sex from facial images with 81% accuracy, compared to 92% accuracy 
with compression coding on the same data set (Golomb et al. 1991). The 
advantage of using a simple linear perceptron with normalized pixel- 
based inputs is that it allows us to see explicitly those regions of the face 

'Consistent with Burton ef al. (1993), we use the term sex rather than gender because 
our interest is in the physical, not psychological, characteristics of the face. 
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that make the largest and most reliable contributions to the classification 
of sex. 

A database of 90 faces (44 males, 46 females) was used (O'Toole et al. 
1988). No facial hair, jewelry, or makeup was on any of the faces. Each 
face was rotated until the eyes were level, and then scaled and cropped 
so that each image showed a similar facial area. From the original set 
of faces, we created five separate databases at five different resolutions 
(10 x 10 pixels, 15 x 15/22 x 22/30 x 30, and 60 x 60). To produce each of 
these databases, the original faces were deterministically subsampled by 
selecting pixels from the original image at regular intervals. For all faces 
at a given resolution, the images were equalized for brightness from the 
initial 256 gray-levels. A sample face is shown in Figure la. Because 
not all photos were exactly head-on, each database was doubled in size 
(to 180 faces) by flipping each face image horizontally and including 
this new image in the database. This procedure removed any systematic 
lateral differences would could have been exploited by the network. 

Two different architectures were used: (1) a simple perceptron and 
(2) an MLP. In the simple perceptron model, the inputs (the face image) 
were directly connected to a single output unit. The MLP model included 
a layer of 10 hidden units between the input and output units. 

A jackknife training procedure was used. For each architecture at each 
resolution, 9 separate networks were trained. Each of these 9 networks 
was trained on a different subset containing 160 of the 180 faces, with 
the remaining 20 test faces used to measure generalization performance. 
These 20 test faces constituted a unique testing set for each network, 
and consisted of 10 individuals with their horizontally flipped mirror 
images. There was, of course, a high degree of overlap in the faces used 
for training the different networks. The networks were trained with 
conjugate gradient until all patterns in the training set were within 0.2 
of the desired output (1.0 for males, 0.0 for females) activation, or until 
network performance was not improving. 

The simple perceptron and the MLP demonstrated remarkably similar 
generalization performance at all resolutions (see Fig. lb). Comparison of 
the performance of the two architectures within each resolution revealed 
no significant differences (p > 0.05 in all cases). There was, however, a 
significant improvement at higher resolution for the perceptron networks 
[F(4,40) = 3.121, p < 0.051 and for the MLP networks [F(4.40) = 3.789, 
p < 0.051. Post-hoc comparisons showed that for the perceptron net- 
works, generalization performance at a resolution of 10 x 10 pixels was 
significantly worse than at all other (higher) resolutions. For the MLP 
networks, performance also degraded with lower resolutions. The 10 x 10 
MLP networks were significantly worse than the 22 x 22, 30 x 30, and 
60 x 60 networks; the 15 x 15 networks were significantly worse than the 
30 x 30 networks. 

Examination of the weights of the perceptron network revealed how 
the solution was reached. Figure lc  shows the mean weights of the 



1162 Michael S. Gray et al. 

10x10  15x15 22x22 30x30 60x60 
Dimensions of the Face (in pixels) 

Figure 1: (a) Sample face from database; (b) performance of two types of net- 
works and different input sizes; (c) weights in a 30 x 30 perceptron network; 
(d) logarithm of the coefficient of variation of the weight in (c). 

9 simple perceptron networks (30 x 30 pixel resolution) at the end o 
training. Figure Id  shows log(g,,/ 1 w I), the logarithm of the coefficient 
variation (the standard deviation of the weight divided by its absol 
mean value). 

Recent efforts to match human performance on sex recognition ha 
been remarkably successful. Using the same network architecFure 
with different training sets, Fleming and Cottrell (1990) had an acc 
rate of 67%, while Golomb et al. (1991) achieved model 
performance of 91.9% correct, compared to 88.4% for hu 
leave-one-out training strategy, Brunelli and Poggio (1993 
87.5% correct generalization performance. Burton eS 
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a discriminant function using a variety of 2-D and 3-D face measure- 
ments. They achieved 85.5% accuracy over their set of 179 faces using 12 
simple measurements from full-face (frontal) photographs. With 16 2 - ~  
and 3-D variables, their performance improved to 93.9%. It is important 
to note, however, that this is not a generalization measure for new faces, 
but indicates training performance on their complete set of faces. OIToole 
et al. (1991) reached generalization performance of 74.3% accuracy when 
combining information from the first four eigenvectors. 

Compared to these previous studies, our performance of 81% with 
the simple perceptron is not exceptional. There are, however, several im- 
portant aspects to our approach. First, we use a normalized pixel-based 
input. With the normalization, we bring the eyes and mouth into exact 
register, and limit the range of luminance values in the image. Another 
advantage of our pixel-based approach (as opposed to geometric mea- 
surements) is that all regions of the face are represented in the input. 
Through training, the network determines which parts of the face have 
reliable information, and which are less consistent. When one chooses 
to represent faces as (arbitrary) geometric measurements, however, infor- 
mation is lost from the beginning. Regardless of the model used subse- 
quently to classify the faces, it can use only the measurements collected. 
Our method does not depend on intuition regarding which regions or 
features of the face are important. 

The particular advantage of the perceptron model is that it shows 
explicitly how the sex classification problem was solved. Figure Ic shows 
that the nose width and image intensity in the eye region are important 
for males while image intensity in the mouth and nose area is important 
for discriminating women. In Figure Id, showing the logarithm of the 
coefficient of variation of the weights across networks, most regions seem 
to provide reliable information (small squares). There are a few areas 
(e.g., the outside of the nose) that have particularly high variability (large 
squares) across networks. More importantly for both of figure l c  and Id, 
however, we see that information relevant to sex classification is broadly 
distributed across all regions of the face. 

Our results show that a simple perceptron architecture was found to 
perform as well as an MLP on a sex classification task with normalized 
pixel-based inputs. Performance was also surprisingly good even at the 
coarser resolutions tested. The high degree of similarity between the 
results of the two architectures suggests that a substantial part of the 
problem is linearly separable, consistent with the results of O'Toole and 
colleagues (1 991, 1993) using principal components. This simple percep- 
tron, with less than 2% of the number of parameters in the model by 
Golomb ef al. (1991), reached a peak performance level of 81% correct. 
Since human performance on the same faces is around 88%, sex recogni- 
tion may in fact be a simpler skill than previously believed. 
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