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ABSTRACT In this paper, we demonstrate a perceptual-based 3D skeleton motion data refinement method

based on a bidirectional recurrent autoencoder, called BRA-P. Three main technical contributions are made

by the proposed network. First, the proposed BRA-P can address noisy data with different noise types

and amplitudes using one network, and this attribute makes the approach more suitable for raw motion

data with heterogeneous mixed noise. Second, due to the usage of perceptual loss, which measures the

difference in high-level features extracted by a pretrained perceptual autoencoder, BRA-P improves the

perceptual similarity between refined motion data and clean motion data, especially for the case where the

noisy data and target clean data have different topologies. Third, BRA-P further improves the bone-length

consistency and smoothness of the refined motion using the perceptual autoencoder as a postprocessing

network. Ablation experiments verify the effect of the three technical contributions of our approach. The

results of the experiments on synthetic noise data and raw motion data captured by Kinect demonstrate that

our method outperforms several state-of-the-art methods in the cleaning of mixed-noise data by one network.

INDEX TERMS 3D skeleton motion data refinement, noise-agnostic, perceptual constraint, motion autoen-

coder, Kinect.

I. INTRODUCTION

Human motion data are widely used in virtual reality, human-

computer interactions, computer games, sports and medical

applications [1]–[4]. Human motion capture is a prevalent

technique that aims to supply highly precise human motion

data. Professional motion capture sensors such as Vicon [5]

and Xsens [6] can offer motion data with high precision but

are too expensive for home use. Furthermore, these mocap

systems are not convenient to wear because users must wear

capture suits. In recent decades, certain low-cost motion cap-

ture technologies, such as depth sensor-based and camera-

based technologies, have been developed and can serve as

alternatives for capturing human motion. However, the raw

3D skeleton motion data captured by these low-cost sensors

are often noisy, occluded or incomplete for several reasons,

such as calibration error, sensor noise, poor sensor resolution,

and occlusion due to body parts or clothing. Therefore, raw

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonghoon Kim .

mocap data should be refined, i.e., missing data should be

filled in and denoising should be performed, before the data

are used [7]–[10].

With the rapid development of deep learning, the advan-

tages of this method have been demonstrated in motion

data refinement. However, motion data refinement based on

deep learning is still an open problem. For example, if the

optimization target of the algorithms is only the minimiza-

tion of the mean square error (MSE) of the joint position

between the refined motion and the label motion, i.e., the

reproduction error [10], the kinematic information of the

motion data is not fully exploited by the network, which

causes the refined motion to lack perceptual similarity with

the clean data. Mall et al. [11] noted that the result of

encoder-bidirectional-decoder (EBD), which is only trained

by reproduction error, is still somewhat noisy. Thus, these

researchers trained an encoder-bidirectional-filter (EBF) net-

work to postprocess EBD results. Holden [12] also used a

smoothing step to filter jittery movements, but postprocess-

ing steps are time-consuming and not suitable for real-time

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 52927

https://orcid.org/0000-0001-7708-5442
https://orcid.org/0000-0001-8757-547X


S.-J. Li et al.: Perceptual-Based Noise-Agnostic 3D Skeleton Motion Data Refinement Network

FIGURE 1. Examples of skeleton motion data captured by Kinect and the refined result of our proposed
BRA-P. The first and second rows have the same background but different poses. The first and third rows
have different backgrounds but the same pose. Obviously, the three different poses captured by Kinect
indicate that different orientations and backgrounds can generate different types of noise in the motion
data. Therefore, the human skeleton data captured by Kinect are mixed-noise data. (a) Original captured
color images. (b) Pose captured by Kinect. (c) Pose captured by NOITOM Mocap. The skeletons in (b) and (c)
have different skeleton topologies. (d) Pose refined by BRA [13] in which malformed or unnatural parts are
squared. (e) Pose refined by the proposed BRA-P. The results show that BRA-P can improve the problems
that BRA has when optimizing raw data captured by Kinect.

motion data acquisition systems. Li et al. [13] proposed

a bidirectional recurrent autoencoder that can improve the

kinematic information expression ability of the network by

imposing smoothness and bone-length constraints. However,

unfortunately, smoothness and bone-length constraints can-

not satisfactorily maintain the kinematic information, and

the noisy data and target clean data have different skeleton

topologies. As shown in Fig. 1, the data captured by Kinect

and the poses captured by Mocap have different skeleton

topologies, and the BRA results have malformed or unnatural

components. Furthermore, the raw mocap data, such as the

skeleton motion data captured by Kinect, often contain mixed

noise with different noise types and noise amplitudes due to

changes in background or human posture orientation during

capture. Fig. 1 shows that the raw data captured by Kinect

contain different types of noise when the background or the

body orientation changes. Hence, the refinement approach

for raw mocap data should have the ability to remove the

heterogeneous mix of noise through one network, i.e., the

network should be noise-agnostic. Therefore, in summary,

the objectives of this paper are to propose a network that is

noise-agnostic and to further improve the kinematic informa-

tion expression ability of the network.

In line with [13], we also use the bidirectional long short-

term memory recurrent neural network (B-LSTM-RNN)

architecture [14], [15] to refine noisy motion data. Our pre-

vious work in [13] noted that the refinement network based

on the B-LSTM-RNN architecture does not require noise

amplitude as a priori knowledge. In this paper, we found that

the B-LSTM-RNN architecture network also does not require

the noise type as prior knowledge. As a result, the network

can be noise-agnostic. At the same time, we improve the

kinematic information expression ability of the network by

imposing perceptual constraint based on a pretrained percep-

tual autoencoder. Perceptual loss functions, which are based

on high-level features extracted from pretrained networks,

are widely used in generative adversarial networks [16]–[21]

to synthesize high-quality images or textures. Those works

can generate high-quality images due to perceptual losses

that measure image similarities more robustly than per-pixel

losses [16]. Inspired by this idea, our strategy is to pretrain

a perceptual autoencoder using clean motion data. Subse-

quently, we train a denoising autoencoder for refinement

tasks using the perceptual loss, which is defined based on this

perceptual motion autoencoder. As shown in Fig. 2, HR =

Ep (XR), which is the hidden unit of XR calculated by the
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FIGURE 2. Pipeline of our approach. Our strategy is to train a denoising
autoencoder consisting of Ed and Dd by noisy-clean motion pairs XN and
XC based on a pretrained perceptual autoencoder trained by clean motion
data and consisting of Ep and Dp. The loss function for the perceptual
autoencoder consists of three elements, i.e., reproduction loss, smooth
loss and bone-length loss, which are the same as the losses used in [13].
In contrast, the loss function for training the denoising autoencoder
consists of four elements: perceptual loss, reproduction loss, smooth loss
and bone-length loss. At training time, we optimize the output of the
denoising network XR by the loss function. At runtime, the output of the
perceptual autoencoder YR is used as the final refined result.

perceptual autoencoder, has a close distance with the hidden

units of the ground truth XC due to the use of perceptual

loss. The similarity in the hidden unit space of the clean data

and refined data can help the denoising autoencoder learn

additional kinematic information from noisy-clean motion

pairs. On the other hand, Holden et al. [22] reported that

the projection from the hidden unit space to motion space

can generate a smooth and natural motion. Inspired by this

idea and to further improve the quality of the refined motion,

we use the perceptual autoencoder to postprocess XR, i.e., we

use YR = Dp (HR) as the final refined result. The experi-

ment also shows that this postprocessing step is effective in

improving bone-length consistency and smoothness. In pre-

vious work, the pretrained classification networks are only

used for calculating perceptual loss, but in our approach,

the pretrained network is an end-to-end autoencoder used to

return a perceptual loss and to further postprocess the refined

result. Fig. 2 shows the pipeline of our BRA-P approach.

We demonstrate the performance of our approach by train-

ing and testing it on a synthetic mixed-noise dataset generated

by the CMU human motion dataset [23] and a raw skeleton

dataset captured by Kinect. The experiments on the synthetic

dataset can explain why the B-LSTM-RNN architecture is

more suitable for mixed-noise data. On the raw motion

dataset captured by Kinect, we validate each component of

our approach via an ablation study and show the superior

performance of our approach in the removal of mixed noise

by comparing our approach with the state-of-the-art baseline.

In summary, our contributions are three-fold and are

described as follows:

1) Our approach is noise-agnostic. The experiment on a

synthetic mixed-noise dataset shows that our approach

can address noisy data with different noise types and

amplitudes using one network. This attribute makes our

approach more suitable for rawmotion data with mixed

noise, as verified by experiments on the Kinect motion

dataset.

2) Our approach improves the perceptual similarity

between the refined motion data and clean motion

data. By imposing perceptual loss during training, our

network can better maintain the motion characteris-

tics, especially for noisy and clean data with different

topologies.

3) Our approach further improves the bone-length con-

sistency and smoothness of the refined motion via the

postprocessing step using the perceptual autoencoder.

The remainder of this paper is organized as follows.

Section II gives a review of the related work and positions the

proposed approach with respect to earlier work. Section III

discusses the details of our proposed approach. The exper-

imental results are presented and discussed in Section IV.

Finally, in Section V, the conclusions of this work are pre-

sented and future research directions are discussed.

II. RELATED WORK

Many studies have been devoted to the refinement of cor-

rupted motion data and have yielded encouraging results. Our

approach is data-driven, and consequently, we mainly give a

categorized overview of the related data-driven methods in

this section.

A. FILTER-BASED METHODS

Standard signal denoising filters are the typical non-data-

driven methods used in early research [13], but those

non-data-driven filters [24]–[30] cannot preserve the spatial-

temporal information embedded in human motion because

these methods process each degree of freedom sepa-

rately [31]. The groundbreaking work of data-driven fil-

ters was proposed by Lou and Chai [31] and can maintain

the spatial-temporal patterns in human motion data. Their

method can automatically train a series of spatial-temporal

filter bases from prerecorded human motion data and use

them along with robust statistical techniques to filter noisy

motion data. However, this method cannot recover certain

motion details because this method uses the Singular Value

Decomposition (SVD) technique to choose only a set of

orthogonal filter bases for filtering noisy motions. Another

famous work by Akhter et al. [32] proposed a bilinear model

that factors the basis into spatial and temporal variations

and unifies the coefficients; hence, the model simultaneously

exploits spatial and temporal regularity. This method cannot

handle many different types of motion and noise altogether

because the number of basis vectors should be determined

based on the motion type before the denoising procedure.

B. SPARSE-REPRESENTATION-BASED METHODS

Sparse representation has become a hot research topic in the

past decade and has been used to solve the problem of motion

refinement. In 2011, Xiao et al. [33] proposed the prediction

of missing markers in terms of finding an l1-sparse represen-

tation for the existing data of an incomplete pose. In 2015,

Xiao et al. [34] and Feng et al. [35] divided each human
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pose into five partitions and presented five dictionaries for

those partitions to obtain a fine-grained pose representation,

but this approach abandons the relationships between these

partitions. In 2016, Xia et al. [36] point out that sparse coding

and low-rank matrix completion only take the basic statistical

properties of human motion into consideration, so the authors

recover incomplete motions using sparse representations with

smoothness and bone-length constraints, which includes the

kinematic information in the recovery process. However, all

of the above data-driven methods are action specific or noise

specific; that is, each action type or noise type requires a

separate refinement model.

C. DIMENSIONALITY-REDUCTION-BASED METHODS

Dimensional reduction can be used to eliminate noisy com-

ponents of data and can be realized via principal component

analysis (PCA) [37]. In 2006, Liu and McMillan [38] first

modeled the motion sequences of a training set via principal

component analysis and recovered a new sequence by finding

the least squares solutions based on the available marker posi-

tions and the principal components of the associated model.

In the same year, Tangkuampien and Suter [39] showed that

the greedy KPCA (kernel PCA) algorithm can be applied

to filter exemplar poses and build a reduced training set

that optimally describes the entire sequence. Therefore, this

approach has superior denoising qualities and lower evalua-

tion costs compared with PCA. In 2007, Günter et al. [40]

proposed a rapid iterative KPCA method that improved the

convergence speed for denoising human motion capture data.

However, dimensionality-reduction-based methods discard

the temporal or spatial correlations of data, which leads to an

overparameterization of the data [32], changing the structures

in the original motion data.

D. REFINEMENT NEURAL NETWORKS

Recently, neural networks have displayed remarkable advan-

tages in many machine learning tasks such as computer

vision, image processing, pattern recognition, and natural

language processing. Increasingly, neural networks have also

been exploited for motion data refinement and have achieved

state-of-the-art results. In 2007, Taylor et al. [41] used a

restricted Boltzmann machine (RBM) to model the prob-

ability distribution of the observation vector at each time

frame, and after training, the model could perform online

filling of missing data during motion capture. In 2015,

Fragkiadaki et al. [42] proposed an encoder-recurrent-

decoder (ERD) model for predicting the mocap vector in

the next frame from the past motion sequence. In 2017,

Butepage et al. [43] proposed a fully connected network

that could predict missing data of latter sequence from past

information in the motion sequence. Mall et al. [11] trained

a set of filters using a deep, bidirectional, recurrent frame-

work for clean, noisy and incomplete mocap data. In 2019,

Cui et al. [44] proposed a bidirectional attention network

for missing data recovery, and their embedded attention

mechanism can decide where to borrow information from

and use this information to recover corrupted frames. The

above deep-learning-based methods are action agnostic but

noise specific, i.e., these methods can be trained by large-

scale data with a specified type of noise (such as Gaussian

noise or missing data) and a heterogeneous mix of action

types, and the network can refine any action with that noise

type. In fact, the raw data captured by low-cost mocap sen-

sors are often datasets with heterogeneous mixes of action

types, noise types and noise amplitudes. As a result, the more

suitable the approach is for mixed-noise data, the more suit-

able the approach is for raw data. For raw data refinement,

in 2015, Holden et al. [10] used a convolutional autoen-

coder for denoising motion captured by Kinect. In 2018,

Holden [12] used a deep residual network for mapping raw

optical motion capture data to skeleton data. In the same

year, Huang et al. [45] proposed a bidirectional recurrent

framework for reconstruction of full body poses in real time

from data captured by 6 IMUs. However, the results of these

methods are still somewhat jittery, and [12] requires postpro-

cessing to refine the results. In computer vision, certain works

have addressed the problem of motion refinement. In 2018,

Fieraru et al. [7] noted that even state-of-the-art models of

human pose estimation from images or videos fail to correctly

localize all the body joints, thus these researchers proposed

a pose refinement network that takes both the image and a

given pose estimate as input and learns to directly predict

a refined pose by joint reasoning of the input-output space.

Moon et al. [8] presented a model-agnostic pose refinement

method to estimate a refined pose from a tuple of an input

image and a pose. These two state-of-the-art works for pose

refinement both require an image as clean information to

refine the pose. In 2019, Li et al. [13] proposed an autoen-

coder based onB-LSTM-RNN for 3Dmotion data refinement

and displayed its advantages regarding the visual quality of

the refinedmotion. In this paper, we improve the performance

of BRA using a perceptual constraint. The use of the percep-

tual constraint allows the network output to better maintain

the motion characteristics, and during the runtime, the output

of the perceptual autoencoder is used as the final refined

result. Based on the two advantages of our approach men-

tioned above, we demonstrate its advantages over a variety

of baselines via extensive experiments on both a synthetic

mixed-noise dataset and a raw skeleton dataset captured by

Kinect.

III. PROPOSED METHOD

A. DATA FORMULATION

Two datasets are used in this paper. The first is a synthetic

dataset generated by the CMU human motion database [23],

and the second is a raw motion dataset synchronously cap-

tured by Kinect and the NOITOM mocap system [46].

1) SYNTHETIC DATASET

We perform selected preprocessing steps on the CMU

human motion database, similar to those in [22], including

subsampling of all motion in the database to 60 frames
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FIGURE 3. Data in the synthetic dataset based on the CMU human motion database. (a) T-pose of the CMU
human motion data, containing 21 joints. (b)-(d) Three examples of synthetic noise data with
high-amplitude Gaussian noise, low-amplitude Gaussian noise and randomly missing noise. (e) Clean data
in the CMU motion database. The noisy and clean data have the same skeleton topology.

FIGURE 4. Data in the raw motion dataset. (a) T-pose of skeleton captured by Kinect. (b) T-pose of
skeleton captured by NOITOM Mocap. (c) Noisy pose captured by Kinect. (d) Corresponding clean pose
of (c) captured by NOITOM Mocap. The noisy and clean data in DSraw have different skeleton
topologies.

per second, conversion of the data from the joint angle rep-

resentation in the original dataset to the 3D joint position

format, and the transformation of the all joint positions to

the local coordinate system, the origin of which is located

on the ground and onto which the root position is projected.

Only 21 of the most important joints are preserved, and thus

the dimension of each posture is 63 (21 × 3 = 63), where

3 is the number of channels of each joint (each joint contains

three channels: X,Y,and Z). The mean pose is subtracted from

the data and, and then the data are divided by the standard

deviation to normalize the scale of the skeleton. However,

the rotational velocity of the body around the vertical axis

does not need to be removed from each frame because this

preprocessing step is time-consuming and is not suitable for

real-time use. The entire CMU database is separated into

NCMU overlapping clips of f frames (overlapped by f /2

frames), and all of these motion clips consist of DSCMU .

No fixed motion clip length is recommended, and we set

f = 120. Let XCMU = [p1, p2, · · · , p120]
T ∈ DSCMU denote

a motion chip, where pt =
[

xt,1, yt,1, zt,1, · · · , xt,J , yt,j, zt,J
]

represents the t-th frame, J = 21 is the number of skeleton

joints, 120 is the length of the motion clip, and X ′
CMU is used

to represent the noisemotion clip synthetized byXCMU . All of

the noisy-clean motion pairs consist of a synthetic dataset

DSsyn =
{[

X ′
CMU ,XCMU

]}

.

2) RAW MOTION DATASET

The raw motion datasets consist of many daily actions,

similar to the CMU motion dataset (i.e., walking, jump-

ing, dancing, basketball, box, etc.). Similar to the Carnegie

Mellon University Multimodal Activity (CMU-MMAC)

Database [47], the data captured by two different sensorswere

synchronized using the network time protocol. The skeleton

data captured by Kinect do not need preprocess. But the data

in the bvh format captured by the NOITOM mocap system

are converted to 3d joint position format using the actor

skeleton, which has a height of 175 centimeters in a neutral

pose. All the activity in the dataset is executed by one actor,

and hence, the bone length of all the poses is treated as a

constant.

The joint number of Kinect is 25, and hence, the dimension

of each Kinect posture is 75 (25 × 3 = 75). The number of

skeleton joints in the NOITOM Mocap data is 59, including

40 hand joints, and hence, the dimension of each NOITOM

Mocap posture is 177 (59 × 3 = 177). The mean pose is

subtracted from the data and then the data are divided by

the standard deviation to normalize the scale of the skeleton.

The Kinect skeleton data are treated as noisy data, and the

NOITOM Mocap data are treated as clean data. Let XKinect
and XMocap represent synchronal pairs, and all of these pairs

consist of raw motion dataset DSraw =
{[

XKinect,XMocap

]}

.
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FIGURE 5. Architecture of motion autoencoder.

The dataset and the bone length information are provided

publicly on GitHub.1

B. NETWORK ARCHITECTURE

Our network is composed of two motion autoencoders, a per-

ceptual autoencoder and a denoising autoencoder. In this

paper, the two motion autoencoders share the same architec-

ture. The network architecture is the same as that used in [13].

As shown in Fig. 5, the autoencoder has two components,

the encoder and the decoder. The encoder receives the input

motion chipX and outputs the encoded valuesH in the hidden

unit space. The encoder operation is as follows:

H = E(X )

= BiLSTM1 (W3 (W2 (W1(X ) + b1) + b2) + b3) , (1)

where W1 ∈ Rm×128, b1 ∈ R128, W2 ∈ R128×256, b2 ∈

R256, W3 ∈ R256×512, b3 ∈ R512. The decoder receives the

hidden unitH , and outputs the reproduced motion clip Y . The

decoder operation is as follows:

Y = D(X )

= W6 (W5 (W4 (BiLSTM2(H )) + b4) + b5) + b6, (2)

where W4 ∈ R512×256, b4 ∈ R256, W5 ∈ R256×128, b5 ∈

R128, W6 ∈ R128×n, b6 ∈ Rn. In this work, BiLSTM1 and

BiLSTM2 are bidirectional LSTM cells that both input and

output sequences of size 120 × 512. For X ′
CMU and XCMU

training pairs, m = n = 63. ForXKinect and XMocap training

pairs, m = 75 and n = 177.

C. LOSS FUNCTIONS

For convenience, we uniformly use XC to present the clean

data and XN to present the noisy data in the two training

datasetsDSsyn andDSraw. Four loss functions are used during

the training time.

1) REPRODUCTION LOSS

The autoencoder receives the input motion clip and outputs

the reproduced motion clip, thus we expect that the output

of the autoencoder is the clean ground-truth motion sequence.

A joint-position wise loss function such as the mean square

1https://github.com/vcc-zhu/BRA-P-Kinect2Mocap-

loss (MSE) is the most commonly used loss function and

guarantees that the reproduced motion has the minimum

Euclidean distance with the clean motion clip. We define the

reproduction loss by

LR(Y ,X ) =
1

f × d
‖Y − X‖2, (3)

where ‖·‖2 denotes the l2-norm, f is the frame number of the

motion clip, and d is the dimension of each posture.

2) PERCEPTUAL LOSS

Although the reproduction loss guaranteeing the reproduced

motion has the minimum Euclidean distance with the clean

motion clip, the solution of the MSE optimization problems

often lacks smoothness and bone length, which results in

perceptually unsatisfying solutions. We use a perceptual loss

function to obtain perceptually satisfying solutions. Based

on the aforementioned perceptual autoencoder, the percep-

tual loss of a reproduced motion clip XR is defined as the

Euclidean distance between the hidden units of itself and its

corresponding clean data XC :

LP (XC ,XR) =
1

f × 512

∥

∥Ep (XR) − Ep (XC )
∥

∥

2
. (4)

3) SMOOTHNESS LOSS

Smoothness loss has been used in many studies, such as

data-driven menthod [36] and non-data-driven method [48],

to yield natural motion sequences. These studies note that

natural human motion should be smooth in the temporal

direction. In addition to reproduction loss and perceptual

loss, we also add spatial coherence regularizations to encour-

age neighboring frames to have continuity. The studies in

[13], [36], [45] enforce C2 continuity on each feature dimen-

sion of themotion clip via a smoothness penalty term. Repeat-

ing the border elements of X yields X ′: X ′
1,i = X ′

2,i = X1,i and

X ′
n+1,i = X ′

n,i = Xn,i, where 1 ≤ i ≤ d. Let O be a symmetric

matrix:

O =











−1 1 0

1 −2 1

. . .
... 1

1 −1











(f+2)×(f+2)

. (5)
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Given an input motion clip X , we define the smoothness

loss as:

LS (X ) =
1

(f + 2) × d

∥

∥OX′
∥

∥

2
. (6)

4) BONE-LENGTH LOSS

The skeleton of the character is a kinematic model composed

of several bones and joints [29], [49]. A bone is a segment

of a fixed length, and a joint is the end point of a bone.

The bone length of such a kinematic model should maintain

consistency among all the frames. We used similar bone-

length loss in [13]. Let lb denotes the bone length of b-th bone

of skeleton. Given an input motion clip X , the cost in terms

of a penalty for bone length can be written as follows:

LB(X ) =
1

f × (J − 1)

f
∑

i=1

J−1
∑

b=1

|

∥

∥

∥
p
i,1
b (X ) − p

i,2
b (X )

∥

∥

∥

2
− lb|,

(7)

where p
i,1
b (X ) and p

i,2
b (X ) are the 3D positions of the two end

joints of the b-th bone of frame i which is recorded in X , and

J is the joint number of skeleton..

D. TRAINING DETAILS

The entire training procedure can be divided into two sub-

procedures. The first training task is to train an encoder Ep :

XC → HC and a decoder Dp : HC → X ′
C which consist of

the perceptual autoencoder. The loss function for training is

as follows:

Lp = λp1LR
(

XC ,X ′
C

)

+ λp2LS
(

X ′
C

)

+ λp3LB
(

X ′
C

)

, (8)

where the weights λp1, λp2 and λp3 balance the importance

of each loss, XC and X ′
C are clean and reproduced data,

respectively. Adding the smoothness loss and bone-length

loss can improve the quality of the output motion clip. The

choices for the three weights are not crucial. We set λp1 = 1

and find that retaining the three losses at the same magnitude

serves the purpose. In this paper, we use λp2 = 0.0001 and

λp3 = 0.0001.

Second, we train Ed andDd which consist of the denoising

autoencoder. We let XR = Dd (Ed (XN )), and the denoising

autoencoder minimizes the following:

Ld = λd1LR (XC ,XR) + λd2LS (XR)

+ λd3LB (XR) + λd4LP (XC ,XR) . (9)

As noted in [13], the smoothness constraint causes the

reproduced motion to become static, and hence, the smooth-

ness constraint keeps the reproduction error from decreasing.

However, due to perceptual loss, we can slightly increase the

weights of the smoothness loss and bone-length loss. In this

paper, we set λd1 = 1,λd2 = 0.001, λd3 = 0.001 and

λd4 = 10.

The implementation of our work is based on TensorFlow

using a single GTX Tesla P100 GPU. Adam [50] is used

to minimize the loss function of two networks. The mini-

batch size is set to 16. Dropout wrapper is used on Bi-LSTM

layer and dropout rate is set to 0.2. The learning rate is set to

0.00001 when training the perceptual autoencoder and set to

0.001 when training the denoising autoencoder. Each of the

two networks is trained by 300 epochs.

IV. EXPERIMENT AND ANALYSIS

Our experiment consists of two components. The experiments

on the synthetic dataset are used to compare the performance

of BRA-P with that of selected state-of-the-art baselines

and analyze why the networks based on RNN architecture

are suitable for noisy data with different noise types and

amplitudes. Additionally, compared with BRA [13], BRA-P

only has obvious superiority for the case in which the noisy

data and target clean data have different topologies. Hence,

we perform the ablation study only on the raw motion dataset

to verify the effect of the three proposed characteristics of

BRA-P.

A. EXPERIMENTS ON SYNTHETIC NOISE DATASET

The synthetic dataset DSsyn contains four types of noisy

data: (a) Gaussian noise data: where 100% of the joint data

are corrupted by Gaussian noise (SNR = 1 dB, 5 dB);

(b) randomly missing data with Gaussian noise: where 30%

and 40% of the joint data are randomly set to zero in every

frame, and 100% of the reversed part data are corrupted by

Gaussian noise (15 dB SNR). To improve the generalization

ability of our network, each type of noisy data only contains

NCMU/2 motion clips, which are randomly selected from

DSCMU . As a result, the total number of noisy-clean pairs

in DSsyn is 2 × NCMU . All the data in DSsyn are used as the

training dataset.

We use four quantitative measurements to quantify the

refinement results of BRA-P and the baselines: the repro-

duction error (R), perceptual error (P), smoothness error (S)

and bone-length error (B). The four errors are calculated via

Eq. 3, Eq. 4, Eq. 6 and Eq. 7, respectively. All the repro-

duction errors are stored in centimeters. For ease of com-

parison of the precision with that of the experiments on raw

data set, the CMU skeleton is also regularized with a height

of 175 centimeters in neutral pose.

We compare the performance of our BRA-P on a synthetic

dataset with those of four state-of-the-art baselines, including

(1) the method proposed by Holden et al. [10] in 2015 SIG-

Graph Asia, which is denoted CNN; (2) the method pro-

posed by Holden et al. in 2016 SIGGraph [22], which can

be used to optimize the results of CNN and is denoted

CNN+Constrain; (3) an encoder-bidirectional-filter (EBF)

model similar to [11], which is modified to the fit motion data

represented by the joint position and denoted EBF; (4) the

same network with EBF but with the addition of a bone-

length constraint during training, which is denoted EBF+B.

Because the key idea of EBF is to train a set of smooth filters

to clean the noise, this method does not consider the bone-

length constraint. Hence, we add the bone-length constraint

while training EBF to make a fair comparison. Among these

four baselines, EBF and EBF+B are both based on the RNN

VOLUME 8, 2020 52933



S.-J. Li et al.: Perceptual-Based Noise-Agnostic 3D Skeleton Motion Data Refinement Network

FIGURE 6. Comparisons between performances of BRA-P and four baselines on the testing dataset including 1000 motion clips randomly selected from
DSCMU using box plots.

architecture, and CNN and CNN+Constrain are based on the

CNN architecture.

For testing, we randomly selected 1000 motion clips from

DSCMU and resynthesized four types of noisy data, including

Gaussian noise data (SNR = 1 dB, 20 dB) and randomly

missing data with Gaussian noise (missing ratio= 10%, 40%,

Gaussian SNR = 15 dB) to compare the performance of five

approaches. The Gaussian noise data (SNR = 20 dB) and

randomly missing data (missing ratio = 10%) are not seen

during training.

From Fig. 6, we conclude the following:

(1) BRA-P vs. EBF and EBF +B: The position error of

EBF is slightly smaller than that of BRA-P because position

loss is the sole optimization objective of EBF. However,

the bone-length error of BRA-P is much better than that of

EBF. Even when the bone-length constraint is used during

the training of EBF+B, the bone-length error of EBF+B is

still larger than that of BRA-P. EBF and EBF+B can produce

a small smooth loss for the noisy data encountered in the

training data, but their smooth losses become notably large

52934 VOLUME 8, 2020



S.-J. Li et al.: Perceptual-Based Noise-Agnostic 3D Skeleton Motion Data Refinement Network

TABLE 1. Average values of four quantitative measurements obtained by the six approaches on the entire testing dataset, including the reproduction
error (R, cm/channel), bone-length error (B, cm/bone), smoothness error (S) and perceptual error (P). BRA is the only approach that can maintain the four
errors at less than 2.

FIGURE 7. Subset of parameters of four autoencoders based on two architectures for two missing noise ratios. The first row represents the weights
of the networks trained by randomly missing data (missing ratio = 40%). The second row represents the network trained by randomly missing data
(missing ratio = 10%). The third row gives the relative error of two weights shown in the first row and second row. The relative error is calculated by
∥

∥w1 − w2
∥

∥

2 /
∥

∥w1
∥

∥

2, where w1 and w2 are the weights in the first and second rows respectively, and ‖ · ‖2 is the L2 norm. We visualize four weight
pairs that have the top four relative errors for two types of autoencoders. Obviously, the relative errors of the weights of the network based on CNN
are much larger than those of the network based on B-LSTM-RNN. (a) Four weight pairs from the two autoencoders based on CNN. (b) Four weight
pairs from the two autoencoders based on B-LSTM-RNN.

TABLE 2. Different approaches used in the ablation study.

for the noisy data not seen in the training data. BRA-P shows

a stable smoothness loss for all types of noise including those

seen or not seen in the training data.

(2) BRA-P vs. CNN and CNN+Constrain: The perfor-

mance of BRA-P on four types of noise is better than

that of CNN and CNN+Constrain, which means that the

autoencoder based on the B-LSTM-RNN architecture is

more suitable for mixed noise than the CNN architecture.

CNN+Constrain can decrease the bone-length error and

smoothness error of CNN but increase the position loss and

perceptual loss at the same time.

We also display the average values of the four errors for

the six approaches on the total testing dataset, which contains

four types of noise. As reported in Table 1, BRA-P is the

only approach that can maintain the four quantitative mea-

surements at values smaller than 2.

To explain why autoencoders based on the B-LSTM-RNN

architecture are more suitable for mixed noise than the CNN

architecture, we use two types of randomly missing data

(missing ratio = 10% and 40%) to train four denoising

autoencoders based on two network architectures and com-

pare the weights of these four networks. We visualize a por-

tion of the parameters of the four networks, as shown in Fig. 7.

Obviously, the two networks based on the B-LSTM-RNN

architecture have more similar parameters when trained by

the two missing-ratio noise data. The relative errors of the

parameter pairs based onCNNaremuch larger than that of the

network based on RNN. Hence, although the network based

on B-LSTM-RNN is trained by mixed-noise data, its param-

eters converge more easily than those of the network based

on CNN, which can explain why BRA-P is more suitable for

mixed-noise data.
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TABLE 3. Average values of four quantitative measurements obtained by the seven approaches on the entire Kinect testing dataset, including the
reproduction error (R, cm/channel), bone-length error (B, cm/bone), smoothness error (S) and perceptual error (P). The minimum value of each error is
highlighted. The proposed BRA-P(512) yields the lowest kinematic errors.

FIGURE 8. Bone-length variant curves for two bones in a walking motion sequence via different approaches. (a) Bone length variant curve for the
left arm. (b) Bone length variant curve for the left leg. The bone-length variant curves of the networks based on B-LSTM-RNN are much smoother
than those of the CNN.

FIGURE 9. Moving trajectories of a finger joint in a walking motion sequence. The finger joint is marked with red in the last row of Fig. 10. All four
subfigures show that the trajectories refined by BRA-P(512) are smoother than those of its competitors. (a) Effect of network architecture on
smoothness. (b) Effect of the perceptual constraint on smoothness. (c) Effect of postprocessing by the perceptual autoencoder on smoothness.
(d) Effect of the dimension of the hidden units on smoothness.

B. EXPERIMENTS ON RAW DATASET

Unlike synthetic noise, the noise type and amplitude of

each motion clip captured by Kinect cannot be known in

advance. The experiment on the synthetic dataset allows us

to clearly examine the ability of each approach in work-

ing with noise of different types and amplitudes. However,

only experiments on raw motion data can verify the abil-

ity of the different approaches in addressing mixed-noise

data.

Among the baselines mentioned in the experiments on the

synthetic dataset, CNN+Constrain requires precise informa-

tion such as the footstep in the original data, and thus, this

method cannot be used on raw data. The key idea of EBF

is to train a set of smooth filters and subsequently use the

trained filters to multiply the noise data to obtain the refined

data; thus, this method is not applicable to the case in which

the target refined data and noisy data are heterogeneous.

As a result, we only compare BRA-P with CNN on the raw
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FIGURE 10. Key frame sequence of the refinement results obtained via various approaches. The hand of each refined pose is circled
and magnified for a clear comparison. The hand skeleton in raw data captured by Kinect is indistinct but should be clear in the
refined pose, and the joint numbers of the two spines are also different. The results show that the spine and hand components of
the results of BRA-P are more natural than its variants. CNN can produce a good skeleton topology, but the result is jittery. Readers
can refer to the supplementary video for additional information.

motion dataset. We also perform ablation studies to verify

each component of our approach on DSraw. The different

networks for the ablation studies are shown in Table 2.

To distinguish the various methods in the ablation experi-

ments, the proposed BRA-P is labeled BRA-P(512) in this

section. We still use four quantitative measurements to quan-

tify the refinement results of the BRA-P and the baselines: the

reproduction error (R), perceptual error (P), smoothness

error (S) and bone-length error (B), in which P, S and B

are denoted the kinematic errors. In addition to quantitative

comparison, we also give qualitative analysis through, bone-

length variant curves in Fig. 8, the moving trajectory of a joint

in Fig. 9 and key frame sequences in Fig. 10. More compar-

isons of motion are shown in the supplementary video.
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The effect of the B-LSTM-RNN architecture. In Table 3,

the reproduction errors of all the networks based on

B-LSTM-RNN are much better than those of the CNN.

All three kinematic errors of the networks based on

B-LSTM-RNN are smaller than those of the CNN, except that

the bone length error of EBD(512) is slightly larger than that

of CNN. In Fig. 8, two bones of a walking motion sequence

are selected, and their bone-length variant curves are plotted.

Obviously, the bone-length variant curves of the networks

based on B-LSTM-RNN are smoother than those of the

CNN. Specifically, we plot the moving trajectory examples of

BRA-P(512) and the CNN in Fig. 9(a), and the trajectory of

BRA-P(512) exhibits a smoother performance. These results

indicate that the network based on the B-LSTM-RNN is more

suitable for mixed noise, which is in line with the conclusion

from the experiments on the synthetic dataset.

The effect of perceptual constraint. Among the different

approaches in Table 2, the differences between the EBD(512)

and EBD-P(512), BRA(512) and BRA-P(512) experimental

pairs are only whether the perceptual constraint is used.

As shown in Table 3, after adding the perceptual constraint,

EBD-P(512) and BRA-P(512) perform better than EBD(512)

and BRA(512) in three of the kinematic errors, respectively.

We also find that the reproduction error is slightly increased,

while the three kinematic errors decrease; perhaps some

reproduction accuracy is lost to improve the quality of the

motion. In Fig. 9(b), the moving trajectory of BRA-P(512)

is smoother than that of BRA(512), and the trajectory of

EBD-P(512) is also smoother than that of EBD(512). There-

fore, we can conclude that the perceptual constraint can

improve the kinematic expression ability of the network but

with little sacrifice in the reproduction error.

The effect of the postprocessing step. We compare

BRA-P(512) and BRA-P-D(512) in Table 2 because the only

difference between these two methods is whether the per-

ceptual autoencoder is used for postprocessing. In Table 3,

the three kinematic errors of BRA-P(512) are better than

those of BRA-P-D(512), which illustrates that the postpro-

cessing step improves the kinematic information expression

ability of the network. In Fig. 9(c), the moving trajectory

of BRA-P(512) is smoother than that of BRA-P-D(512).

Similarly, the reproduction error is also slightly increased

while the three kinematic errors decrease, but the proposed

BRA-P(512) achieves the best refinement performance.More

clear comparisons are shown in Fig. 10 and the supplemen-

tary video.

The effect of the bone length and smoothness con-

straints. The comparisons of EBD(512) and BRA(512),

EBD-P(512) and BRA-P(512) show that all four quantita-

tive measurements decrease after imposing bone length and

smoothness constraints during training. This result indicates

that bone length and smoothness constraints can help improve

the quality of reproduced motion even though perceptual

constraints are used.

The effect of the dimension of the hidden units.

As shown in Fig. 5, if the proposed BRA-P(512) has three

FC layers, the dimension of the hidden units is 120 plus 512.

If only 2 FC layers are used, the dimension of the hidden units

is 120 plus 256. Comparing BRA-P(256) and BRA-P(512)

helps us to determine the effect of the dimension of the

hidden units. We find that the four quantitative measurements

can be improved by increasing the dimension of the hidden

units. Furthermore, in Fig. 9(d), the moving trajectory of

BRA-P(512) is smoother than that of BRA-P(256). Hence,

we choose to increase the dimension of the data by three FC

layers.

Fig. 10 summarize the difference of various approaches by

the key frame sequences. We specifically compare the hand

and spine of two skeletons, which are heterogeneous parts of

the two different skeletons. The refinement results in Fig. 10

show that BRA-P(512) can yield best skeleton topology for

those heterogeneous parts.

V. CONCLUSION

Refinement of rawmotion data captured by a mocap device is

an indispensable preprocessing step before the data are used,

especially for low-cost yet noisy motion capture devices.

In this paper, we propose a new refinement network based

on a bidirectional RNN. The proposed BRA-P has the ability

to remove noise of different types and amplitudes with one

network because networks based on bidirectional RNN are

more suitable for mixed noise than a network based on CNN.

BRA-P also improves the kinematic information expression

ability via the perceptual constraint, especially if the noisy

data and target clean data have different skeleton topologies.

Furthermore, because of the postprocessing step based on

the perceptual autoencoder, the smoothness and bone-length

consistency of the refined motion are further improved.

However, the proposed approach can be further improved.

The reproduction accuracy is not improved, while the three

kinematic errors decrease. Poor reproduction can also cause

a refined motion that is still somewhat noisy. In the future,

we plan to adjust the network and constraints to improve

the reproduction accuracy. One possible improvement is the

use of a residual network. Additionally, because Kinect can

only detect a limited range of movement, we plan to extend

the approach to a variety of motion capture systems, such

as RGB cameras and inertia-based sensors. We also believe

that motion refinement methods for those low-cost yet novel

mocap systems will play a key role in emerging interactive

technologies such as VR and AR.
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