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ABSTRACT

In this paper I present a distortion metric for color video sequences. It is based on a contrast gain control model
of the human visual system that incorporates spatial and temporal aspects of vision as well as color perception.
The model achieves a close fit to contrast sensitivity and contrast masking data from several different psychophysical
experiments for both luminance and color stimuli. The metric is used to assess the quality of MPEG-coded sequences.
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1. INTRODUCTION

With the advent of digital coding of visual information and particularly compression, the evaluation of the actual
perceptibility of distortions in images and video has become difficult. Most of the time, the designers of compression
algorithms have had to rely on subjective viewing tests in order to obtain reliable ratings for the quality of compressed
images or video. While these tests — if executed properly — undoubtedly give valid indications about the visibility
of artifacts, they are complex, time-consuming and expensive, and therefore often highly impractical or not feasible
at all. Consequently, researchers have computed simple error measures such as mean squared error (MSE) or peak
signal-to-noise ratio (PSNR) as alternatives, suggesting that they would be equally valid. However, these simple
error measures operate solely on a pixel-by-pixel basis and neglect the much more complex behavior of the human
visual system and its dependence on viewing conditions.

These problems prompted the development of objective distortion metrics in recent years. Some exploit a priori
knowledge about specific artifacts that are introduced by certain compression methods (e.g. block artifacts in JPEG
and MPEG), while others are more generally based on models of the human visual system. The metric presented
here belongs to the latter category. As such it is independent of the particular compression algorithm applied to the
video material.

However, the human visual system is extremely complex, and many of its inner mechanisms are barely understood
even today. Therefore, vision models are necessarily limited in scope and incorporate only small parts of the entire
system. The perceptual distortion metric presented in this paper is based on a metric developed previously at our
lab.17, 27 The underlying vision model — an extension of a model for still images presented by the author30 — focuses
on the following aspects:

• color perception, in particular the theory of opponent colors;

• temporal and spatial mechanisms;

• spatio-temporal contrast sensitivity and pattern masking;

• the response properties of neurons in the primary visual cortex.

Each of these aspects and their implementation in the context of a distortion metric will be explained in detail in
the next section.



2. VISION MODEL

The structure of the vision model is shown in Figure 1. After conversion of the input to opponent-colors space, each
of the resulting three components is subjected to a spatio-temporal perceptual decomposition, yielding a number of
perceptual channels. They are weighted according to contrast sensitivity data and subsequently undergo a contrast
gain control stage. Both the reference sequence and the processed sequence are used as input to the model and go
through identical stages. Finally, all the sensor differences are combined into a distortion measure. Each of these
stages is explained in more detail below.
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Figure 1. Block diagram of the perceptual distortion metric. After conversion to opponent-colors space, each of
the resulting three components is subjected to a perceptual decomposition, yielding several perceptual channels.
Subsequently they undergo weighting and contrast gain control, after which all the sensor differences are combined
into a distortion measure.

2.1. Color Space Conversion

Hering10 was the first to point out that some pairs of hues can coexist in a single color sensation (e.g. a reddish yellow
is perceived as orange), while others cannot (we never perceive a reddish green, for instance). This led him to the
conclusion that the sensations of red and green as well as blue and yellow are encoded in separate visual pathways,
which is commonly referred to as the theory of opponent colors. Both psychological and physiological experiments
in the 1950s12, 14 yielded further evidence to support this theory, and many models have been presented since then.
The principal components of opponent-colors space are black-white (B-W), red-green (R-G), and blue-yellow (B-Y).
Their precise directions are still subject to debate, however.

The color spaces used in many standards for coding visual information, e.g. PAL, NTSC, JPEG, MPEG and
others, already take into account certain properties of the human visual system by coding gamma-corrected color
difference components instead of RGB color primaries. A variety of color difference spaces exist; a well-known one
for digital video is Y′C′

BC
′
R as defined in ITU-R Recommendation 601.13 Y’ encodes luminance, C′

B the difference
between the blue primary and luminance, and C′

R the difference between the red primary and luminance. Conversion
from Y′C′

BC
′
R to opponent-colors space requires a number of transformations as illustrated in Figure 2.

First, Y′C′
BC

′
R must be converted to R’G’B’. According to ITU-R Recommendation 601,13 R’G’B’ values in the

range 0 . . . 1 are computed from 8-bit Y′C′
BC
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R as follows:
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Each of the resulting three components undergoes a nonlinearity of the form f(x) = xγ with γ ≈ 2.5 to produce linear
RGB values. This is an approximation of the behavior of a conventional CRT display. RGB space further assumes
a particular display device, or to be more exact, a particular spectral power distribution of the light emitted from
the display phosphors. Once the phosphor spectra of the monitor of interest have been determined, the responses
of the L-, M-, and S-cones on the human retina, whose sensitivities are known,24 can be computed. Their responses
are decorrelated very early in the visual system by forming new signals, and a variety of combinations of L-, M-, and
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Figure 2. Color space conversion from component video Y′C′
BC

′
R to opponent-colors space.

S-cone responses have been proposed. Some authors also suggest applying a nonlinearity to the LMS values before
further processing. This distortion metric relies on a recent opponent-colors model by Poirson and Wandell.20, 21 This
particular opponent-colors space has the advantage of being pattern-color separable, i.e. color perception and pattern
sensitivity can be decoupled and treated in separate stages. The B-W, R-G, and B-Y components are computed
from LMS values via the following linear transform:
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2.2. Perceptual Decomposition

The perceptual decomposition is performed first in the temporal and then in the spatial domain. While this separation
is not entirely unproblematic, these two domains can be consolidated in the fitting process as described below.

2.2.1. Temporal Mechanisms

The characteristics of the temporal mechanisms in the human visual system are still under discussion in the vision
community. It is believed that there are one temporal low-pass and one, possibly two, temporal band-pass mecha-
nisms,6, 11, 19, 28 which are generally referred to as sustained and transient channels, respectively. Recent studies also
indicate that the peak frequency and bandwidth of the mechanisms change considerably with stimulus energy.5 The
existence of an actual third mechanism is questionable, however.6, 7

The temporal filters used in this distortion metric are based on the recent work by Fredericksen and Hess,5, 6 who
model the temporal mechanisms with derivatives of the following impulse response function:

h(t) = e
−
(

ln(t/τ)
σ

)2

. (3)

They achieve a very good fit to their data using only this function and its second derivative, corresponding to one
sustained and one transient mechanism, respectively. For a typical choice of parameters τ = 0.16 and σ = 0.2, the
impulse responses of the two mechanisms are shown in Figure 3, and the corresponding frequency responses are
shown in Figure 4.

For use in the distortion metric, the filters have been designed so as to keep the delay to a minimum, because
in some applications of distortion metrics such as monitoring and control, a short response time is crucial. This
fact together with limitations of memory and computing power favor time-domain implementations of the temporal
filters over frequency-domain implementations.17 A trade-off has to be found between an acceptable delay and the
accuracy with which the temporal mechanisms ought to be approximated. Recursive infinite impulse response (IIR)
filters fare better in this respect than (nonrecursive) finite impulse response (FIR) filters.

In this metric, the temporal mechanisms are modeled by two IIR filters. They were computed by means of a
least-square fit to the frequency magnitude responses of the respective mechanisms as given by the Fourier transforms
of h(t) and h′′(t) from Equation 3. A filter with 2 poles and 2 zeros was fitted to the sustained mechanism, and a
filter with 4 poles and 4 zeros was fitted to the transient mechanism. This has been found to yield the shortest delay
while still maintaining a good approximation of the frequency responses, which is shown in Figure 4. In the present
implementation, the low-pass filters are applied to all three color channels, but the band-pass filter is applied only to
the luminance channel in order to reduce computing time. This simplification is based on the fact that color contrast
sensitivity is rather low for higher frequencies.
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Figure 3. Impulse response function h(t) from equa-
tion 3 (dashed) and its second derivative h′′(t) (solid)
with τ = 0.16 and σ = 0.2.
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Figure 4. Frequency responses of sustained (low-
pass) and transient (band-pass) mechanisms of vision5, 6

(solid) and their IIR filter approximations for a sam-
pling frequency of 50 Hz (dashed).

2.2.2. Spatial Mechanisms

The decomposition in the spatial domain is carried out by means of the steerable pyramid transform proposed
by Simoncelli et al.23 This transform∗ decomposes an image into a number of spatial frequency and orientation
bands; its basis functions are directional derivative operators. For use within a vision model, it has the advantage of
being rotation-invariant and self-inverting, and it minimizes the amount of aliasing in the subbands. In the present
implementation, the basis filters have octave bandwidth and octave spacing; five subband levels with four orientation
bands each plus one low-pass band are computed (cf. Figure 5). The same decomposition is used for all channels.

2.2.3. Contrast Sensitivity

After the temporal and spatial decomposition, each channel is weighted such that the sum of all channels approximates
the spatio-temporal contrast sensitivity of the human visual system. While this approach is inferior to pre-filtering
the B-W, R-G and B-Y channels with their respective contrast sensitivity functions in terms of accuracy, it is easier
to implement and saves computing time. As a matter of fact, the approximation accuracy is still acceptable, as the
results in section 3 show.

2.3. Contrast Gain Control Stage

Modeling pattern sensitivity is one of the most critical components of video quality assessment, because the visibility
of distortions is highly dependent on the local background. To investigate this phenomenon, also known as masking,
vision scientists conduct experiments where a simple stimulus such as a sinusoid or Gabor patch (also referred to as
the target) is superimposed on a background stimulus (the masker). With some exceptions, the target is harder to
detect as the contrast of the masker increases. In the context of digital video compression, the coding noise plays
the role of the target, and the original becomes the masker.

Masking is strongest between stimuli located in the same perceptual channel, and many vision models are limited
to this intra-channel masking. However, psychophysical experiments show that masking also occurs between channels
of different orientations,4 between channels of different spatial frequency, and between chrominance and luminance
channels,2, 18, 25 albeit to a lesser extent.

Models have been proposed which explain a wide variety of empirical masking data with a process of contrast
gain control. These models were inspired by analyses of the responses of single neurons in the visual cortex of the

∗ Source code and filter kernels for the steerable pyramid transform are available at http://www.cis.upenn.edu/˜eero/steerpyr.html.
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Figure 5. Illustration of the partitioning of the spatial frequency plane by the steerable pyramid transform.23 Three
levels plus one (isotropic) low-pass filter are shown. The bands at each level are tuned to orientations of 0, 45, 90 and
135 degrees. The shaded region indicates the spectral support of a single subband, whose actual frequency response
is shown on the right.

cat,1, 8, 9 where contrast gain control serves as a mechanism to keep neural responses within the permissible dynamic
range while at the same time retaining global pattern information.

Contrast gain control can be realized by an excitatory nonlinearity that is inhibited divisively by a pool of
responses from other neurons. Masking occurs through the inhibitory effect of the normalizing pool.4, 26 Watson and
Solomon29 recently presented an elegant generalization of these models, which facilitates the integration of many
kinds of channel interactions and spatial pooling. Introduced for luminance images, this contrast gain control model
can be extended to color and to sequences as follows: Let a = a(t, c, f, θ, x, y) be a coefficient of the perceptual
decomposition in temporal channel t, color channel c, frequency band f , orientation band θ, at location x, y. Then
the corresponding sensor output s = s(t, c, f, θ, x, y) is computed as

s = k
ap

b2 + aq ∗ h
. (4)

The excitatory path in the numerator consists of a power-law nonlinearity with exponent p. The inhibitory path
in the denominator controls the gain of the excitatory path. In addition to a nonlinearity with a possibly different
exponent q, filter responses are pooled over different channels by means of a convolution with the pooling function
h = h(t, c, f, θ, x, y). In its most general form, this pooling operation may combine coefficients from the dimensions
of time, color, temporal frequency, spatial frequency, orientation, space, and phase. In the present implementation
of the distortion metric, it is limited to phase and orientation; complete summation over phase is assumed, and a
Gaussian pooling kernel is used for the orientation dimension.

The saturation constant b is added to prevent division by zero; k is used to adjust the overall gain of the
mechanism. Heeger’s model of neural cell responses9 fixes both p = q = 2 so as to be able to work with local
energy measures. However, this procedure rapidly saturates the sensor outputs, which necessitates multiple contrast
bands (i.e. several different k’s and b’s) for all coefficients in order to cover the full range of contrasts. Watson and
Solomon29 showed that the same effect can be achieved with a single contrast band when p > q. This approach
reduces the number of model parameters considerably and simplifies the fitting process, which is why it is used here
as well. The fitting procedure and its results are explained in more detail in section 3.1.



2.4. Detection and Pooling

The processes described so far take place before or in the primary visual cortex, also referred to as area V1. It
is believed that the information represented there in various channels is integrated in the following brain areas,
beginning with area V2. This process can be simulated by gathering the data from these channels according to rules
of probability or vector summation, also known as pooling.22

The pooling stage combines the elementary differences between the sensor outputs s = s(t, c, f, θ, x, y) for the
reference (s0) and the processed sequence (s1) over several dimensions:

∆s = β

√∑|s0 − s1|β . (5)

In principle, any subset of dimensions can be used for this summation, depending on what kind of result is desired.
For example, pooling over pixel locations may be omitted to produce a distortion map for every frame of the sequence.
The combination may be nested as well; pooling can be limited to single frames first to determine the variation of
distortions over time, and the total distortion can be computed from the values for each frame.

3. RESULTS

3.1. Model Fitting

The model contains several parameters that have to be adjusted in order to accurately represent the human visual
system. For this procedure I use threshold data from contrast sensitivity and contrast masking experiments. In the
fitting process, the input of the metric imitates the stimuli used in these experiments, and the free model parameters
are adjusted in such a way that the output (the distortion measure) approximates these threshold curves.

Contrast sensitivity is modeled by setting the gains of the spatial and temporal filters in such a way that the model
predictions match empirical threshold data from spatio-temporal contrast sensitivity experiments for both color and
luminance stimuli. For the B-W channels, the weights are chosen so as to match contrast sensitivity threshold data
from Kelly.15 Figure 6 shows the result. For the R-G and B-Y channels, similar data from Kelly16 is used.

The parameters k, p and b of the contrast gain control stage from equation 4 are determined by fitting the model’s
responses to masked gratings; q, the inhibitory exponent, is fixed at q = 2 in this implementation, as it is mainly the
difference p− q which matters.29 For the B-W channel, empirical data from several intra- and inter-channel contrast
masking experiments conducted by Foley4 is used. For the R-G and B-Y channels, the parameters are adjusted to
fit similar data presented by Switkes et al.,25 as shown in Figure 7 for the R-G channel.
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Figure 6. Spatio-temporal contrast sensitivity data for
luminance gratings15 as approximated by the model.
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Different exponents β have been found to yield good results for different experiments and implementations. β = 2
corresponds to the ideal observer formalism under independent Gaussian noise which assumes that the observer has
complete knowledge of the stimuli and uses a matched filter for detection.26, 30 In a study of subjective experiments
with coding artifacts, β ≈ 2 was found to give good results.3 Intuitively, a few high distortions may draw the viewer’s
attention more than many lower ones. This behavior can be emphasized with larger exponents. In this distortion
metric, pooling over channels and over pixels is carried out with β = 2, whereas β = 4 is used for pooling over frames.

The simulation results shown in the figures demonstrate that the overall quality of the fits to the above-mentioned
empirical data is quite good and close to the difference between measurements from different observers. Most of the
effects found in the psychophysical experiments are captured by the model. However, two drawbacks of this modeling
approach should be noted. Because of the nonlinear nature of the model, the parameters can only be determined
by means of an iterative least-squares fitting process, which requires a lot of computation. Furthermore, the model
lacks flexibility: once a good set of parameters has been found, it is only valid for a particular viewing setup. Future
work will deal with how to eliminate these limitations.

3.2. Demonstration

I use the “Basketball” sequence to demonstrate how the proposed distortion metric works. This sequence contains a
lot of spatial detail, a considerable amount of fast motion (the players in the foreground), and slow camera panning,
which makes it an interesting sequence for a spatio-temporal model. Note that all of the sample images below are
normalized in order to show as much spatial detail as possible.

The frame size of the sequence is 704×576 pixels. It was encoded at a bitrate of 4 Mbit/s with the MPEG-2
encoder of the MPEG Software Simulation Group.† A sample frame, its encoded counterpart, and the pixel-wise
difference between them are shown in Figure 8. The B-W, R-G and B-Y components resulting from the conversion
to opponent-colors space are shown in Figure 9. The B-W component looks different from the luminance image in
Figure 8 because the transform coefficients differ and because of the gamma-correcting nonlinearity that has been
applied as part of the color space conversion. Note the emphasis of the ball in the R-G channel and the blue and
orange shirts of the players and the yellow curved line on the floor in the B-Y channel.

Figure 8. A sample frame from the “Basketball” sequence. The reference, its encoded counterpart, and the
pixel-wise difference between them are shown (from left to right).

The color space conversions are followed by the perceptual decomposition. The results of applying the temporal
low-pass and band filters to the B-W channel are shown in Figure 10. As can be seen, the ball virtually disappears
in the low-pass channel, while it is clearly visible in the high-pass channel. As mentioned before, the R-G and
B-Y channels are subjected only to the low-pass filter. The decomposition in the spatial domain increases the total
number of channels even further; only a small selection is shown in Figure 11, namely the first, third and fifth
level of the pyramid at an orientation of 45◦ constructed from the low-pass filtered B-W channel. The images are
downsampled in the pyramid transform and have been upsampled to their original size in the figure. They show
very well how different features are emphasized in the different subbands, e.g. the lines on the floor in the highest-
frequency channel, the players leaning to the left in the medium-range frequency channel, and the barricades of the
field in the lowest-frequency channel.

† This software is available at http://www.mpeg.org/˜tristan/MPEG/MSSG/.



Figure 9. The B-W, R-G and B-Y components resulting from the conversion to opponent-colors space (from left
to right).

Figure 10. The low-pass (left) and band-pass (right) filtered B-W channel.

Figure 12 shows separate distortion maps for each color and temporal channel. Note that the distortion maps
also include temporal aspects of the distortions, i.e. they depend on the previous frames. It is also evident that
all four distortion maps are very different from the simple pixel-wise difference between the reference frame and the
encoded frame shown in Figure 8. As can be seen, most of the visible artifacts appear in the B-W band-pass channel
around the silhouettes of the players currently in motion. The distortions in the color channels are small compared
to the other channels, but they have been normalized in the figures to reveal more spatial detail. Note that the
distortions in the R-G and B-Y channels show a distinct block structure. This is due to the subsampling in the
pyramid transform and shows that the model correctly emphasizes low-frequency distortions in the color channels.

4. CONCLUSIONS

A distortion metric for digital color video based on a model of the human visual system has been presented. The
results show that the model can fit psychophysical contrast sensitivity and contrast masking data accurately. The
output of the distortion metric is consistent with human observation. At present, the metric undergoes extensive
testing with subjectively rated sequences by the Video Quality Experts Group (VQEG) and the ITU in an effort to
evaluate and standardize video quality assessment systems. Future work includes comparing prediction accuracy of
the color metric over a simple luminance-only metric, an extension of inhibitory pooling to study the interactions
between a wider variety of channels, and an investigation of alternative color spaces.



Figure 11. The first, third and fifth level at an orientation of 45◦ of the pyramid constructed from the low-pass
filtered B-W channel.

Figure 12. Distortion maps of the sample frame for the low-pass and band-pass B-W channels (top row), the R-G
channel (bottom left) and the B-Y channel (bottom right). Note that these four images are not directly comparable,
because each has been normalized to better show the spatial structure; the distortions in the color channels are
smaller than in the B-W channels.

REFERENCES

1. Duane G. Albrecht, Wilson S. Geisler: “Motion selectivity and the contrast-response function of simple cells in
the visual cortex.” in Visual Neuroscience, vol. 7, pp. 531–546, 1991.

2. G. R. Cole, C. F. Stromeyer III, R. E. Kronauer: “Visual interactions with luminance and chromatic stimuli.”
in Journal of the Optical Society of America A, vol. 7, no. 1, pp. 128–140, January 1990.

3. Huib de Ridder: “Minkowski-metrics as a combination rule for digital-image-coding impairments.” in Proceedings
of SPIE Human Vision, Visual Processing and Digital Display, vol. 1666, pp. 16–26, San Jose, CA, February 9–
14, 1992, ISBN 0-8194-0820-4.

4. John M. Foley: “Human luminance pattern-vision mechanisms: Masking experiments require a new model.” in
Journal of the Optical Society of America A, vol. 11, no. 6, pp. 1710–1719, June 1994.



5. R. E. Fredericksen, R. F. Hess: “Temporal detection in human vision: Dependence on stimulus energy.” in
Journal of the Optical Society of America A, vol. 14, no. 10, pp. 2557–2569, October 1997.

6. R. E. Fredericksen, R. F. Hess: “Estimating multiple temporal mechanisms in human vision.” in Vision Research,
vol. 38, no. 7, pp. 1023–1040, 1998.

7. S. T. Hammett, A. T. Smith: “Two temporal channels or three? A re-evaluation.” in Vision Research, vol. 32,
no. 2, pp. 285–291, 1992.

8. David J. Heeger: “Half-squaring in responses of cat striate cells.” in Visual Neuroscience, vol. 9, pp. 427–443,
1992.

9. David J. Heeger: “Normalization of cell responses in cat striate cortex.” in Visual Neuroscience, vol. 9, pp. 181–
197, 1992.

10. Ewald Hering: Zur Lehre vom Lichtsinne. Carl Gerolds & Sohn, Vienna, Austria, 1878.
11. R. F. Hess, R. J. Snowden: “Temporal properties of human visual filters: Number, shapes and spatial covaria-

tion.” in Vision Research, vol. 32, no. 1, pp. 47–59, 1992.
12. Leo M. Hurvich, Dorothea Jameson: “An opponent-process theory of color vision.” in Psychological Review,

vol. 64, pp. 384–404, 1957.
13. ITU-R Recommendation BT.601-5: “Studio encoding parameters of digital television for standard 4:3 and

wide-screen 16:9 aspect ratios.” ITU, Geneva, Switzerland, 1995.
14. Dorothea Jameson, Leo M. Hurvich: “Some quantitative aspects of an opponent-colors theory. I. Chromatic

responses and spectral saturation.” in Journal of the Optical Society of America, vol. 45, no. 7, pp. 546–552,
July 1955.

15. D. H. Kelly: “Motion and vision. II. Stabilized spatio-temporal threshold surface.” in Journal of the Optical
Society of America, vol. 69, no. 10, pp. 1340–1349, October 1979.

16. D. H. Kelly: “Spatiotemporal variation of chromatic and achromatic contrast thresholds.” in Journal of the
Optical Society of America, vol. 73, no. 6, pp. 742–750, June 1983.

17. Pär [J.] Lindh, Christian J. van den Branden Lambrecht: “Efficient spatio-temporal decomposition for perceptual
processing of video sequences.” in Proceedings of the International Conference on Image Processing, vol. 3, pp.
331–334, Lausanne, Switzerland, September 16–19, 1996.

18. M. A. Losada, K. T. Mullen: “The spatial tuning of chromatic mechanisms identified by simultaneous masking.”
in Vision Research, vol. 34, no. 3, pp. 331–341, 1994.

19. Marc B. Mandler, Walter Makous: “A three-channel model of temporal frequency perception.” in Vision Re-
search, vol. 24, no. 12, pp. 1881–1887, 1984.

20. Allen B. Poirson, Brian A. Wandell: “Appearance of colored patterns: Pattern-color separability.” in Journal
of the Optical Society of America A, vol. 10, no. 12, pp. 2458–2470, December 1993.

21. Allen B. Poirson, Brian A. Wandell: “Pattern-color separable pathways predict sensitivity to simple colored
patterns.” in Vision Research, vol. 36, no. 4, pp. 515–526, 1996.

22. R. F. Quick, Jr.: “A vector-magnitude model of contrast detection.” in Kybernetik, vol. 16, pp. 65–67, 1974.
23. Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, David J. Heeger: “Shiftable multi-scale trans-

forms.” in IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 587–607, March 1992.
24. Andrew Stockman, Donald I. A. MacLeod, Nancy E. Johnson: “Spectral sensitivities of the human cones.” in

Journal of the Optical Society of America A, vol. 10, no. 12, pp. 2491–2521, December 1993.
25. Eugene Switkes, Arthur Bradley, Karen K. De Valois: “Contrast dependence and mechanisms of masking

interactions among chromatic and luminance gratings.” in Journal of the Optical Society of America A, vol. 5,
no. 7, pp. 1149–1162, July 1988.

26. Patrick C. Teo, David J. Heeger: “Perceptual image distortion.” in Proceedings of SPIE Human Vision, Visual
Processing and Digital Display, vol. 2179, pp. 127–141, San Jose, CA, February 8–10, 1994, ISBN 0-8194-1474-3.

27. Christian J. van den Branden Lambrecht: Perceptual Models and Architectures for Video Coding Applications.
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