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Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric
coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically
suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds
for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and
temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the
distortion detectability defines a (perceptually relevant) norm on the underlying signal space which is beneficial for optimisation
algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it
with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended
model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction
of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

Keywords and phrases: audio coding, psychoacoustical modelling, auditory masking, spectral masking, sinusoidal modelling,
psychoacoustical matching pursuit.

1. INTRODUCTION

The ever-increasing growth of application areas such as con-
sumer electronics, broadcasting (digital radio and televi-
sion), and multimedia/Internet has created a demand for

This is an open-access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

high-quality digital audio at low bit rates. Over the last
decade, this has led to the development of new coding tech-
niques based on models of human auditory perception (psy-
choacoustical masking models). Examples include the cod-
ing techniques used in the ISO/IEC MPEG family, for exam-
ple, [1], the MiniDisc from Sony [2], and the digital compact
cassette (DCC) from Philips [3]. For an overview of recently
proposed perceptual audio coding schemes and standards,
we refer to the tutorial paper by Painter and Spanias [4].
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A promising approach to achieve low bit rate coding of
digital audio signals with minimum perceived loss of quality
is to use perception-based hybrid coding schemes, where au-
dio signals are decomposed and coded as a sinusoidal part
and a residual. In these coding schemes, different signal com-
ponents occurring simultaneously are encoded with differ-
ent encoders. Usually, tonal components are encoded with a
specific encoder aimed at signals composed of sinusoids and
the remaining signal components are coded with a waveform
or noise encoder [5, 6, 7, 8, 9]. To enable the selection of
the perceptually most suitable sinusoidal description of an
audio signal, dedicated psychoacoustical models are needed
and this will be the topic of this paper.

One important principle by which auditory perception
can be exploited in general audio coding is that the modelling
error generated by the audio coding algorithm is masked
by the original signal. When the error signal is masked, the
modified audio signal generated by the audio coding algo-
rithm is indistinguishable from the original signal.

To determine what level of distortion signal is allowable,
an auditory masking model can be used. We, for example,
consider the case where the masking model is used in a trans-
form coder. Here the model will specify, for each spectro-
temporal interval within the original audio signal, what dis-
tortion level can be allowed within that interval such that it
is perceptually just not detectable. With an appropriate signal
transformation, for example, an MDCT filter bank [10, 11],
it is possible to selectively adapt the accuracy with which
each different spectro-temporal interval is described, that is,
the number of bits used for quantisation. In this way, the
spectro-temporal characteristics of the error signal, can be
adapted such that auditory masking is exploited effectively,
leading to the lowest possible bit rate without perceptible dis-
tortions.

Most existing auditory masking models are based on the
psychoacoustical literature that predominantly studied the
masking of tones by noise signals (e.g., [12]). Interestingly,
for subband coders and transform coders the nature of the
signals is just the reverse; the distortion is noise-like, while
the masker, or original signal, is often tonal in character. Nev-
ertheless, based on this psychoacoustical literature dedicated
psychoacoustical models have been developed for audio cod-
ing for the situation where the distortion signal is noise-like
such as the ISO MPEG model [1].

Masking models are also used for sinusoidal coding,
where the signal is modelled by a sum of sinusoidal com-
ponents. Most existing sinusoidal audio coders, for exam-
ple, [5, 6, 13] rely on masking curves derived from spectral-
spreading-based perceptual models in order to decide which
components are masked by the original signal, and which are
not. As a consequence of this decision process, a number of
masked components are rejected by the coder, resulting in a
distortion signal that is sinusoidal in nature. In this paper a
model is introduced that is specifically designed for predict-
ing the masking of sinusoidal components. In addition, the
proposed model takes into account some new findings in the
psychoacoustical literature about spectral and temporal inte-
gration in auditory masking.

This paper is organised as follows. In Section 2 we discuss
the psychoacoustical background of the proposed model.
Next, in Section 3, the new psychoacoustical model will be
introduced, followed by Section 4, which describes the cal-
ibration of the model. Section 5 compares predictions of
the model with some basic psychoacoustical findings. In
Section 6, we apply the proposed model in a sinusoidal audio
modelling method and in Section 7 we compare, in a listen-
ing test, the resulting audio quality to that obtained with the
ISO MPEG model [1]. Finally, in Section 8, we will present
some conclusions.

2. PSYCHOACOUSTICAL BACKGROUND

Auditory masking models that are used in audio coding are
predominantly based on a phenomenon known as simulta-
neous masking (see, e.g., [14]). One of the earlier relevant
studies goes back to Fletcher [15] who performed listening
experiments with tones that were masked by noise. In his
experiments the listeners had to detect a tone that was pre-
sented simultaneously with a bandpass noise masker that was
spectrally centred around the tone. The threshold level for
detecting the tones was measured as a function of the masker
bandwidth while the power spectral density (spectrum level)
was kept constant. Results showed that an increase of band-
width, thus increasing the total masker power, led to an in-
crease of the detection thresholds. However, this increase was
only observed when the bandwidth was below a certain crit-
ical bandwidth; beyond this critical bandwidth, thresholds
were independent of bandwidth. These observations led to
the critical band concept which is the spectral interval across
which masker power is integrated to contribute to the mask-
ing of a tone centred within the interval.

An explanation for these observations is that the signal
processing in the peripheral auditory system, specifically by
the basilar membrane in the cochlea, can be represented as a
series of bandpass filters which are excited by the input signal,
and which produce parallel bandpass-filtered outputs (see,
e.g., [16]). The detection of the tone is thought to be gov-
erned by the bandpass filter (or auditory filter) that is centred
around the tone. When the power ratio between the tone and
the masker at the output of this filter exceeds a certain crite-
rion value, the tone is assumed to be detectable. With these
assumptions the observations of Fletcher can be explained;
as long as the masker has a bandwidth smaller than that of
the auditory filter, an increase in bandwidth will also lead to
an increase in the masker power seen at the output of the au-
ditory filter, which, in turn, leads to an increase in detection
threshold. Beyond the auditory filter bandwidth the added
masker components will not contribute to the masker power
at the output of the auditory filter because they are rejected
by the bandpass characteristic of the auditory filter. Whereas
in Fletchers experiments the tone was centred within the
noise masker, later on experiments were conducted where
the masker did not spectrally overlap with the tone to be de-
tected (see, e.g., [17]). Such experiments reveal more infor-
mation on the auditory filter characteristic, specifically about
the tails of the filters.
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The implication of such experiments should be treated
with care. When different maskers and signals are chosen, the
resulting conclusions about the auditory filter shape are quite
different. For example, a tonal masker proves to be a much
poorer masker than a noise signal [17]. In addition, the fil-
ter shapes seem to depend on the masker type as well as on
the masker level. These observations suggest that the basic
assumptions of linear, that is, level independent, auditory fil-
ters and an energy criterion that defines audibility of distor-
tion components, are only a first-order approximation and
that other factors play a role in masking. For instance, it is
known that the basilar membrane behaves nonlinearly [18],
which may explain, for instance, the level dependence of the
auditory filter shape. For a more elaborate discussion of au-
ditory masking and auditory filters, the reader is referred to
[19, 20, 21].

Despite the fact that the assumption of a linear auditory
filter and an energy detector can only be regarded as a first-
order approximation of the actual processing in the audi-
tory system, we will proceed with this assumption because
it proves to give very satisfactory results in the context of au-
dio coding with relatively simple means in terms of compu-
tational complexity.

Along similar lines as outlined above, the ISO MPEG
model [1] assumes that the distortion or noise level that is
allowed within a specific critical band is determined by the
weighted power addition of all masker components spread
on and around the critical band containing the distortion.
The shape of the weighting function that is applied is based
on auditory masking data and essentially reflects the under-
lying auditory filter properties. These “spectral-spreading”-
based perceptual models have been used in various para-
metric coding schemes for sinusoidal component selection
[5, 6, 13]. It should be noted that in these models, it is as-
sumed that only the auditory filter centred around the dis-
tortion determines the detectability of the distortion. When
the distortion-to-masker ratio is below a predefined thresh-
old value in each auditory filter, the distortion is assumed to
be inaudible. On the other hand, when one single filter ex-
ceeds this threshold value, the distortion is assumed to be
audible. This assumption is not in line with more recent in-
sights in the psychoacoustical literature on masking and will
later in the paper be shown to have a considerable impact on
the predicted masking curves. Moreover, in the ISO MPEG
model [1], a distinction is made between masking by noisy
and tonal spectral components to be able to account for the
difference in masking power of these signal types. For this
purpose a tonality detector is required which, in the Layer I
model, is based on a spectral peak detector.

Threshold measurements in psychoacoustical literature
consistently show that a detection threshold is not a rigid
threshold. A rigid threshold would imply that if the signal
to be detected would be just above the detection threshold,
the signal would always be detected while it would never be
detected when it would be just below the threshold. Contrary
to this pattern, it is observed in detection threshold measure-
ments that the percentages of correct detection as a function
of signal level follow a sigmoid psychometric function [22].

The detection threshold is defined as the level for which the
signal is detected correctly with a certain probability of, typ-
ically, 70%–75%.

In various theoretical considerations, the shape of the
psychometric function is explained by assuming that within
the auditory system some variable, for example, the stim-
ulus power at the output of an auditory filter, is observed.
In addition, it is assumed that noise is present in this ob-
servation due to, for example, internal noise in the au-
ditory system. When the internal noise is assumed to be
Gaussian and additive, the shape of the sigmoid function
can be predicted. For the case that a tone has to be de-
tected within broadband noise, the assumption of a stimu-
lus power measurement with additive Gaussian noise leads
to good predictions of the psychometric function. When the
increase in the stimulus power caused by the presence of
the tonal signal is large compared to the standard devia-
tion of the internal noise, high percentages of correct de-
tection are expected while the reverse is true for small in-
creases in stimulus power. The ratio between the increase in
stimulus power and the standard deviation of the internal
noise is defined as the sensitivity index d′ and can be cal-
culated from the percentage of correct responses of the sub-
jects. This theoretical framework is based on signal detec-
tion theory and is described more extensively in, for example,
[23].

In several more recent studies it is shown that the audibil-
ity of distortion components is not determined solely by the
critical band with the largest audible distortion [24, 25]. Buus
et al. [24] performed listening tests where tone complexes
had to be detected when presented in a noise masker. They
first measured the threshold levels of several tones separately
each of which were presented simultaneously with wideband
noise. Due to the specific spectral shape of the masking noise,
thresholds for individual tones were found to be constant
across frequency. In addition to the threshold measurements
for a single tone, thresholds were also measured for a com-
plex of 18 equal-level tones. The frequency spacing of the
tones was such that each auditory critical band contained
only a single tone. If the detectability of the tones was only
determined by the filter with the best detectable tone, the
complex of tones would be just audible when one individual
component of the complex had the same level as the mea-
sured threshold level of the individual tones. However, the
experiments showed that thresholds for the tone complex
were considerably lower than expected based on the best-
filter assumption, indicating that information is integrated
across auditory filters.

In the paper by Buus et al. [24], a number of theo-
retical explanations are presented. We will discuss only the
multiband detector model [23]. This model assumes that
the changes in signal power at the output of each auditory
filter are degraded by additive internal noise that is inde-
pendent in each auditory filter. It is then assumed that an
optimally weighted sum of the signal powers at the out-
puts of the various auditory filters is computed which serves
as a new decision variable. Based on these assumptions, it
can be shown that the sensitivity index of a tone complex,
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d′total, can be derived from the individual sensitivity indices d′n
as follows:

d′total =

√√√√√
K∑
n=1

d′2n , (1)

where K denotes the number of tones and where each indi-
vidual sensitivity index is proportional to the tone-to-masker
power ratio [22]. According to such a framework, each dou-
bling of the number of auditory filters that can contribute
to the detection process will lead to a reduction of 1.5 dB in
threshold. The measured thresholds by Buus et al. are well
in line with this prediction. In their experiments, the com-
plex of 18 tones leads to a reduction of 6 dB in detection
threshold as compared to the detection threshold of a sin-
gle tone. Based on (1) a change of 6.3 dB was expected. More
recently, Langhans and Kohlrausch [25] performed similar
experiments with complex tones having a constant spacing
of 10 Hz presented in a broadband noise masker, confirm-
ing that information is integrated across auditory filters. In
addition, results obtained by van de Par et al. [26] indicate
that also for bandpass noise signals that had to be detected
against the background of wideband noise maskers, the same
integration across auditory filters is observed.

As indicated, integration of information across a wide
range of frequencies is found in auditory masking. Similarly,
integration across time has been shown to occur in the au-
ditory system. Van den Brink [27] investigated the detection
of tones of variable duration that were presented simultane-
ously with a noise masker with a fixed duration that was al-
ways longer than that of the tone. Increasing the duration of
the tone reduced the detection thresholds up to a duration of
about 300 milliseconds. While this result is an indication of
integration across time, it also shows that there is a limitation
in the interval for which temporal integration occurs.

The above findings with respect to spectral and tem-
poral integration of information in auditory masking have
implications for audio coding which have not been consid-
ered in previous studies. On the one hand it influences the
masking properties of complex signals as will be discussed
in Section 5, on the other hand it has implications for rate
distortion optimisation algorithms. To understand this, con-
sider the case where for one particular frequency region a
threshold level is determined for distortions that can be in-
troduced by an audio coder. For another frequency region
a threshold can be determined similarly. When both distor-
tions are presented at the same time, the total distortion is
expected to become audible due to the spectral integration
given by (1). This is in contrast to the more conventional
models, such as the ISO MPEG model [1], which would pre-
dict this simultaneous distortion to be inaudible.

The effect of spectral integration, of course, can easily be
compensated for by reducing the level of the masking thresh-
olds such that the total distortion will be inaudible. But,
based on (1), assuming that it holds for masking by com-
plex audio signals, there are many different solutions to this
equation which lead to the same d′total. In other words, many

x̂

ĥom γ̂i

+

Ca

Within
channel

distortion
detectability

Di

Cs

+ x D

Figure 1: Block diagram of the masking model.

different distributions of distortion levels per spectral region
will lead to the same total sensitivity index. However, not
every distribution of distortion levels will lead to the same
amount of bits spent by the audio coder. Thus, the concept of
a masking curve which determines the maximum level of dis-
tortion allowed within each frequency region is too restric-
tive and can be expected to lead to suboptimal audio coders.
In fact, spectral distortion can be shaped such that the associ-
ated bit rate is minimised. For more information the reader
is referred to a study where these ideas were confirmed by
listening tests [28].

3. DESCRIPTION OF THE MODEL

In line with various state-of-the-art auditory models that
have been presented in the psychoacoustical literature, for
example, [29], the structure of the proposed model follows
the various stages of auditory signal processing. In view of the
computational complexity, the model is based on frequency
domain processing and consequently neglects some parts of
peripheral processing, such as the hair cell transformation
which performs inherent nonlinear time-domain processing.

A block diagram of the model is given in Figure 1. The
model input x̂ is the frequency domain representation of a
short windowed segment of audio. The window should lead
to sufficient rejection of spectral side lobes in order to fa-
cilitate adequate spectral resolution of the auditory filters.
The first stage of the model resembles the outer- and middle-

ear transfer function ĥom, which is related to the filtering of
the ear canal and the ossicles in the middle ear. The transfer
function is chosen to be the inverse of the threshold-in-quiet

function ĥtq. This particular shape is chosen to obtain an ac-
curate prediction of the threshold-in-quiet function when no
masker signal is present.

The outer- and middle-ear transfer function is followed
by a gammatone filter bank (see, e.g., [30]) which resembles
the filtering property of the basilar membrane in the inner
ear. The transfer function of an nth-order gammatone filter
has a magnitude spectrum that is approximated well by

γ̂( f ) =

(
1 +

(
f − f0

k ERB
(
f0
)
)2
)−n/2

, (2)

where f0 is the centre frequency of the filter, ERB( f0) is the
equivalent rectangular bandwidth of the auditory filter cen-
tred at f0 as suggested by Glasberg and Moore [31], n is



1296 EURASIP Journal on Applied Signal Processing

the filter order which is commonly assumed to be 4, and
k = 2(n−1)(n− 1)!/π(2n− 3)!!, a factor needed to ensure that
the filter indeed has the specified ERB. The centre frequencies
of the filters are uniformly spaced on an ERB-rate scale and
follow the bandwidths as specified by the ERB scale [31]. The
power at the output of each auditory filter is measured and
a constant Ca is added to this output as a means to limit the
detectability of very weak signals at or below the threshold in
quiet.

In the next stage, within-channel distortion detectabil-
ities are computed and are defined as the ratios between
the distortion and the masker-plus-internal noise seen at the
output of each auditory filter. In fact, the within-channel dis-
tortion detectability Di is proportional to the sensitivity in-
dex d′ as described earlier. This is an important step; the dis-
tortion detectability (or d′) will be used as a measure of per-
ceptual distortion. This perceptual distortion measure can be
interpreted as a measure of the probability that subjects can
detect a distortion signal in the presence of a masking sig-
nal. The masker power within the ith filter due to an original
(masking) signal x is given by

Mi =
1

N

∑

f

∣∣ĥom( f )
∣∣2∣∣γ̂i( f )

∣∣2∣∣x̂( f )
∣∣2

, (3)

where N is the segment size in number of samples. Equiva-
lently, the distortion power within the ith filter due to a dis-
tortion signal ε is given by

Si =
1

N

∑

f

∣∣ĥom( f )
∣∣2∣∣γ̂i( f )

∣∣2∣∣ε̂( f )
∣∣2
. (4)

Note that (1/N)|x̂( f )|2 denotes the power spectral density
of the original, masking signal in sound pressure level (SPL)
per frequency bin, and similarly (1/N)|ε̂( f )|2 is the power
spectral density of the distorting signal. The within-channel
distortion detectability Di is given by

Di =
Si

Mi + (1/N)Ca
. (5)

From this equation two properties of the within-channel dis-
tortion detectability Di can be seen. When the distortion-to-
masker ratio Si/Mi is kept constant while the masker power
is much larger than (1/N)Ca, distortion detectability is also
constant. In other words, at medium and high masker levels
the detectability Di is mainly determined by the distortion-
to-masker ratio. Secondly, when the masker power is small
compared to (1/N)Ca, the distortion detectability is indepen-
dent of the masker power, which resembles the perception of
signals near the threshold in quiet.

In line with the multiband energy detector model [23],
we assume that within-channel distortion detectabilities Di

are combined into a total distortion detectability by an addi-
tive operation. However, we do not add the squared sensitiv-
ity indices as in (1), but we simply add the indices directly. Al-
though this may introduce inaccuracies, these will later turn

out to be small. A benefit of this choice is that the distortion
measure that will be derived from this assumption will have
properties that allow a computationally simple formulation
of the model (see (11)). In addition, recent results [26] show
that at least for the detection of closely spaced tones (20 Hz
spacing) masked by noise, the reduction in thresholds when
increasing the signal bandwidth is more in line with a direct
addition of distortion detectabilities than with (1). There-
fore, we state that

D(x, ε) = CsLeff

∑

i

Di (6)

= CsLeff

∑

i

∑
f

∣∣ĥom( f )
∣∣2∣∣γ̂i( f )

∣∣2∣∣ε̂( f )
∣∣2

NMi + Ca
, (7)

where D(x, ε) is the total distortion detectability as it is pre-
dicted for a human observer given an original signal x and a
distortion signal ε. The calibration constant Cs is chosen such
that D = 1 at the threshold of detectability. To account for
the dependency of distortion detectability on the duration of
the distortion signal (in line with [27]), a scaling factor Leff is
introduced defined as

Leff = min

(
L

300 ms
, 1

)
, (8)

where L is the segment duration in milliseconds. Equa-
tion (8) resembles the temporal integration time of the
human auditory system which has an upper bound of
300 milliseconds [27].1

Equation (7) gives a complete description of the model.
However, it defines only a perceptual distortion measure and
not a masking curve such as is widely used in audio coding
nor a masked threshold such as is often used in psychoacous-
tical experiments.

In order to derive a masked threshold, we assume that the
distortion signal ε̂( f ) = Aǫ̂. Here, A is the amplitude of the
distortion signal and ǫ̂ the normalised spectrum of the dis-
tortion signal such that ‖ǫ‖2 = 1 which is assumed to corre-
spond to a sound pressure level of 0 dB. Without yet making
an assumption about the spectral shape of ǫ, we can derive
that, assuming that D = 1 at the threshold of detectability,
the masked threshold A2 for the distortion signal ǫ is given
by

1

A2
= CsLeff

∑

i

∑
f

∣∣ĥom( f )
∣∣2∣∣γ̂i( f )

∣∣2∣∣
ǫ̂( f )

∣∣2

NMi + Ca
. (9)

When deriving a masking curve it is important to con-
sider exactly what type of signal is masked. When a mask-
ing model is used in the context of a waveform coder, the

1An alternative definition would be to state that Leff = N , the total dura-
tion of the segment in number of samples. According to this definition it is
assumed that distortions are integrated over the complete excerpt at hand,
which is not in line with perceptual masking data, but which in our experi-
ence still leads to very satisfactory results [32].
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distortion signal introduced by the coder is typically assumed
to consist of bands of noise. For a sinusoidal coder, however,
the distortion signal contains the sinusoids that are rejected
by the perceptual model. Thus, the components of the distor-
tion signal are in fact more sinusoidal in nature. Assuming
now that a distortion component is present in only one bin
of the spectrum, we can derive the masked thresholds for si-
nusoidal distortions. We assume that ǫ̂( f ) = v̂( fm)δ( f − fm)
with v̂( fm) being the sinusoidal amplitude and fm the sinu-
soidal frequency. Together with the assumption that D = 1 at
the threshold of detectability, v̂ can be derived such that the
distortion is just not detectable. In this way, by varying fm
over the entire frequency range, v̂2 constitutes the masking
curve for sinusoidal distortions in the presence of a masker
x. By substituting the above assumptions in (7) we obtain

1

v̂2
(
fm
) = CsLeff

∑

i

∣∣ĥom

(
fm
)∣∣2∣∣γ̂i

(
fm
)∣∣2

NMi + Ca
. (10)

Substituting (10) in (7), we get

D(x, ε) =
∑

f

∣∣ε̂( f )
∣∣2

v̂2( f )
. (11)

This expression shows that the computational load for calcu-
lating the perceptual distortion D(x, ε) can be very low once
the masking curve v̂2 has been calculated. This simple form
of the perceptual distortion, such as given in (11), arises due
to the specific choice of the addition as defined in (6).

4. CALIBRATION OF THE MODEL

For the purpose of calibration of the model, the constants
Ca for absolute thresholds and Cs for the general sensitivity
of the model in (7) need to be determined. This will be done
using two basic findings from the psychoacoustical literature,
namely the threshold in quiet and the just noticeable differ-
ence (JND) in level of about 0.5 - 1 dB for sinusoidal signals
[33].

When considering the threshold in quiet, we assume that
the masking signal is equal to zero, that is, x̂ = 0 and that
the just detectable sinusoidal distortion signal is given by

ε̂( f ) = ĥtq( fm)δ( f − fm) for some fm, where ĥtq is the
threshold-in-quiet curve. By substituting these assumptions
in (7) (assuming that D = 1 corresponds to a just detectable
distortion signal), we obtain

Ca = CsLeff

∑

i

∣∣γ̂i
(
fm
)∣∣2

. (12)

Note that (12) only holds if
∑

i |γ̂i( fm)|2 is constant for all fm,
which is approximately true for gammatone filters.

We assume a 1 dB JND which corresponds to a masking
condition where a sinusoidal distortion is just detectable in
the presence of a sinusoidal masker at the same frequency, say
fm. For this to be the case, the distortion level has to be 18 dB
lower than the masker level, assuming that the masker and
distortion are added inphase. This specific phase assumption

is made because it leads to similar thresholds as when the
masker and signal are slightly off-frequency with respect to
one another, the case which is most likely to occur in au-
dio coding contexts. We therefore assume that the masker
signal is x̂( f ) = A70δ( f − fm) and the distortion signal
ε̂( f ) = A52δ( f − fm), with A70 and A52 being the amplitudes
for a 70 and 52 dB SPL sinusoidal signal, respectively. Using
(3) and (7), this leads to the expression

1

Cs
= Leff

∑

i

∣∣ĥom

(
fm
)∣∣2∣∣γ̂i

(
fm
)∣∣2

A2
52∣∣ĥom

(
fm
)∣∣2∣∣γ̂i

(
fm
)∣∣2

A2
70 + Ca

. (13)

When (12) is substituted into (13), an expression is ob-
tained where Cs is the only unknown. A numerical solution
to this equation can be found using, for example, the bi-
section method (cf. [34]). A suitable choice for fm would
be fm = 1 kHz, since it is in the middle of the auditory
range. This calibration at 1 kHz does not significantly reduce
the accuracy of the model at other frequencies. On the one
hand the incorporation of a threshold-in-quiet curve pre-
filter provides the proper frequency dependence of thresh-
olds in quiet. On the other hand, JNDs do not differ much
across frequency both in the model predictions and humans.

5. MODEL EVALUATION AND COMPARISON
WITH PSYCHOACOUSTICAL DATA

To show the validity of the model, some basic psychoacous-
tical data from listening experiments will be compared to
model predictions. We will consider two cases, namely sinu-
soids masked by noise and sinusoids masked by sinusoids.

Masking of sinusoids has been measured in several ex-
periments for both (white) noise maskers [12, 35] and for si-
nusoidal maskers [36]. Figure 2a shows masking curves pre-
dicted by the model for a white noise masker with a spectrum
level of 30 dB/Hz for a long duration signal (solid line) and a
200 millisecond signal (dashed line) with corresponding lis-
tening test data represented by circles [12] and asterisks [35],
respectively. Figure 2b shows the predicted masking curve
(solid line) for a 1 kHz 50 dB SPL sinusoidal masker along
with corresponding measured masking data [36]. The model
predictions are well in line with data for both sinusoidal and
noise maskers, despite the fact that no tonality detector was
included in the model such as is conventionally needed in
masking models for audio coding (e.g., [1]). Only at lower
frequencies, there is a discrepancy between the data for the
noise masker and the predictions by the model. The reason
for this discrepancy may be that in psychoacoustical studies,
running noise generators are used to generate the masker sig-
nal rather than a single noise realisation, as it is done in au-
dio coding applications. The latter case has, according to sev-
eral studies, a lower masking strength [37]. This difference in
masking strength is due to the inherent masker power fluc-
tuations when a running noise is presented, which depends
inversely on the product of time and bandwidth seen at the
output of an auditory filter. The narrower the auditory filter
(i.e., the lower its centre frequency), the larger these fluctua-
tions will be and the larger the difference is expected to be.
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Figure 2: (a) Masking curves predicted by the model for a white
noise masker with a spectrum level of 30 dB/Hz for a long dura-
tion signal (solid line) and a 200- millisecond signal (dashed line)
with corresponding listening test data represented by the circles
[12] and asterisks [35], respectively. (b) Masking curves for a 1 kHz
50 dB SPL sinusoidal masker. The dashed line is the threshold in
quiet. Circles show data from [36].

As can be seen in Figure 2, the relatively weaker mask-
ing power of a sinusoidal signal is predicted well by the
model without the need for explicit assumptions about the
tonality of the masker such as those included in, for ex-
ample, the ISO MPEG model [1]. Indeed, in the case of
a noise masker (Figure 2a), the masker power within the
critical band centred around 1 kHz (bandwidth 132 Hz) is
approximately 51.2 dB SPL, whereas the sinusoidal masker
(Figure 2b) has a power of 50 dB SPL. Nevertheless, pre-
dicted detection thresholds are considerably lower for the
sinusoidal masker (35 dB SPL) than for the noise masker
(45 dB SPL). The reason why the model is able to predict
these data well is that for the tonal masker, the distortion-
to-masker ratio is constant over a wide range of auditory
filters. Due to the addition of within-channel distortion de-
tectabilities, the total distortion detectability will be relatively
large. In contrast, for a noise masker, only the filter centred
on the distortion component will contribute to the total dis-
tortion detectability because the off-frequency filters have a
very low distortion-to-masker ratio. Therefore, the wideband
noise masker will have stronger masking effect. Note that
for narrowband noise signals, the predicted masking power,
in line with the argumentation for a sinusoidal masker, will
also be weak. This, however, seems to be too conservative
[38].
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Figure 3: Masked thresholds predicted by the model (solid line)
and psychoacoustical data (circles) [25]. Masked thresholds are ex-
pressed in dB SPL per component.

A specific assumption in this model is the integration of
distortion detectabilities over a wide range of auditory fil-
ters. This should allow the model to predict correctly the
threshold difference between narrowband distortion signals
and more wideband distortion signals. For this purpose an
experiment is considered where a complex of tones had to
be detected in the presence of masking noise [25]. The tone
complex consisted of equal-level sinusoidal components with
a frequency spacing of 10 Hz centred around 400 Hz. The
masker was a 0–2 kHz noise signal with an overall level of
80 dB SPL. The number of components in the complex was
varied from one up to 41. The latter case corresponds to a
bandwidth of 400 Hz, which implies that the tone complex
covers more than one critical band. Equation (9) was used to
derive masked thresholds. As can be seen in Figure 3, there is
a good correspondence between the model predictions and
the data from [25]. Therefore, it seems that the choice of the
linear addition that was made in (6) did not lead to large
discrepancies between psychoacoustical data and model pre-
dictions.

To conclude this section, a comparison is made between
predictions of the MPEG-1 Layer I [1] and the model pre-
sented in this study which incorporates spectral integration
in masking. The MPEG model is one of a family of mod-
els used in audio coding that are based on spectral-spreading
functions to model spectral masking. When the masking of
a narrowband distortion signal is considered, it is assumed
that the auditory filter that is spectrally centred on this dis-
tortion signal determines whether the distortion is audi-
ble or not. When the energy ratio between distortion sig-
nal and masking signal as seen at the output of this audi-
tory filter is smaller than a certain criterion value, the dis-
tortion is inaudible. In this manner the maximum allowable
distortion signal level at each frequency can be determined
which constitutes the masking curve. An efficient implemen-
tation for calculating this masking curve is a convolution be-
tween the masker spectrum and a spreading function both
represented on a Bark scale. The Bark scale is a perceptu-
ally motivated frequency scale similar to the ERB-rate scale
[39].

The spectral integration model presented here does not
consider only a single auditory filter to contribute to the
detection of distortions, but potentially a whole range of
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Figure 4: Masked thresholds predicted by the spectral integration
model (dashed line) and the ISO MPEG model (solid line). The
masking spectrum (dotted line) is for (a) a 1 kHz sinusoidal signal
and (b) a short segment of a harpsichord signal.

filters. This can have a strong impact on the predicted mask-
ing curves. Figure 4a shows the masking curves for a sinu-
soidal masker at 1 kHz for the MPEG model (solid line) and
the spectral integration model (dashed line). The spectrum
of the sinusoidal signal is also plotted (dotted line), but scaled
down for visual clarity. As can be seen, there is a reason-
able match between both models, showing some differences
at the tails. In Figure 4b, in a similar way the masking curves
are shown but now resulting from a complex spectrum (part
of a harpsichord signal). It can be seen that the masking
curves differ systematically showing much smoother mask-
ing curves for the spectral integration model as compared to
the MPEG model. For the spectral integration model mask-
ing curves are considerably higher in spectral valleys. This
effect is a direct consequence of the spectral integration as-
sumption that was adopted in our model (cf. (6)). In the
spectral valleys of the masker, distortion signals can only be
detected using the auditory filter centred on the distortion
which will lead to relatively high masked thresholds. This
is so because off-frequency filters will be dominated by the
masker spectrum. However, detection of distortion signals at
the spectral peaks of the masker is mediated by a range of
auditory filters centred around the peak, resulting in rela-
tively low masked thresholds. In this case the off-frequency
filters will reveal similar distortion-to-masker ratios as the
on-frequency filter. Thus, in the model proposed here, de-
tection differences between peaks and troughs are smaller,
resulting in smoother masking curves as compared to those
observed in a spreading-based model such as the ISO MPEG
model.

The smoothening effect is observed systematically in
complex signal spectra typically encountered in practical sit-
uations and represents the main difference between the spec-
tral integration model presented here and existing spreading-
based models.

6. APPLICATION TO SINUSOIDAL MODELLING

Sinusoidal modelling has proven to be an efficient technique
for the purpose of coding speech signals [40]. More recently,
it has been shown that this method can also be exploited for
low-rate audio coding, for example, [41, 42, 43]. To account
for the time-varying nature of the signal, the sinusoidal anal-
ysis/synthesis is done on a segment-by-segment basis, with
each segment being modelled as a sum of sinusoids. The si-
nusoidal parameters have been selected with a number of
methods, including spectral peak-picking [44], analysis-by-
synthesis [41, 43], and subspace-based methods [42].

In this section we describe an algorithm for selecting si-
nusoidal components using the psychoacoustical model de-
scribed in the previous section. The algorithm is based on
the matching pursuit algorithm [45], a particular analysis-
by-synthesis method. Matching pursuit approximates a sig-
nal by a finite expansion into elements (functions) chosen
from a redundant dictionary. In the example of sinusoidal
modelling, one can think of such functions as (complex) ex-
ponentials or as real sinusoidal functions. Matching pursuit
is a greedy, iterative algorithm which searches the dictionary
for the function that best matches the signal and subtracts
this function (properly scaled) to form a residual signal to be
approximated in the next iteration.

In order to determine which is the best matching func-
tion or dictionary element at each iteration, we need to for-
malise the problem. To do so, let D = (gξ)ξ∈Γ be a complete
dictionary, that is, a set of elements indexed by ξ ∈ Γ, where
Γ is an arbitrary index set. As an example, consider a dictio-
nary consisting of complex exponentials gξ = ei2πξ(·). In this
case, the index set Γ is given by Γ = [0, 1). Obviously, the in-
dexing parameter ξ is nothing more than the frequency of the
complex exponential. Given a dictionary D , the best match-
ing function can be found by, for each and every function,
computing the best approximation and selecting that func-
tion whose corresponding approximation is “closest” to the
original signal.

In order to facilitate the following discussion, we assume
without loss of generality that ‖gξ‖ = 1 for all ξ. Given a
particular function gξ , the best possible approximation of the
signal x is obtained by the orthogonal projection of x onto
the subspace spanned by gξ (see Figure 5). This projection is
given by 〈x, gξ〉gξ . Hence, we can decompose x as

x = 〈x, gξ〉gξ + Rx, (14)

where Rx is the residual signal after subtracting the projec-
tion 〈x, gξ〉gξ . The orthogonality of Rx and gξ implies that

‖x‖2 =
∣∣〈x, gξ〉

∣∣2
+ ‖Rx‖2. (15)
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Figure 5: Orthogonal projection of x onto span(gξ).

We can do this decomposition for each and every dictionary
element and the best matching one is then found by selecting
the element gξ′ for which ‖Rx‖ is minimal, or, equivalently,
for which |〈x, gξ〉| is maximal. A precise mathematical for-
mulation of this phrase is

ξ′ = arg sup
ξ∈Γ

∣∣〈x, gξ〉
∣∣. (16)

It must be noted that the matching pursuit algorithm is
only optimal for a particular iteration. If we subtract the ap-
proximation to form a residual signal and approximate this
residual in a similar way as we approximated the original sig-
nal, then the two dictionary elements thus obtained are not
jointly optimal; it is in general possible to find two differ-
ent elements which together form a better approximation.
This is a direct consequence of the greedy nature of the algo-
rithm. The two dictionary elements which together are opti-
mal could be obtained by projecting the signal x onto all pos-
sible two-dimensional subspaces. This, however, is in general
very computationally complex. An alternative solution to this
problem is to apply, after each iteration, a Newton optimisa-
tion step [46].

To account for human auditory perception, the unit-
norm dictionary elements can be scaled [43], which is equiv-
alent to scaling the inner products in (16). We will refer to
this method as the weighted matching pursuit (WMP) algo-
rithm. While this method performs well, it can be shown
that it does not provide a consistent selection measure for
elements of finite time support [47]. Rather than scaling the
dictionary elements, we introduce a matching pursuit algo-
rithm where psychoacoustical properties are accounted for
by a norm on the signal space. We will refer to this method
as psychoacoustical matching pursuit (PAMP). As mentioned
in Section 3 (see (11)), the perceptual distortion can be ex-
pressed as

D =
∑

f

∣∣ε̂( f )
∣∣2

v̂2( f )
=
∑

f

â( f )
∣∣ε̂( f )

∣∣2
, (17)

where â = v̂−2. It follows from (10) that

â( f ) = CsLeff

∑

i

∣∣ĥom( f )
∣∣2∣∣γ̂i( f )

∣∣2

NMi + Ca
. (18)
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Figure 6: Perceptual distortion associated with the residual signal
after sinusoidal modelling as a function of the number of sinusoidal
components that were extracted.

By inspection of (18), we conclude that â is real and positive
so that, in fact, the perceptual distortion measure (17) defines
a norm

‖x‖2 =
∑

f

â( f )
∣∣x̂( f )

∣∣2
. (19)

This norm is induced by the inner product

〈x, y〉 =
∑

f

â( f )x̂( f ) ŷ∗( f ), (20)

facilitating the use of the distortion measure in selecting the
perceptually best matching dictionary element in a matching
pursuit algorithm. In Figure 6, the perceptual distortion as-
sociated with the residual signal is shown as a function of the
number of real-valued sinusoids that have been extracted for
a short segment of a harpsichord excerpt (cf. (11)). As can be
seen the perceptually most relevant components are selected
first, resulting in a fast reduction of the perceptual distor-
tion for the first components. For a detailed description the
reader is referred to [47, 48]. The fact that the distortion de-
tectability defines a norm on the underlying signal space is
important, since it allows for incorporating psychoacoustics
in optimisation algorithms. Indeed, rather than minimising
the commonly used l2-norm, we can minimise the percep-
tually relevant norm given by (19). Examples include rate-
distortion optimisation [32], linear predictive coding [49],
and subspace-based modelling techniques [50].

7. COMPARISON WITH THE ISO MPEG MODEL
IN A LISTENING TEST

In this section we assess the performance of the proposed
perceptual model in the context of sinusoidal parameter
estimation. The PAMP method for estimating perceptually
relevant sinusoids relies on the weighting function â which,
by definition, is the inverse of the masking curve. Equation
(18) describes how to compute the masking curve for
the proposed perceptual model. We compare the use of
the proposed perceptual model in PAMP to the situation
where the masking curve is computed using the MPEG-1
Layer I-II (ISO/IEC 11172-3) psychoacoustical model [1].
There are several reasons for comparison with the MPEG
psychoacoustic model; the model provides a well-known
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reference and because of its frequent application, it is still a
de facto state-of-the-art model.

Using the MPEG-1 psychoacoustic model masking curve
directly in the PAMP algorithm for sinusoidal extraction is
not reasonable because the MPEG-1 psychoacoustic model
was developed to predict the masking curve in the case of
noise maskees (distortion signals). It predicts for every fre-
quency bin how much distortion can be added within the
critical band centred around the frequency bin. This pre-
diction is, however, too conservative in the case that distor-
tions are sinusoidal in nature since in this case the distor-
tion energy is not spread over a complete critical band but
is concentrated in one frequency bin only. Hence, we can
adapt the MPEG-1 model by scaling the masking function
with the critical bandwidth such that the model now predicts
the detection thresholds in the case of sinusoidal distortion.
The net effect of this compensation procedure is an increase
of the masking curve at high frequencies by about 10 dB,
thereby de-emphasizing high-frequency regions during si-
nusoidal estimation. In fact, this masking power increase
at higher frequencies reduces the gap between the mask-
ing curves between the ISO MPEG model and the proposed
model (cf. Figure 4) By applying this modification to the ISO
MPEG model, and by extending the FFT order to the size
of the PAMP dictionary, it is suited to be used in the PAMP
method. The dictionary elements in our implementation
of the PAMP method were real-valued sinusoidal functions
windowed with a Hanning window, identical to the window
used in the analysis-synthesis procedure described below.

In the following, we present results obtained by listening
tests with audio signals. The signals are mono, sampled at
44.1 kHz, where each sample is represented by 16 bits. The
test excerpts are Carl Orff, Castanet, Céline Dion, Harpsi-
chord Solo, contemporary pop music, and Suzanne Vega.

The excerpts were segmented into fixed-length frames of
1024 samples (corresponding to 23.2 milliseconds) with an
overlap of 50% between consecutive frames using a Han-
ning window. For each signal frame, a fixed number of per-
ceptually relevant sinusoids per frame were extracted using
the PAMP method described above, where the perceptual
weighting functions â were generated from masking curve
derived from the proposed perceptual model (see (18)) and
the modified MPEG model described above, respectively. For
the MPEG model we made use of the recommendations
of MPEG Layer II, since these support input frame lengths
of 1024 samples. The masking curves were calculated from
the Hanning-windowed original signal contained within the
same frame that is being modelled using the PAMP method.
Finally, modelled frames were synthesized from the esti-
mated sinusoidal parameters and concatenated to form mod-
elled test excerpts, using a Hanning window-based overlap-
add procedure.

To evaluate the performance of the proposed method, we
used a subjective listening test procedure which is somewhat
comparable to the MUSHRA test (multistimulus test with
hidden reference and anchors) [51]. For each test excerpt,
listeners were asked to rank 6 different versions: 4 excerpts
modelled using the modified MPEG masking curve and fixed

Table 1: Scores used in subjective test.

Score Equivalent

5 Best

4 Good

3 Medium

2 Poor

1 Poorest

model orders (i.e., the number of sinusoidal components per
segment) of K = 20, 25, 30, and K = 35, and one excerpt
modelled using the proposed perceptual model with K = 25.
In addition, to have a low-quality reference signal, an excerpt
modelled with K = 30, but using the unmodified MPEG
masking curve was included. As a reference, the listeners had
the original excerpt available as well, which was identified to
the subjects. Unlike the MUSHRA test, no hidden reference
and no anchors were presented to the listeners.

The test excerpts were presented in a “parallel” way, us-
ing the interactive benchmarking tool described in [52] as
an interface to the listeners. For each excerpt, listeners were
requested to rank the different modelled signals on a scale
from 1–5 (in steps of 0.1) as outlined in Table 1. The lis-
teners were instructed to use the complete scale such that
the poorest-quality excerpt was rated with 1 and the highest-
quality excerpt with 5. The excerpts were presented through
high-quality headphones (Beyer-Dynamic DT990 PRO) in a
quiet room, and the listeners could listen to each signal ver-
sion as often as needed to determine the ranking. A total of
12 listeners participated in the listening test, of which 6 lis-
teners worked in the area of acoustic signal processing and
had previously participated in such tests. The authors did not
participate in the test.

Figure 7 shows the overall scores of the listening test, av-
eraged across all listeners and excerpts. The circles represent
the median score, and the error bars depict 25 and 75 per-
cent ranges of the total response distributions. As can be
seen, the excerpts generated with the proposed perceptual
model (SiCAS@25) show better average subjective perfor-
mance than any of the excerpts based on the MPEG psychoa-
coustic model, except for the MPEG case using a fixed model
order of 35 (MPEG@35). As expected, the MPEG-based ex-
cerpts have decreasing quality scores for decreasing model
order. Furthermore, the low-quality anchor (MPEG@30nt,
i.e., the MPEG model without spectral tilt modification) re-
ceived the lowest-quality score on average. The statistical
difference between the quality scores was analysed using a
paired t-test using a significance level of p < 0.01, and by
working on the score differences between the proposed per-
ceptual model and each of the MPEG-based methods. The
H0 hypothesis was that the mean of such difference distribu-
tion was zero (µ∆ = 0), while the alternative hypothesis H1

was that µ∆ > 0. The statistical analysis supports the qual-
ity ordering suggested by Figure 7. In particular, there is a
statistically significant improvement in using the proposed
perceptual model (SiCAS@25) over any of the MPEG-based
methods except for MPEG@35 which performs better than
SiCAS@25 (p < 7.0 · 10−3). In fact, the model presented here
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Figure 7: Subjective test results averaged across all listeners and ex-
cerpts.

leads to a reduction of more than 20% in terms of number of
sinusoids needed to represent signals at a given quality level.

As mentioned already in Section 5 the most relevant dif-
ference between the proposed model and the ISO MPEG
model is the incorporation of spectral integration properties
in the proposed model. This leads to systematically smoother
masking curves such as predicted by our model for complex
masker spectra (cf. Figure 4). The effect of this is that fewer
sinusoidal components are used for modelling spectral val-
leys of a signal with the proposed perceptual model as com-
pared to the ISO MPEG model. We think that this difference
accounts for the improvement in modelling efficiency that
we observed in the listening tests and we expect that simi-
lar improvements would have been observed when our ap-
proach was compared to other perceptual models that are
based on the spectral-spreading approach such as those used
in the ISO MPEG model.

8. CONCLUSIONS

In this paper we presented a psychoacoustical model that is
suited for predicting masked thresholds for sinusoidal dis-
tortions. The model relies on signal detection theory and in-
corporates more recent insights about spectral and temporal
integration in auditory masking. We showed that, as a con-
sequence, the model is able to predict distortion detectabili-
ties. In fact, the distortion detectability defines a (perceptu-
ally relevant) norm on the underlying signal space which is
beneficial for optimisation algorithms such as rate-distortion
optimisation or linear predictive coding. The model proves
to be very suitable for application in the context of sinu-
soidal modelling, although it is also applicable in other au-
dio coding contexts such as transform coding. A compara-
tive listening test using a sinusoidal analysis method called
psychoacoustical matching pursuit showed a clear preference
for the model presented here over the ISO MPEG model [1].

More specifically, the model presented here leads to a re-
duction of more than 20% in terms of number of sinusoids
needed to represent signals at a given quality level.
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