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Abstract
A perceptually based approach for selecting image samples has
been developed. An existing image processing vision model has
been extended to handle color and has been simplified to run effi-
ciently. The resulting new image quality model was inserted into
an image synthesis program by first modifying the rendering algo-
rithm so that it computed a wavelet representation. In addition to
allowing image quality to be determined as the image was gener-
ated, the wavelet representation made it possible to use statistical
information about the spatial frequency distribution of natural im-
ages to estimate values where samples were yet to be taken. Tests
on the image synthesis algorithm showed that it correctly handled
achromatic and chromatic spatial detail and that it was able pre-
dict and compensate for masking effects. The program was also
shown to produce images of equivalent visual quality while using
different rendering techniques.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism; I.4.0 [Image Process-
ing and Computer Vision]: General.

Additional Key Words and Phrases: Adaptive Sampling,
Perception, Masking, Vision Models.

1 Introduction
The synthesis of realistic images would be greatly facilitated

by employing an algorithm that makes image quality judgements
while the picture is being created instead of relying upon the
user of the software to make these evaluations once the image is
complete. In this way it would be possible to find the artifacts in a
picture as it was being rendered and to invest additional effort on
those areas. By targeting those parts of the picture where problems
are visible, the overall time necessary to compute the picture could
be reduced. It would also be possible to have the algorithm stop
when the picture quality had reached a predetermined level. This✂☎✄✝✆✟✞✡✠☞☛ ✌✎✍✏✞✒✑✔✓☎✌ ☛ ✕✔✖✘✗✚✙☞✛ ✜✢✓☎✣✤✄✦✥✧✓☎✕★✛ ✄✚✩✢✜✪ ✄✝✆✟✞✡✠☞☛ ✌✎✍✏✥✫✠✬✣✤✭✢✖✘✗✚✙☞✛ ✜✢✓✧✣✤✄✦✥☎✓✧✕★✛ ✄✚✩✢✜

would permit the use of radically different rendering algorithms
but still have them produce an equivalent visual result.

Image quality evaluation programs have been developed by vi-
sion scientists and image processors to determine the differences
between two pictures. Given a pair of input images, this software
returns a visibility map of the variations between the two image
arrays. While these programs are capable of making the visual
judgements required by a perceptually based image synthesis al-
gorithm, they are currently too expensive to execute every time a
decision is necessary about where to cast a ray into an image or
when the overall visual quality of the picture is acceptable. Their
efficient evaluation also requires a frequency or a wavelet repre-
sentation for the images instead of the usual pixel based scheme.

The objective of this paper is to integrate an existing image
quality evaluation algorithm into a realistic image synthesis pro-
gram. This is to be done in such a way that image quality judge-
ments can be made as the image is produced without severely
impacting the overall execution time of the rendering program.
This will require that the image quality metric be made to run
more efficiently without sacrificing its ability to detect visible ar-
tifacts. It will also necessitate that the coefficients of a frequency
or a wavelet representation are computed by the image synthesis
algorithm instead of the individual pixels of the final image. This
will have the side benefit of allowing the algorithm to make use
of statistical information about the frequency content of natural
images when actual data from the scene being rendered is not
available.

Including this introduction, the paper is divided into seven ma-
jor sections. In the second section, previous work on vision based
rendering algorithms is reviewed and existing image processing
based vision models are described. A simplified version of a vi-
sion model is developed in the third section and is integrated into
a rendering algorithm in the fourth section. In the fifth section
the statistics of natural images are used to make guesses about un-
known values as the image is computed. Finally, the results of the
algorithm are discussed in the sixth section and some conclusions
are drawn in the seventh section.

2 Background
A few attempts have been made to develop image synthesis

algorithms that, as the picture is created, detect threshold visual
differences and direct the algorithm to work on those parts of the
image that are in most need of refinement. There have also been
image processing algorithms invented, both inside and outside
the field of computer graphics, that can be used to determine the
visibility of differences between two images. In this section we
review work in each of these areas in preparation for describing
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how we have combined an image processing and image synthesis
algorithm✮ to create a new image rendering technique.

2.1 Vision Based Rendering Algorithms
Mitchell [21] was the first to develop a ray tracing algorithm

that considered the perception of noise and attempted to operate
near its threshold. He adopted a Poisson disk sampling pattern
to concentrate aliasing noise in high frequencies where the arti-
fact is less conspicuous. He also employed an adaptive sampling
technique to vary the sampling rate according to frequency con-
tent. A contrast calculation was performed in order to obtain a
perceptually based measure of the variation in the signal. Differ-
ential weighting was applied to the red, green, and blue contrasts
to account for color variation in the eye’s spatial sensitivity.

Meyer and Liu [20] developed an image synthesis algorithm
that took full advantage of the visual system’s limited color spatial
acuity. To accomplish this they used an opponents color space
with chromatic and achromatic color channels. They employed the
Painter and Sloan [23] adaptive subdivision algorithm to compute
a k-D tree representation for an image. Because lower levels
of the tree contained the higher spatial frequency content of the
picture, they descended the k-D tree to a lesser depth in order to
determine the chromatic channels of the final image.

Bolin and Meyer [2] were the first to use a simple vision
model to make decisions about where to cast rays into a scene
and how to spawn rays that intersect objects in the environment.
The model that they employed consisted of three stages: recep-
tors with logarithmic response to light, opponents processing into
achromatic and chromatic channels, and spatial frequency filter-
ing that is stronger for the color channels. They computed a
spatial frequency representation from the samples that they took.
As higher image frequencies were determined the number of rays
spawned was decreased. This allowed them to exploit the phe-
nomena of masking in their algorithm.

Gibson and Hubbold [10] have used a tone reproduction op-
erator to determine display colors during the rendering process.
This made it possible to compute color differences in a perceptu-
ally uniform color space and control the production of radiosity
solutions. They used this technique on the adaptive element re-
finement, shadow detection, and mesh optimization portions of
the radiosity algorithm.

2.2 Image Processing Based Models of the Visual Sys-
tem

The architectures of image processing based models of the vi-
sual system share a number of common elements. The first stage
of the models is usually a nonlinear intensity transformation. This
is done to account for the visual system’s difference in detection
capability for information in light and dark areas of a scene. The
second stage typically involves some spatial frequency processing.
Most contemporary models break the spatial frequency spectrum
into separate channels. The sensitivity of the individual channels
is controlled so that the overall bandpass corresponds to the con-
trast sensitivity function. The spatial frequency hierarchy makes
it possible to determine whether a signal will be masked or fa-
cilitated by the presence or absence of background information
with a similar frequency composition. Finally the outputs of the
separate frequency channels that are above threshold are summed
to create a final representation.

Two important examples of image processing based models
of the visual system are the Daly Visual Difference Predictor
(VDP) [5] and the Sarnoff Visual Discrimination Model (VDM)
[17]. The Daly VDP takes a more psychophysically based ap-
proach to vision modeling. As such it uses a power law represen-
tation for the initial nonlinearity and it transforms the image into

Figure 1: Block diagram of vision model.

the frequency domain in order to perform its filtering operations.
The Sarnoff VDM focuses more attention on modeling the phys-
iology of the visual pathway. It therefore operates in the spatial
domain and does a careful simulation of such things as the optical
point spread function.

In recent work, the Daly VDP and the Sarnoff VDM have been
applied to precomputed computer graphic imagery. Rushmeier, et.
al [25] used the initial stages of the Daly VDP (and other vision
metrics) to compare a simulated and a measured image. Ferwerda,
et. al. [7] extended the Daly VDP to include color and modified
how it handles masking. The result was a new image processing
based model of the visual system that they used to demonstrate
how surface texture can mask polygonal tessellation. Li [15,16]
has used computer graphic pictures to compare the Daly VDP and
the Sarnoff VDM. She found that the two models performed com-
parably, but that the Sarnoff VDM gave better image difference
maps and required less recalibration. The Sarnoff VDM was also
determined to have better execution speed than the Daly VDP but
required the use of significantly more memory. As a result of this
comparison we have decided to use the Sarnoff VDM as the basis
for our new vision based rendering algorithm.

3 Simplified Vision Model
The vision model that we have developed bears many simi-

larities to the Sarnoff VDM discussed in the previous section. In
creating a new model of visual perception we were motivated by
two primary factors. The first and foremost criteria is the speed of
the visual model. Modern visual difference predictors have gone
to great lengths to accurately model the perceptual sensitivity of
the human visual system. However, efficiency is seldom a design
criteria in developing these systems. This fact limits the utility of
these algorithms in applications where speed is a primary concern.
The second factor that motivated our development of a new model
is the correct handling of color. The majority of visual difference
predictors have been designed only for gray scale images, and
the ones that include color have neglected the significant effect of
chromatic aberration.

The perceptual model that will be described has been imbed-



ded into a visual difference predictor. This difference predictor
receives✯ as input two images specified in CIE XYZ color space.
It returns as output a map of the perceptual difference between
the two images specified in terms of just noticeable differences
(JND’s). One JND corresponds to a 75% probability that an ob-
server viewing the two images would be able to detect a differ-
ence, and the units correspond to a roughly linear magnitude of
subjective visual differences [17].

A block diagram of our visual difference predictor is given in
Figure 1. The steps cone fundamentals through spatial pooling
are carried out independently on both input images. The differ-
ences between the two images are accumulated in the distance
summation step.

In the first stage of the vision model entitled cone fundamen-
tals, the pixels of the input image are encoded into the responses
of the short (S), medium (M) and long (L) receptors found in the
retina of the eye. This is accomplished using the transformation
from CIE XYZ to SML space specified by Bolin and Meyer [2].

There is now abundant evidence for the existence of channels
in the visual pathway that are tuned to a number of specific fre-
quencies and orientations [17]. The visual processing that occurs
on a channel is relatively independent of all other channels. In
the Sarnoff VDM this cortex filtering stage is accomplished by
transforming the image into a Laplacian pyramid and applying a
set of oriented filters. The net result is a pyramidal image decom-
position that is tuned to seven spatial frequencies and four angular
directions. This transform is the primary source of expense in the
Sarnoff VDM. In order to reduce the cost of this operation we
decided to model the spatial frequency and orientation selectivity
of the visual system through the use of a simple Haar wavelet
transform. A number of other wavelet bases were considered, in-
cluding Daubechies’ family of wavelets [6] and the biorthogonal
bases of Cohen, et. al. [4]. However, these transforms were dis-
carded due to their expense. The two-dimensional non-standard
Haar decomposition can be expressed as:✰☎✱✎✲✴✳✶✵✸✷ ✹✒✺✼✻✹✾✽❀✿ ❁❂✰☎✱❂✵ ✷ ✺ ✻ ✽✼❃❄✰☎✱❂✵ ✷ ❃❆❅✔✺ ✻ ✽✼❃✰✧✱❂✵ ✷ ✺ ✻ ❃❆❅☎✽✼❃❄✰☎✱❂✵ ✷ ❃❆❅✔✺ ✻ ❃❆❅✧✽❈❇✦❉✢❊❋ ✳✱✎✲✴✳ ✵✸✷ ✹ ✺✼✻ ✹ ✽❀✿ ❁❂✰☎✱❂✵ ✷ ✺ ✻ ✽✏●❍✰☎✱❂✵ ✷ ❃❆❅✔✺ ✻ ✽✼❃✰✧✱❂✵ ✷ ✺ ✻ ❃❆❅☎✽✏●❍✰☎✱❂✵ ✷ ❃❆❅✔✺ ✻ ❃❆❅✧✽❈❇✦❉✢❊❋✔■ ✱✎✲✴✳ ✵✸✷ ✹✒✺✼✻✹✾✽❀✿ ❁❂✰ ✱ ✵ ✷ ✺ ✻ ✽✼❃❄✰ ✱ ✵ ✷ ❃❆❅✔✺ ✻ ✽✏●✰ ✱ ✵ ✷ ✺ ✻ ❃❆❅☎✽✏●❍✰ ✱ ✵ ✷ ❃❆❅✔✺ ✻ ❃❆❅✧✽❈❇✦❉✢❊❋✔❏ ✱✎✲✴✳ ✵✸✷ ✹✒✺✼✻✹✾✽❀✿ ❁❂✰ ✱ ✵ ✷ ✺ ✻ ✽✏●❍✰ ✱ ✵ ✷ ❃❆❅✔✺ ✻ ✽✏●✰ ✱ ✵ ✷ ✺ ✻ ❃❆❅☎✽✼❃❄✰ ✱ ✵ ✷ ❃❆❅✔✺ ✻ ❃❆❅✧✽❈❇✦❉✢❊ ❁✦❅❑❇
where ✰☎✱ specifies the lowpass coefficients of the level ▲ Haar

Figure 2: Angular tuning of Haar coefficients.

Figure 3: Effect of chromatic aberration on the S-cone photopig-
ment sensitivity. Right diagram takes cross sections through left
diagram at intervals of 4 cpd (from Marimont and Wandell [19]).

basis,
❋ ✳✱ , ❋ ■ ✱ and

❋ ❏ ✱ are the detail coefficients of the three two-
dimensional level ▲ Haar wavelets, and ✰☎✱◆▼✚❖✧▼✚✱◗P✸✲✾✳✶✵ ✷ ✺ ✻ ✽ corresponds
to the response of either the small, medium or long receptors at a
pixel location (where ▲✟❘❑❙❚❘❑▲✟❯ represents the number of levels in the
quad-tree). This decomposition is carried out for each of the S, M
and L channels and is stored in a quad-tree representation with the
highest frequency details at the bottom and lowest frequency at the
top. The detail coefficients of the Haar transform constitute our
cortex transform. These detail terms represent variations in the
image that are localized in space, frequency and angular direction.
The frequency selectivity of the detail terms at a given level of the
tree is defined as the frequency in cycles per degree (cpd) to which
the wavelet at that level is optimally tuned. The detail coefficients
are tuned to three angular directions as illustrated in Figure 2. We
acknowledge that the poor filtering and limited orientation tuning
of the Haar wavelet is a limitation of this approach. However, the
efficiency gains are substantial.

In the next stage labeled local contrast the eye’s non-linear
contrast response to light is modeled. This is accomplished by
dividing the detail coefficients of each color channel by the as-
sociated lowpass coefficient one level up in the quad-tree. This
operation produces a local contrast value which is functionally
equivalent to the standard cone contrast calculation of ❱✒❲❲ , ❱❨❳❳ ,
and ❱❨❩❩ . It additionally avoids the assumption, found in other
models [5,7], that the eye can adapt at the resolution of a pixel.

The next step in the visual model incorporates the effect of
chromatic aberration. Chromatic aberration describes the defo-
cusing of light as a function of wavelength by the optics of the
eye. The original chromatic contrast sensitivity experiments per-
formed by Mullen [22] corrected for chromatic aberration. In
order to accurately apply the results of her work it is necessary
to reintroduce this effect. Chromatic aberration most strongly af-
fects the sensitivity of the short wavelength receptors. The loss
of sensitivity in the short wavelength receptors is demonstrated in
Figure 3. This illustration shows that the sensitivity drops to less
than half its original value at 4 cpd and is virtually non-existent
at frequencies higher than 8 cpd. Chromatic aberration is simu-
lated in our model by lowpass filtering the local contrasts of the
S cone receptors as a function of spatial frequency. The lowpass
filter used was generated by a fit to the data of Marimont and
Wandell [19].

The following stage in the model consists of a transformation
of the cone contrasts to an opponents contrast space. This space
consists of a single achromatic (A) and two opponent color chan-
nels ( ❬ ✳ and ❬ ■ ). There is significant evidence that the signals
produced by the cones undergo this type of transformation. The
transformation matrix used to convert the cone contrasts is found
in [2].

The sixth step of the vision model, labeled CSF filtering, in-



Figure 4: Achromatic and chromatic contrast sensitivity functions
and comparison against a uniform gray field.

corporates variations in achromatic and chromatic contrast sensi-
tivity as a function of spatial frequency. The gray scale contrast
sensitivity illusion in the top left of Figure 4 demonstrates the sen-
sitivity variation of the achromatic channel. In this demonstration
contrast increases logarithmically from top to the bottom of the
image and frequency increases logarithmically from left to right.
The subjective contour in the shape of an inverted “U” that can be
seen along the top of the image is generated by the points at which
the contrast of the sinusoidal grating becomes just noticeably dif-
ferent from the gray background. This image demonstrates that
achromatic sensitivity reaches its peak at around 4 cpd and drops
off significantly at higher and lower spatial frequencies. The equa-
tion for the achromatic contrast sensitivity function that is used in
our model is presented by Barten [1].

The middle and bottom images on the left side of Figure 4 con-
tain contrast sensitivity illusions for the ❬ ✳ and ❬ ■ color channels
respectively. In these illustrations it should be observed that the
peak sensitivity to chromatic contrast is less than that for achro-
matic contrast, and that the cutoff for the chromatic sensitivity
function occurs at a much lower spatial frequency than in the
achromatic illustration. The reader should also see that the shape
of the subjective contour is strictly lowpass, with no drop-off
at low spatial frequencies. The fact that the cutoff for the ❬ ■
color channel is less than that for the ❬ ✳ is the result of axial
chromatic aberration which was modeled at an earlier stage of

the algorithm. In our algorithm the chromatic contrast sensitivity
function is modeled with a Butterworth filter that has been fit to
the chromatic contrast sensitivity data from Mullen [22].

At this stage in the algorithm the square of the contrast for
each of the ❭ , ❬ ✳ and ❬ ■ channels is multiplied by the square
of that channel’s contrast sensitivity as a function of spatial fre-
quency. The square of the contrast and contrast sensitivity func-
tion is used to model the energy response that occurs for complex
cells, as described in the Sarnoff VDM. This transformation has
the result of making the model less sensitive to the exact position
of an edge, which is a property shared by the human visual system
as well [17]. The illustrations on the right side of Figure 4 show
the output of our visual difference predictor when comparing the
contrast sensitivity illusions on the left side of this figure with a
constant gray image. White indicates areas of large visual dif-
ference while black denotes regions of low visual difference. In
these images we see that the algorithm is able to correctly predict
the shape and cutoff of the subjective contour.

The next stage of the model labeled masking transducer, in-
corporates the effect of visual masking. Masking describes the
phenomena where strong signals of a given color, frequency and
orientation can reduce the visibility of similar signals. This prop-
erty of the visual system is incorporated through the use of a
non-linear, sigmoid transducer described in the Sarnoff VDM

❪ ❁ ❭ ❇❨✿ ✹ ❭ ■❴❫ ■✦❵✫❛✝■❭ ■✫❫ ❜☞❵❴❛✸■ ❃❆❅ ✺ ❁ ✹ ❇
where T(A) is the transducer output and A is the weighted contrast
output from the previous stage of the model. This transducer is
applied independently to the contrasts of each of the ❭ , ❬ ✳ , and❬ ■ color channels.

In computer graphic renderings, error primarily is manifested
in the form of noise. Therefore, it is worthwhile to give special
attention to the issue of noise masking. Noise in the achromatic
channel is often the result of aliasing due to undersampling or
can result from poor Monte Carlo light source integration. An
illustration of the grayscale contrast sensitivity illusion perturbed
by the introduction of random noise is given in the upper left of
Figure 5. In this image the noise is readily apparent above and to
the sides of the subjective contrast sensitivity contour, but is less
perceptible in areas where the sinusoidal grating is visible. This
result occurs because the strong visual sensitivity to these frequen-
cies masks the presence of a portion of the frequency spectrum
of the noise. The image in the upper right of this figure shows
the output of our visual difference predictor when comparing the
original contrast sensitivity illustration to the contrast sensitivity
illustration with noise added. In this image we see that the visual
model has correctly predicted that the error is less visible in the
lower-center region where masking is strongest.

Noise in the chromatic channels can arise when Monte Carlo
integration is performed with multiple colored lights or is used to
compute diffuse inter-reflections. Fine grained noise is not masked
significantly in the color channels due to the lower frequency
cutoff for the chromatic contrast sensitivity function. However,
masking can still have a strong affect on the visibility of coarse
grained noise. In the middle left and bottom left images in Fig-
ure 5 we have overlaid the chromatic contrast sensitivity illusions
with coarse grained noise. In these illustrations the noise is very
apparent in regions where sensitivity to the chromatic grating is
low (top and right of the images), but less visible in regions where
the chromatic grating is very perceptible (lower left of the images).
The images on the right once again show the output of the visual
difference predictor when comparing the images with noise to the
original chromatic contrast sensitivity illustrations. In these illus-
trations we see that the algorithm has correctly predicted that the
coarse grained noise is less perceptible in the lower left region of



Figure 5: Achromatic and chromatic contrast sensitivity func-
tions with noise, and comparison with noiseless contrast sensitiv-
ity functions.

the images.
In the next stage of the model labeled spatial pooling, the

transducer outputs are filtered over a small neighborhood of sur-
rounding nodes at each level of the quad-tree. This is similar to
the pooling operation performed in the Sarnoff VDM. It captures
the fact that foveal human sensitivity is at a maximum for sine
wave gratings containing at least 5 cycles. The pooling filter that
is used in our model is: ❝

❞❡
✳✳✸❢ ✳❣ ✳✳✸❢✳❣ ✳❤ ✳❣✳✳✸❢ ✳❣ ✳✳✸❢

✐❦❥
❧❍♠ ❁✝♥✔❇

The decision to use a 3x3 filter rather than the 5x5 filter speci-
fied in the Sarnoff VDM was made to improve the speed of the
algorithm.

In the final distance summation stage the differences between
the pooling stages of the two input images are computed and used
to generate a visual difference map. The local visual difference
at each node of the quad-tree is defined to be the sum across all
orientations ( ♦ ) and color channels ( ✰ ) of the differences of the
pooling stages ( ♣ ✳ and ♣ ■ ) of the two images raised to the 2.4

Figure 6: Top - Original chapel (left) and chapel with sinusoidal
distortion (right). Bottom - Results of the Sarnoff VDM (left) and
simplified vision model (right) visual difference predictions.

power: qsr ✿ ❏t ✉☞✈ ✳
❏t ✇✝✈ ✳ ❁ ♣ ✳✶✵ ♦ ✺✬✰✦✽✏● ♣ ■ ✵ ♦ ✺✬✰✦✽✟❇ ■✫❫ ❤ ❁✤❊❚❇

The final difference map is generated by accumulating visual dif-
ferences across levels. This is accomplished by summing local
difference down each path in the quad-tree and storing the result
in the leaves. The visual difference map that is the output of
the algorithm is given by the leaf differences raised to the 1/2.4
power.

Figure 6 shows a comparison between the results of the origi-
nal Sarnoff VDM and our simplified version for a set of complex
images. The inputs are illustrated in the top row of the figure and
consist of a chapel image and the chapel image perturbed by a si-
nusoidal grating. A visual comparison of these two images shows
that the sinusoidal distortion is most evident in the dark regions
at the base of the chapel. This is due to the eye’s non-linear con-
trast response to light. Within the arches at the top of the chapel,
there is no perceptible difference between the two images. This
is because the lattice-work in these regions masks the presence of
the sinusoidal grating. The visual difference map that is produced
by the new algorithm contains a number of blocking artifacts that
are caused by the Haar wavelet decomposition. However, the re-
sults of both algorithms are similar and correspond well with a
subjective comparison of the input images. The Sarnoff VDM
processed one channel in a gray-scale image representation and
the new model processed three color channels. The new model
executed in ❅❑❉✔①③②✔④◗⑤ of the time of the original model.

4 Adaptive Sampling Algorithm
An adaptive sampling algorithm has been developed that is

based on the visual model described in the preceding section.
This algorithm receives sample values as input, and specifies the
placement of samples at the image plane as output. The goal of



Figure 7: Block diagram of adaptive sampling algorithm.

the adaptive algorithm is to iteratively place each sample at the
location that currently contains the largest perceptual error.

The key to developing this perceptually based adaptive sam-
pling algorithm comes from two primary insights. The first is that
an estimate of the image and its error can be used to construct two
boundary images that may be used as input into a visual difference
predictor. The output of this difference prediction can then be used
to direct the placement of subsequent samples. The second insight
is that a given sample only affects the value and accuracy of a very
limited number of terms at each level of a Haar wavelet image
representation. This fact makes the algorithm tractable because it
implies that only a small number of operations are necessary to
refine the image approximation, its error estimate and the visual
difference prediction for any given sample.

The algorithm proceeds through a few basic steps. First, as
samples are taken of the scene, a Haar wavelet image approxi-
mation is generated and refined. Next, a multi-resolution error
estimate is developed and similarly refined. This error estimate is
expressed in terms of the variance of the detail terms in the Haar
representation. The image approximation and error estimate is
then used to construct two boundary images which serve as input
to the visual difference predictor. The output of the difference
predictor is accumulated in a hierarchical tree. The nodes of this
tree specify the maximum visual difference present at the current
nodes and the children below it. This tree is traversed choosing
the branch with the largest visual difference in order to determine
the location on the image plane with the greatest perceptual error.

A block diagram of the algorithm is illustrated in Figure 7.
As samples are taken their values are first transformed from CIE
XYZ to SML space in the step labeled cone fundamentals. The
Haar image representation and its error estimate are constructed
in this space.

In the refine cortex representation stage the Haar image ap-
proximation is created and refined. This is done through a tech-
nique similar to the “splat and pull” method used by Gortler, et.
al. [11]. The Haar image representation is stored in a quad-tree
data structure. The leaves of this structure are defined to contain
the intensity of single pixels in the image plane and the interior
nodes contain the lower resolution lowpass and detail terms of the
Haar representation. As a sample is passed into this stage it is
“splatted” at the leaf containing the sample. The intensity at this
leaf is simply the average of the samples taken within the pixel it
is defined to cover. The lower resolution lowpass and detail terms

are generated by “pulling” the updated leaf intensity up through
the tree. During this process, if all children of a node contain at
least a single sample, then the lowpass and detail terms are given
by Equation 1. If only a single child contains a sample, then the
detail terms are left undefined and the lowpass term is set equal
to the lowpass of the child containing the sample. If only two or
three children contain samples, then a simple scheme is used to fit
the lowpass and one or two detail terms, respectively, to the values
of the defined children. In this manner the image representation
is gradually resolved as samples are taken of the scene. It is also
worth noting that this process is very fast since the addition of a
sample only requires the updating of a single path up the tree.

At the next step labeled refine error estimate, the error of
the current Haar approximation is determined. This process is
similar in some respects with the algorithm described by Painter
and Sloan [23]. The error estimate is expressed in terms of the
variance of the lowpass and detail coefficients. For leaf nodes
containing at least two samples the variance of the pixel approxi-
mation is given by the variance of the samples in the leaf divided
by the number of samples in the leaf [3,13]. The error of the
lowpass and detail terms in the interior nodes is defined with re-
spect to the error of their children. If the variance is defined for
all children of a node, then the variance of the lowpass and detail
terms at the node is equal to the sum of the variance of the four
children divided by 16. This result comes from the rule

⑥ ✵⑧⑦t ⑨
⑦ ✷ ⑦ ✽✾✿ ⑦t ⑨ ■ ⑦ ⑥ ✵ ✷ ⑦ ✽ ❁✝⑩✔❇

(where V denotes variance) and inspection of Equation 1. If the
error is not defined for all children of a node and at least 2 samples
have been taken, then the variance is given by the variance of the
samples taken within the node divided by the number of samples
in the node. As in the case of refining the Haar representation,
updating the multi-resolution error estimate requires that only a
single path in the tree be modified for the addition of each sample.

The next stage in the algorithm labeled construct boundary
images is concerned with defining the two input images for the vi-
sual difference predictor. These input images are described by the
magnitude of their detail coefficients which are used to determine
the local contrast at an early stage in the vision model. Since the
image approximation and error estimate has only changed along
a single path in the tree, the detail terms for the boundary images
only need to be updated along this path as well. The details for
the two boundary images are derived from the details in the cur-
rent image approximation and the variance of those details. The
magnitude of the approximated detail specifies a mean value and
the square root of the variance defines the spread of the standard
deviation curve. The magnitudes of the details for the boundary
images are taken from the 25% and 75% points on this curve.
In this manner two boundary images are specified which should
contain the true value 50% of the time. The boundary images
are organized so that image 1 contains the detail of minimum en-
ergy contrast and image 2 contains the detail of maximum energy
contrast.

A local visual difference prediction is performed at the updated
nodes in the next step of the algorithm. The detail terms in the
boundary images are passed through the local contrast to spatial
pooling stages of the vision model. The transducer outputs at the
current node is stored in the tree for fast re-use in the pooling
stages of neighbor nodes.

In the step labeled update maximum error tree a value is stored
at each updated node in the quad-tree which represents the maxi-
mum visual difference contained at the current node and the nodes
below it. The local error at a node is defined as in the distance
summation stage of the vision model (i.e. by the sum of visual
distance between the boundary images across each detail and color



channel raised to the 2.4 power). The maximum error is defined
to be the local error plus the largest maximum error contained in
either of the four children. The maximum error of the root node
is raised to the 1/2.4 power and represents the largest visual error
contained at any location within the image plane. The maximum
error in the interior nodes are used to determine which branch of
the tree contains the greatest visual difference for the purpose of
finding the next location to sample.

In the final stage labeled determine next sample location a
sample location is selected at the point of maximum visual dif-
ference. The location is selected by traversing the quad-tree in a
top-down fashion and, at each node, selecting the branch of max-
imum visual error. This traversal continues until a leaf node is
encountered or an interior node is found which contains less than
eight samples. If a leaf node is reached, a sample is randomly
placed within it. If the traversal stops at an interior node, then
a sample location is chosen randomly from a child’s quadrant so
that the number of samples in each child node is balanced to a
tolerance of one sample.

The discussion thus far has assumed that only a single path
in the quad-tree is affected by a given sample. However, this is
not strictly the case. Due to the local contrast and spatial pooling
stages of the vision model the modification of one node in the
quad-tree can have an affect on the visual difference at neigh-
boring nodes. One solution to this problem is to update multiple
paths up the tree. However, this approach was deemed too ex-
pensive. Instead the problem can be effectively solved by adding
a small amount of randomness to the traversal of the maximum
error tree. As each node in the tree is visited, there is some like-
lihood a neighboring node will be chosen instead. In this manner,
if a particular path is traversed often, there is a chance of selecting
neighboring paths. This creates the opportunity to incorporate up-
dated values into the local contrast and spatial pooling calculations
for these paths.

The algorithm continues recursively until the maximum error
of the root node drops below a specified tolerance. The output
image is reconstructed by simply doing an inverse Haar transform
of the image representation and converting pixel values from SML
to the frame buffer space. This technique can also be used to
construct an iterative display of the image during the progression
of the algorithm.

5 Selecting Values for Unknown Quantities
A difficulty with adaptive sampling algorithms that are based

on the sample variance is knowing when and to what extent to
believe the error estimate obtained from the samples. This is es-
pecially true for the hierarchical variance estimation scheme de-
scribed in this paper. If the first two samples obtained from the
scene return exactly the same values and therefore have zero vari-
ance, can we conclude that the image has been computed exactly
and stop? What if the image has been sampled densely and two
samples from within a particular pixel of the image plane are the
same, can we say that the intensity of the pixel has been com-
puted correctly? A person analyzing these two situations would
certainly believe that the scene has not been adequately sampled
in the first case, but would probably be willing to stop sampling
in the second case. The reason for this difference stems from the
statistics of natural images.

A number of authors have analyzed the statistics of images
commonly encountered in nature [8,9,24,26]. These authors have
found that the frequency spectra of natural images is not random,
but tends to be highly correlated and contains a 1/f drop-off in the
magnitude of the frequency terms. Therefore, if only two samples
have been taken of a scene, we have just begun to compute the
low end of the frequency spectra. Based on our experience with
images found in the natural world, we know that an average image

contains higher frequency detail, and therefore believe that the
scene has not been adequately sampled. Thus, we have some
apriori knowledge about the error of an image approximation. If
a portion of the frequency spectra has not been computed, then, on
average, the approximation of the image will contain an amount
of error that is equivalent to the 1/f magnitude of the uncomputed
spectra.

We can also draw upon the statistics of natural scenes when
we must choose unknown values for the chromatic channels. The
frequency content of naturally occurring spectral reflectances is
known to be very low [18]. This means that reflectances are
more likely to be uniform across the spectrum than they are to be
spikey. The result of this is that the average color in the natural
world is quite desaturated. This implies that in the absence of
other knowledge about the chromatic content of an object, setting
the chromatic channels close to zero is as good a choice as one
can make.

The statistics of natural images discussed in this section have
been employed within our adaptive sampling algorithm. This is
accomplished by initializing the two boundary images to a uni-
form gray for one, and a statistically average image for the other.
The visual difference predictor is run on these two input images
and the output is used to seed the visual difference at each node
in the quad-tree. Initially, the estimated visual difference of the
rendering is based on the comparison of the gray and statistically
average image. As the algorithm progresses and the image ap-
proximation and error estimate is calculated at new nodes in the
tree, the visual difference based on the average statistics is traded
for the visual difference that is based on the variance and content
of the scene samples.

6 Results
In this section we discuss the results of applying our image

synthesis algorithm to three dimensional environments. Simple
texture mapped disks are considered first followed by a scene
with more complicated geometry and lighting. Two shading tech-
niques will be used in these examples, direct and Monte Carlo
light source sampling. The direct sampling method uses a simple
shading algorithm in which point light sources are directly sam-
pled each time a ray strikes a surface. The Monte Carlo method
uses area light sources and blind Monte Carlo integration to eval-
uate the shading integral. In this approach the incident radiance
at a surface point is evaluated by spawning a number of rays at
random orientations across the positive hemisphere. We realize
that blind integration is not the most efficient means of evaluating
the shading integral. However, this technique provides a simple
means of demonstrating a situation where noise is present within
the illumination calculation.

Figure 8 shows three arrays of texture mapped disks in which
the spatial frequency of the texture increases from left to right but
the contrast of the texture decreases from bottom to top. In the
top disk array the color of the texture varies along the ❭ axis of❭❶❬ ✳ ❬ ■ space, in the middle disk array along the ❬ ✳ axis, and in
the bottom array along the ❬ ■ axis. The three arrays of texture
mapped disks are rendered using direct light source sampling. In
this case there is no noise generated and the spatial frequency
content of the textures is the primary determinant of the sampling
rate that is used. All of the disk arrays were rendered to the same
visual tolerance. As can be seen in the figure, the sampling den-
sity decreases from high frequency to low frequency. Achromatic
colors receive far more samples than chromatic colors due to the
higher spatial frequency cut off of the achromatic contrast sen-
sitivity function, while colors that vary in ❬ ✳ are sampled more
often than colors that change in ❬ ■ . This difference in sampling
between the two color channels is clear evidence of the filtering



Figure 8: Sampling densities for direct light source sampling.

that is done by the visual model due to chromatic aberration in
the eye.

In Figure 9 the achromatic disks from Figure 8 are rendered
again using Monte Carlo light source sampling. In this case a
significant amount of noise is generated and the effect of visual
masking becomes important. As can be seen from the figure,
the spatial sampling pattern is radically different from the direct
light source sampling case in Figure 8. While disks with high
frequency textures still receive the most samples, in this case the
low frequency disks also get many samples because the noise can
be seen on their surfaces. On the other hand, the middle of the
spatial frequency range receives relatively few samples because
the noise is less visible due to masking. In Figure 10 the en-
vironment and the lighting is made more complex but a similar
result is obtained. When there is no noise, high achromatic spa-
tial frequency transitions receive the most samples. When noise
is present, more samples across the entire image are required, but
fewer are necessary for frequencies where the noise is masked.

As a final example, identical scenes were synthesized to the
same visual tolerance using two different rendering techniques. As
can be seen in Figure 11, the images that resulted are comparable
even though the sampling patterns and illumination calculations
are very different. In the case where direct sampling of the light
sources is performed, aliasing artifacts are the most prevalent de-
fect; while for the scene where Monte Carlo sampling of the light
sources was done, noise is the dominant problem. However, for

a given perceptual tolerance, the algorithm holds each type of
artifact to a similar level of visual impact.

The approach taken in this algorithm is to compute the per-
ceptual metric for every ray that is cast into the scene. The cost to
do this computation is 1 ms on a 100 MHz processor. Evaluation
of the algorithm on a number of different test environments shows
that it takes fewer samples than either a uniform sampling method
or an adaptive approach with an objective error metric (90% less
in certain cases). Timing tests reveal that the algorithm is able
to provide the perceptual stopping criteria demonstrated in Figure
11 while remaining competitive with either the uniform sampling
or standard adaptive sampling techniques. The method is faster
than either uniform or standard adaptive sampling on every envi-
ronment where it was tested, but it was not the overall winner in
all cases. Additional work is necessary to exploit the algorithm’s
excellent spatial sampling rates and determine the optimal num-
ber of samples to be taken between evaluations of the perceptual
metric.

7 Conclusion
An existing vision model has been incorporated into an im-

age synthesis algorithm to control where samples are taken as a
picture is created. The results obtained with the new algorithm
on three dimensional scenes track the results obtained using the
visual model by itself on two dimensional images. The impact on
the execution time of the rendering program has been minimized
while the amount of memory required has been increased. The
contributions of this work can be summarized as follows:

1. A new image quality model has been developed. This new
model is an efficient implementation of an existing algo-
rithm. It executes in a fraction of the time of the origi-
nal method without a significant sacrifice in accuracy. The
model has also been extended for color including the effect
of chromatic aberration in the optics of the eye.

2. An image synthesis system has been created that directly
computes a wavelet representation for an image. This is a
functional (instead of an explicit pixel based) scheme for
describing a picture that facilitates the computation of a
visual metric. It also permits the use of statistical informa-
tion regarding the frequency distribution of natural images
to estimate values in regions where samples have yet to be
taken. In the same manner, guesses regarding unsampled
colors were improved by using an opponents color space to
store color.

3. A perceptually based approach to image synthesis has been
produced. An image quality model was used to decide
where to take the next sample in a picture. This can result
in a savings in execution time because samples are only

Figure 9: Sampling density for Monte Carlo light source sampling.



Figure 10: Sampling densities for direct (left) and Monte Carlo (right) light source sampling. Color varies in the middle three rows along
the ❬ ■ , ❬ ✳ , and ❭ axes of ❭❶❬ ✳ ❬ ■ space. Contrast of the middle three balls in the ❬ ■ and ❭ rows is decreased in the top two and bottom
two rows respectively.

taken in areas where there are visible artifacts. The image
quality model is also used to decide when enough samples
have been taken across the entire image. This provides a
visual stopping condition and makes it possible to employ
different rendering algorithms but still produce equivalent
pictures.

This work represents a first attempt to imbed a sophisticated
image processing vision model into an image synthesis algorithm.
While the results are encouraging it is clear that the approach
taken here puts a certain amount of overhead onto every ray that
is cast into the scene. An alternative tactic might be to initially
sample the image at a low rate and compute the visual difference
map from these values. The visual difference map can then be
used to select regions of the image which require further sampling.
The use of the imbedded version of the vision model might be
saved until the image is more fully developed and the masking
effects have become completely apparent.
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