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Figure 1: The left image is a photograph of a Mayan carving under diffuse lighting, which was combined with a similar flash photo to derive
a height field and albedo map for this surface. The middle image uses the derived model to render the same view with novel lighting. The
rendering on the right shows an oblique close-up with a second novel lighting condition and added specularity.

Abstract

Capturing detailed surface geometry currently requires specialized
equipment such as laser range scanners, which despite their high ac-
curacy, leave gaps in the surfaces that must be reconciled with pho-
tographic capture for relighting applications. Using only a standard
digital camera and a single view, we present a method for recover-
ing models of predominantly diffuse textured surfaces that can be
plausibly relit and viewed from any angle under any illumination.
Our multiscale shape-from-shading technique uses diffuse-lit/flash-
lit image pairs to produce an albedo map and textured height field.
Using two lighting conditions enables us to subtract one from the
other to estimate albedo. In the absence of a flash-lit image of a
surface for which we already have a similar exemplar pair, we ap-
proximate both albedo and diffuse shading images using histogram
matching. Our depth estimation is based on local visibility. Unlike
other depth-from-shading approaches, all operations are performed
on the diffuse shading image in image space, and we impose no
constant albedo restrictions. An experimental validation shows our
method works for a broad range of textured surfaces, and viewers
are frequently unable to identify our results as synthetic in a ran-
domized presentation. Furthermore, in side-by-side comparisons,
subjects found a rendering of our depth map equally plausible to
one generated from a laser range scan. We see this method as a
significant advance in acquiring surface detail for texturing using a
standard digital camera, with applications in architecture, archaeo-
logical reconstruction, games and special effects.
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1 Introduction

Textured surfaces such as brick, stone, wood and many other build-
ing materials have local variations in their surface meso-structure.
Shading variations due to self-shadowing provide important per-
ceptual cues necessary to convey a correct impression of shape. An
interesting question, however, is how accurate does surface meso-
structure need to be for shape and corresponding shading to ap-
pear plausible? This is an important question as our objective is
to produce synthetically relit results that are perceptually difficult
to distinguish from photographs. (See Figure 1.) In this paper we
show that an approximate representation of the real surface (depth +
albedo map) may be used to relight predominantly diffuse textured
surfaces in a visually plausible manner. To this aim, we introduce
a practical method to recover approximate surface texture informa-
tion from a single viewpoint. From a 2D picture, we infer surface
depth where it is not fully divulged in the image. We call this depth
hallucination.

Representing surface detail is useful to increase the visual realism
in a range of application areas, especially architectural reconstruc-
tions. In particular, accurately assessing the effect of new build-
ings on lighting requires modeling of gross 3D geometry, meso-
structure, and albedo (equivalent to diffuse reflectance), so that
simulations of appearance at different times of the day are possi-
ble. Our method is aimed primarily at the materials recovery part
of such architectural reconstructions. We aim to acquire surface
meso-structure so that it may be combined with gross 3D geom-
etry (obtained using another method) to convey the appearance of
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visually realistic surface detail. However, this technique is equally
applicable to recovering and representing surface detail for use in
graphically rich games and movies. Currently, our method is be-
ing used to recover depth maps at Chichén Itzá (Mexico), for the
production of a dome-projected movie.

Our main contribution is a novel, experimentally validated shape-
from-shading method, which takes diffuse-lit/flash-lit image pairs
and produces a plausible textured height field that can be viewed
from any angle under any lighting. In the absence of a flash-lit im-
age, we apply histogram matching against a visually similar tex-
ture for which we have recovered a model from captured pairs.
This practical optimization simplifies the capture requirements for
large surfaces composed of the same material but containing signif-
icant meso-structure variation. Since our goal is to recover enough
surface detail for plausible relighting, accuracy requirements are
purely perceptual and are evaluated based on the final imagery. To
date, no published method for recovering and relighting textured
height fields has been validated against equivalent photographs.
Our experimental studies demonstrate that participants cannot re-
liably identify our relit images as synthetic, and more importantly
that they believe these to be as plausible as geometrically correct
laser-scanned reconstructions.

2 Previous Work

Creating 3D models directly from photographs is appealing since
it offers the potential of economical acquisition for photorealistic
visualization. The landmark method of Debevec et al. [1996] pro-
duces visually pleasing results for architectural applications. How-
ever, detailed surface meso-structure of building materials is rarely
considered in such models. To correctly relight different materi-
als requires separation of the way surfaces scatter light and the ac-
tual light striking the surface. Although solutions to separate these
under specific constraints have been proposed [Narasimhan et al.
2003], the problem is not generally solvable. To fill in the missing
information, humans use tacit knowledge gained from experience
of real world illumination to estimate material properties [Fleming
et al. 2003]. A number of meso-structure recovery methods cap-
ture normal and texture maps with multiple sources [Rushmeier and
Bernardini 1999; Lensch et al. 2003]. An accurate but data inten-
sive approach is to capture and encode the appearance of textured
surfaces with a gantry under a large number of lighting and viewing
conditions [Dana et al. 1999]. Other methods to recover albedo and
meso-structure exist, but require sets of images and/or specialized
equipment [Yu et al. 1999; Li et al. 2006; Ngan and Durand 2006;
Paterson et al. 2005].

Classic shape-from-shading solutions aim to acquire 3D depth in-
formation from a single image [Koenderink and van Doorn 1983;
Horn 1989; Malik and Maydan 1989; Haddon and Forsyth 1998a;
Haddon and Forsyth 1998b; Prados and Faugeras 2005]. This
is an under-constrained problem. Numerous shapes, surface re-
flectances, and lighting conditions can give rise to the same shad-
ing pattern [Belhumeur et al. 1999], and associated ambiguities
in shape perception [Ramachandran 1988]. However, shape-from-
shading approaches are attractive for our application as they do not
require special equipment or lengthy data-capture processes. Khan
et al. [2006] successfully demonstrated how, under certain circum-
stances, limitations in our ability to correctly interpret depth and
lighting [Ostrovsky et al. 2005] can be exploited to create plausible
synthetic images from a dark-is-deep approximation [Langer and
Bülthoff 2000]. Our depth hallucination approach is inspired by
their ideas.

A large body of literature on the topic of shape-from-shading exists,
and we refer to published surveys for a review of existing meth-
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Figure 2: Flow chart showing the steps in our process.

ods [Zhang et al. 1999]. Broadly, our approach performs irradiance
estimation and is similar in spirit to the iterative technique of Langer
and Zucker [1994]. Langer and Zucker’s model is specifically de-
signed for recovering shape-from-shading on a cloudy day. They
observe that under diffuse lighting, surface luminance depends pri-
marily on a local aperture function defined as the solid angle sub-
tended by the visible sky at each surface point. They formulate a
set of constraints, applying a robust numerical approach to solve
for depth. However, there are a few practical limitations to their
method. First, the model assumes uniform albedo, which is a prob-
lem for a wide range of textured surfaces. Second, their approach
suffers from quantization errors since they perform discretized sam-
pling of light source directions over a hemisphere at each point on
a hypothetical surface. Third, their implementation is based on an
iterative ray-tracing scheme, which is computationally expensive.
Since our goal is to recover sufficient depth for plausibly relighting
textured surfaces, we develop a simpler, deterministic image-space
solution that approximates their results.

3 Depth Hallucination Method

We assume our surface can be plausibly represented as a height
field, whose underlying material matrix is approximately Lamber-
tian and opaque, with average reflectance, 2% < ρ < 70% or so.
Our overall process is illustrated in Figure 2. The individual steps
are image capture, albedo and shading estimation, depth estimation,
and relighting the surface. Specifics of how we estimate albedo and
shading depend on whether the input to our process is a diffuse-
lit/flash-lit image pair [Eisemann and Durand 2004], or a single
diffuse-lit image. Subtracting the diffuse-lit image from the flash-
lit image gives a reasonable estimate of albedo, and a comparison of
our diffuse-lit image and albedo provides a usable estimate of dif-
fuse shading for depth estimation. We discuss this in further detail
in Section 3.2. Our depth estimation method is described in 3.3, and
rendering of our final images is described in 3.4. Throughout these
sections, we illustrate the steps in our process with a case study of
a brick path and show the output of each intermediate step.

3.1 Image Capture

To capture our input images, we employ a standard digital SLR
camera mounted on a tripod, and an attached strobe. Our method
requires that we capture a sample of the textured surface without
global curvature, as might be found on a wall or floor. If the tex-
tured surface contains significant specularities, cross-polarization
(i.e., the polarizer on the flash is perpendicular to the polarizer on
the lens) can be used to minimize highlights [Hershberger 2008].
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First we capture a RAW format image1 under indirect illumination
(i.e., overcast skies or shadow). We call this the diffuse-lit condi-
tion. A second photo is taken from the same point with the flash
fired at full power. The camera is set to its maximum flash syn-
chronization speed, while position, aperture, and focus are fixed to
ensure good pixel registration between the diffuse-lit and flash-lit
conditions. Ideally, the flash should be mounted as close to the
camera lens as possible in order to minimize shadows, though the
images shown in this paper were all taken with a standard flash
mount. See Figure 3 for an example input image pair.

3.2 Albedo Map and Shading Image

The first stage in our method requires estimation of albedo and dif-
fuse shading. We begin by calibrating our RAW image captures to
one another based on their aperture A (f -stop), ISO I, and shutter
speed Ts and convert to linear, floating-point pixel values using the
following exposure correction factor Ce:

Ce =
A2

(TsI)
(1)

If absolute values were required, there would be an additional con-
version factor, which is unnecessary for relative measurements such
as ours.

To calculate albedo Ia( j) we perform the operation expressed below
at each pixel j:

Ia( j) =
I f ( j)� Id( j)

Ic( j)
(2)

Pixel values in the diffuse-lit image Id are subtracted from our flash-
lit capture I f , and we divide the result by pixel values in the flash
calibration image Ic taken of a white Lambertian surface at a similar
distance and aperture. This yields approximate reflectance values
at each pixel, simultaneously correcting for vignetting, fall-off, and
the global cosine factor. Since the cosine factor also depends on
the local surface normal, we may underestimate albedo in steeply
sloped areas. In the overall method, such errors will manifest as
slight edge shifts, which are very difficult to detect visually. We
apply a daylight white balance that provides a good match to the
flash, therefore image subtraction results in a good color balance
in our albedo image, as shown in Figure 4(a). In cases where
flash shadows are present, we also apply a simple thresholding and
neighbor-filling technique that copies detail from the flash-lit ar-
eas [Petschnigg et al. 2004].

To compute the diffuse shading image, we take the ratio of the
diffuse-lit condition over the albedo at each pixel. This can result

1We use RAW format to simplify calibrating the images to each other,

however our technique also works with linearized JPEGs.

(a) Photograph of a brick path taken

in shadowed daylight conditions.

(b) Flash-lit photograph of the brick

path.

Figure 3: An example input photograph pair.

(a) Derived albedo map. (b) Diffuse shading image.

Figure 4: Example albedo map and shading image generated from
the photographs in Figure 3 of the brick path.

(a) Alternate photograph of a brick

path taken in shadow.

(b) Histogram-matched diffuse shad-

ing image.

Figure 5: Example input image for histogram matching and gener-
ated shading image.

in a color cast due to skylight or cloudy illumination, but our depth
estimation method uses only the luminance channel. A computed
grayscale shading image for our brick path is shown in Figure 4.
The depth estimation method described in the following section as-
signs a height of 0 to a pixel intensity of 0.5, so we normalize our
shading image to this mean value.

In cases where there are significant differences in meso-structure
but similar material properties to a previously captured surface, we
can use a diffuse-lit image in conjunction with an existing diffuse-
lit/flash-lit pair. We transfer the statistics of the diffuse-lit image to
the albedo and the diffuse shading image of the existing exemplar
using histogram matching [Heeger and Bergen 1995]. Figure 5(a)
shows an example diffuse-lit capture taken close to the location
shown in Figure 3(a). Figure 5(b) shows a synthesized diffuse shad-
ing image computed by applying histogram matching of Figure 5(a)
to Figure 4(b). The histogram matching method is especially useful
in architectural applications, where it is impractical to take flash-lit
images of every portion of a large structure, but sample areas with
similar appearance and statistics may be readily found.

3.3 Depth Estimation

The Langer and Zucker [1994] method is designed to recover shape
from shading on a cloudy day, which is precisely what we capture in
our technique. Applying their relaxation method entails iteratively
ray-tracing a discretely sampled hemisphere of light source direc-
tions at every surface point. Instead we develop an approximate so-
lution that works entirely in image space and yields a direct estimate
of depth at each pixel. A conservative model basis ensures that we
do not exaggerate depth variations, and a final, user-specified scale
factor achieves the desired roughness.

Surface meso-structure can be approximated as a terrain with hills
and valleys. The orientation of the surface to the sky (cosine fac-
tor) dominates on the hills, while the visible aperture effect domi-
nates in the valleys, where the sides are at least partly in shadow.
We therefore begin by developing two local models to approximate
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these different types of relationships between meso-structure depth
and shading. The scope of each model is shown on a hypothetical
textured surface in Figure 6.

Above-plane surface model applies

Below-plane surface model applies

Figure 6: Example of a profile of a textured surface and the sepa-
ration between the above-plane and below-plane surface models.

These models are derived such that an above-plane linear model
is matched to a below-plane quadratic model at a tangent point,
creating the smooth piecewise function plotted in Figure 7.

Below-Plane Model
We derive our below-plane shadowing model by approximating pits
in the surface as cylinders with an aperture 2a and depth d, as shown
in Figure 8(a). In order to arrive at a simple formula, we chose
to ignore interreflections, which we found affect the scale but not
the character of the depth estimates. We calculate an illumination
factor Ec by integrating the cosine weighting over the solid angle
subtended by the visible sky:

Ec = 2π

Z θ

0
cosθ 0 sinθ 0dθ 0 = π sin2 θ (3)

To arrive at the shading factor S we divide Ec by the illumination
factor for the full sky, Eh which can be shown to be π . Through
simple trigonometry the integrated shading factor becomes:

S =
Ec

Eh

=
π sin2 θ

π
=

a2

a2 +d2
(4)

Pit depth can therefore be estimated by solving Equation (4) for d
as:

d = a

r

1

S
�1 (5)

Above-Plane Model
For the above-plane model, we approximate surface protrusions as
hemispheres. Shading of these is a function of the visible portion
of the hemisphere hv subtended by the angle ψ (Figure 8(b)), and
added to the remaining reflected portion of the hemisphere hr out-
side this angle.

Depth can thus be estimated by a simple linear model derived as
follows, where ρ is the effective surrounding surface reflectance.
(While we will assume ρ = 0 in both models, we include it in the
above-plane derivation for completeness.)

hv =
π

2
(1+ cosψ) (6)

hr = ρ
π

2
(1� cosψ) (7)

Consequently our above-plane shading factor is calculated as the
ratio of these quantities and π:

S =
π
2 (1+ cosψ)+ρ π

2 (1� cosψ)

π
(8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
S

0

1

2

3

4

5

D

D(S)=2(1-S)
D(S)=sqrt(1/S - 1)

Figure 7: The relationship between aperture and shading factor in
our model. The dashed line shows the unused extensions of each
model.

d

2a

2θ

(a) Cylinder pit model.

d

R

ψ

(b) Hemisphere protrusion

model.

Figure 8: Model to approximate shading of pits and surface pro-
trusions.

This can be simplified and solved for cosψ to give:

cosψ =
2S� (1+ρ)

1�ρ
(9)

From Figure 8(b):
d = R�Rcosψ (10)

Substituting cosψ gives the linear model:

d = 2R
1�S

1�ρ
(11)

where R is the radius of the hemispherical hill.

Combined Model
These two models, expressed in Equations (5) and (11) can be con-
veniently combined at a double root solution to their intersection,
by substituting S = 1/2 and equating the corresponding values of
d:

a =
R

(1�ρ)
(12)

Recall, we assume the surrounding surface reflectance ρ = 0, yield-
ing depth, d, from the diffuse shading, S, at each scale, a, in the
combined aperture formula:

D(S) = d/a =

⇢
p

1/S�1 for S  1/2
2(1�S) for S > 1/2

(13)

Multiscale Formulation
A shading change over a large region generally corresponds to a
greater depth difference than the same shading change over a small
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Figure 9: The effect of different levels of Gaussian blur on the nor-
malized shading image for the brick path example.

region. Since our aperture model estimates depth from diffuse shad-
ing relative to a specific feature size, a, we must consider each scale
in our captured diffuse shading image separately. Separating our
diffuse shading image into scale layers, we efficiently convert our
aperture estimates into depth estimates as required for a geometric
model.

Starting from a normalized version of our diffuse shading image,
shown in Figure 4(b), we compute several Gaussian blurred images
using kernel radii r increasing by powers of three up to a maximum
detail size based on image content, which may be specified by the
user. At each level, the image is divided by the image at the next
largest kernel radius (up to the largest) and multiplied by 1/2 for
normalization, effectively yielding a Laplacian pyramid of equal
resolution images [Burt and Adelson 1983]. These blurred images
are referred to as `(i). We transform these images using the depth
function in Equation (13) by solving for d, where a is replaced by
the blur radius at each level to accumulate the depth value at pixel
j. Here, depth units correspond to the width of a pixel, and must be
scaled accordingly.

d j =
N

∑
i=1

r(i) [D(` j(i))�1] (14)

Figure 9 shows our progressively blurred shading images for the
brick path example. We subtract 1 from our computed depths at
each level since this is the normal value for D(S) at the average im-
age intensity of 0.5, and we want our average surface displacement
to be zero.

As noted earlier, our depth estimates are conservative. First, we
ignored albedo to simplify our analysis. Second, we approximated
indentations in the surface as pits, where a crevice model might be
more appropriate in some cases. We therefore apply a user-selected,
uniform scaling factor to each depth map to compensate for this and
achieve an acceptable visual match to the original surface appear-
ance. For all our test scenes, this scaling factor was between 0.75
and 1.5. Our unoptimized implementation takes 15 seconds to gen-
erate a 900x600 resolution depth map on a single core 2.5 GHz
desktop computer.

In Figure 10, we show the difference between our depth hallucina-
tion method and a global, linear, dark-is-deep approximation [Khan
et al. 2006] applied to the same diffuse shading image. Notice that
our model is less sensitive to noise and better approximates the up-
per surface as well as the crevices.

Figure 10: A comparison between a simple dark-is-deep approxi-
mation (left) and our multiscale model (right).

(a) Rock wall image. (b) Depth map obtained using our

model.

Figure 11: Depth map recovered from a single image of a rock wall
obtained from the Web.

To demonstrate the flexibility of our approach, we downloaded a
photograph of a textured rock wall from an online texture resource2

taken with an unknown camera, and recovered a depth map using
histogram matching to a roughly similar surface to obtain a diffuse
shading image. The original image and our hallucinated depth map
are shown in Figure 11.

3.4 Relighting the Hallucinated Surface

Once we have an albedo map and a depth map for our surface, vir-
tually any rendering algorithm may be applied. We use the Ra-
diance physically-based renderer [Ward 1994] with a suitable sky
model that includes both direct (solar) and indirect (sky) compo-
nents, choosing a low angle of solar illumination to make our depth
variations more visible. A directly lit surface will have a warmer
color cast, and we incorporate this in our model. Figure 12 shows
the results for the brick path example with a solar altitude of 30�.
Specularity is not specifically addressed in our method, but may be
added trivially to the material model by assuming a uniform value,
as might be encountered on a wet day. (See right-hand image in Fig-
ure 1.) Our validation described in the following section addresses
the visual plausibility of our rendered results.

4 Experimental Validation

We aim to answer two questions through two experiments. First,
can our rendered images be reliably identified as synthetically gen-
erated? Second, do renderings generated using hallucinated depth
maps appear plausible when compared with renderings using laser-
scanned data? If users cannot reliably identify synthetically relit
images created using our method while focused on assessing them,
then we can conclude our method recovers sufficient detail to allow
us to plausibly relight textured surfaces.

Participants with normal vision were seated in front of a standard
LCD display. The experimenter ran an application that presented
high resolution images to each participant. Depending on the ex-
periment, for each stimulus, participants were asked to press a key

2Source of image: http://www.texturewarehouse.com
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(a) Original photograph. (b) Relit brick path.

(c) Histogram-matched relit brick

path generated from 5(a).

(d) Sunny equivalent photograph.

Figure 12: Results of relighting our brick path examples.

(a) Rendering of hallucinated depth

map.

(b) Rendering of laser-scanned

depth map.

Figure 13: Matched lighting frames of the Venus North Platform.

to either rank the image or to choose between an image pair. All
collected key-presses were logged. We determined the duration for
which each image (or pair) was displayed via a pilot study involv-
ing 20 participants in which stimuli were presented for 1, 3 and
5 seconds. We found no apparent differences in people’s ratings
between images shown for given time intervals. Study data was
collected from new sets of participants who were shown each stim-
ulus for 3 seconds. A total of 40 participants (20 in each) took part
in two studies.

4.1 Experiment One

The goal of experiment one was to assess whether people can re-
liably identify images created using our depth hallucination ap-
proach. Single images depicting a variety of textured surfaces, con-
sisting of both real photographs and synthetically relit images, were
presented in a randomized order. (See Figure 1 and Figure 12 for
examples.) A total of 27 images were presented to each person in
this part of the study. This set contained 9 day-lit photographs,
9 synthetically relit images and 9 synthetically relit histogram-
matched images. Due to the difficulty in acquiring photographs
with natural sunny lighting conditions at exactly the same location,
the set of equivalent day-lit photographs were not necessarily taken
from an identical view point to the images used to recover texture
hallucinations. Participants were asked to rank each image from
1 to 5, corresponding to their certainty that the image they were
viewing was an untouched photograph. On this scale, we define 1
as definitely synthetically generated, 5 as definitely an untouched

photograph, and 3 as undecided.

4.2 Experiment Two

Our second study was a two-alternative forced-choice experiment
in which the aim was to evaluate the visual plausibility of our esti-
mated depth maps relative to ground-truth data. Twelve pairs of still
image frames from an animation depicting changing solar position
over the scene with a fixed viewpoint (but novel to the captured
one) were used. Each image pair contained an image frame cre-
ated using ground truth geometry acquired through a laser scanning
process, and an equivalent image frame generated using our tech-
nique for estimating the depth map from photographs. The same
albedo map was registered to both the laser-scan and hallucinated
depth maps, and the same physically-based rendering method was
used for relighting both sequences. No in-filling techniques were
applied to the laser-scan. The lighting frame was matched for spe-
cific image pairs (similar to those shown in Figure 13), but similarly
varied between frames in the image sequences. Within each image
pair, the laser-scanned and hallucinated surfaces were presented in
a randomized order. Participants were asked to choose the image
they believed to be most likely to be the real surface. The image
pairs shown contained clear visual differences due to the different
depth capture processes, but we aimed to answer if they are equally
plausible visually.

5 Results and Data Analysis

In the first experiment, where participants rated how real the images
looked, a repeated measures analysis of variance (ANOVA) showed
a slight preference for the photographs (F2,38 = 21.61, p<0.001).
This difference was statistically significant. An important result
however is that on a scale of 1 to 5: photos received a mean rating
of 3.97, relit images scored 3.22 for models derived with diffuse-
lit/flash-lit pairs, and 2.98 for histogram-matched versions. The dif-
ference between both classes of synthetic images was not found to
be statistically significant. On our rating scale a value of above 3
suggests the image is more likely to be a photograph than synthetic.

Relit images were rarely dismissed as artificial, and equivalent pho-
tographs were not always recognized as real. For 4 out of our 9 test
scenes, the mean scores in Figure 14(a) show that our synthetic im-
ages were virtually indistinguishable from equivalent photographs.
In the remaining scenes, relit images were still not rejected outright.
Importantly Figure 14(b) shows that around 15 out of 20 partici-
pants gave our synthetic images average ratings above 3, leading
us to conclude that our renderings compare very well with pho-
tographs. This is further supported by participants commenting in
post study de-briefing, on the difficulty in determining which im-
ages were synthetic.

In the forced-choice experiment, a paired-sample t-test showed no
significant difference between hallucinated depth and the laser-
scan. This leads us to conclude that participants could not tell
which of the two looked most plausible to them. Mean scores for
each choice were 54% for the hallucinated depth, and 46% for the
laser-scan. Nine participants out of 20 showed a preference for the
hallucinated depth (see Figure 15), while 6 show a preference for
the renderings based on the laser-scanned data. The remaining 5
seem undecided. The viewpoint for each data set was kept identical
across all stimuli and close to the captured view to avoid bias for or
against either depth map. Within each image pair, the only variable
was the depth map used to generate the image. If the view played
a significant role in users’ assessments then people’s choices would
have been highly consistent, however only 2 participants chose a
particular depth map in every comparison. Between each image
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(a) Average ratings from 20 participants, for each spe-

cific scene.

(b) Average ratings per participant, for each class of

stimulus.

Figure 14: Results from experiment one.

pair, lighting was varied. If lighting played a significant role in bi-
asing the results, we would not have seen overall strong differences
in preference between participants.

6 Limitations

Naturally, there are situations where our assumptions do not hold,
and these may produce unexpected or undesired results. We ex-
amine three such cases, which we encountered while acquiring test
scenes for our experiments.

The first case is shown in Figure 16(a), where ivy vines are phys-
ically separated from the stone surface below. The separation is
small, but it violates one of our basic assumptions, which is that
our surface may be plausibly represented as a height field. Even
if our mathematical model held in this case, which it does not, our
height field representation would still fail us. The vines appear to
be protruding from the wall rather than next to it.

Figure 15: Experiment two: percentage of preferred class of stim-
ulus (hallucinated or laser-scanned) per participant.

The second case is shown in Figure 16(b), where our surface is
a reasonable match to our geometry assumptions but the daylight
illumination is not. In this area, the light comes primarily from one
side, as it is nearby a dark structure and only a portion of the sky is
visible on the cobbled ground. This results in a bias in the shading
image, which our technique translates into a bias in the geometry,
making the stones appear to lean towards the original sky direction.
While this problem might be overcome with large bounce cards, in
a practical setting such biases may be unavoidable and would have
to be corrected in a geometry post-processing step.

The third case is shown in Figure 16(c) and 16(d). The highly re-
flective and slightly translucent rock material violated our opaque
reflectance assumption, resulting in a rather flat and unnatural ap-
pearance, though some surface structure is still obtained.

(a) Ivy wall relit image. (b) Cobbles relit image.

(c) Translucent rocks photo. (d) Relit white rocks.

Figure 16: Example failure cases that violate fundamental assump-
tions of our algorithm.

7 Conclusions

Ultimately, our goal is to combine models of materials approxi-
mated using hallucinated depth maps with wide-baseline 3D recon-
structions of buildings. This is likely to pose further challenges,
such as surfaces that are unevenly or directly lit, or where neigh-
boring images are taken under differing illumination, or at oblique
angles, and must be stitched together seamlessly. Our method com-
plements image-based reconstruction processes by supplying sur-
face detail.

In this work, our objective is to convincingly render the altered ap-
pearance of textured surfaces under differing lighting and viewing
conditions, while requiring only simple and practical data capture
procedures. Starting from diffuse-lit/flash-lit photographs, we gen-
erate both an albedo map and textured height field, which can be
relit and viewed from any angle under any lighting. Our model ap-
plies a surface aperture function but, in contrast to previous meth-
ods, works entirely in image space. If only a diffuse-lit image is
available, we apply histogram matching with a similar exemplar
pair to lift the flash requirement, further simplifying data capture.
Compared to alternatives, such as laser scanning, our depth estima-
tion method does not require additional data registration, since both
albedo and depth are acquired from perfectly aligned captures.

Histogram matching permits us to hallucinate local height varia-
tions from other diffusely lit imagery, and gaps in our captured
model may be filled in using texture synthesis [Efros and Freeman
2001]. Processing from image to model is also sufficiently simple
that depth and albedo maps could be generated on the fly from cap-
tured or synthetic texture data on consumer-level graphics cards.
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Experimental evaluation of this new approach yielded two impor-
tant observations. First, when presented with relit images, 75% of
participants rated them as more like photographs. Second, partici-
pants were unable to decide whether hallucinated depth renderings
or those generated using ground truth acquired by laser scanning
looked most realistic. Since depth is never fully divulged by shad-
ing, our estimates may fall short of absolute accuracy. Our exper-
imental results show that in many practical situations this is unim-
portant, because the hallucinated depth method reproduces surface
appearance that is perceptually tantamount to photographs.
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