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S U M M A R Y
The perfectly matched layer absorbing boundary condition has proven to be very efficient for the
elastic wave equation written as a first-order system in velocity and stress. We demonstrate how
to use this condition for the same equation written as a second-order system in displacement.
This facilitates use in the context of numerical schemes based upon such a system, e.g. the finite-
element method, the spectral-element method and some finite-difference methods. We illustrate
the efficiency of this second-order perfectly matched layer based upon 2-D benchmarks with
body and surface waves.
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seismic wave propagation, surface waves.

1 I N T RO D U C T I O N

In the context of numerical modelling of seismic wave propagation
in unbounded media, energy needs to be absorbed at the artificial
boundaries of the finite model domain. Such absorbing conditions
are relevant for modelling strong ground motion, and for local, re-
gional and continental-scale simulations.

Over the last three decades, numerous techniques have been de-
veloped for this purpose: damping layers or ‘sponge zones’ (e.g.
Cerjan et al. 1985; Sochacki et al. 1987), paraxial conditions (e.g.
Clayton & Engquist 1977; Engquist & Majda 1977; Stacey 1988;
Higdon 1991; Quarteroni et al. 1998), optimized conditions (e.g.
Peng & Töksoz 1995), exact absorbing conditions on a spherical
contour (e.g. Grote 2000), or asymptotic local or non-local oper-
ators (e.g. Givoli 1991; Hagstrom & Hariharan 1998). Unfortu-
nately, all of the local conditions behave poorly under some cir-
cumstances, e.g. typically reflect a large amount of spurious energy
at grazing incidence or low-frequency energy at all angles of in-
cidence. On the other hand, non-local conditions are difficult to
implement and numerically expensive. In the context of electro-
magnetics, Bérenger (1994) introduced a new condition called the
perfectly matched layer (PML), which has the remarkable property
of having a zero reflection coefficient for all angles of incidence
and all frequencies before discretization (hence the name ‘perfectly
matched’). This formulation has proven to be extremely efficient
compared with classical conditions, and has become very popular.
The formulation has been extended to 3-D problems (e.g. Chew
& Weedon 1994; Bérenger 1996) and reformulated in a simpler
manner in terms of a split field with complex coordinate stretching
(e.g. Chew & Weedon 1994; Collino & Monk 1998b). The PML
has become very successful in many other fields, e.g. linearized
Euler equations (Hesthaven 1998), eddy-current problems (Kosma-
nis et al. 1999) and wave propagation in poroelastic media (Zeng
et al. 2001).

In the context of wave propagation, the PML has been applied to
both acoustic (e.g. Liu & Tao 1997; Qi & Geers 1998; Hagstrom
1999) and elastic problems (e.g. Chew & Liu 1996; Hastings et al.
1996; Collino & Monk 1998a; Collino & Tsogka 2001; Basu &
Chopra 2003; Cohen & Fauqueux 2003). Collino & Tsogka (2001)
demonstrated the high efficiency of the condition compared with
the paraxial treatment of Higdon (1991), even though the PML re-
flection coefficient is not zero after discretization (e.g. Collino &
Monk 1998a). All of these papers use the PML in the context of the
elastic wave equation formulated as a first-order system in velocity
and stress. Unfortunately, this means that this classical PML can-
not be used in a straightforward manner in the context of numerical
schemes that are based on the wave equation written as a second-
order system in displacement, such as most finite-element methods
(e.g. Bao et al. 1998), the spectral-element method (e.g. Komatitsch
& Vilotte 1998; Komatitsch & Tromp 1999), and some finite-
difference methods (e.g. Moczo et al. 2001). The goal of this article
is to reformulate the classical PML condition in order to use it in this
context. We also confirm that the PML is highly efficient for the ab-
sorption of surface waves, as suggested by Collino & Tsogka (2001).

2 A P M L F O R M U L AT I O N F O R
S E C O N D - O R D E R S Y S T E M S

The differential or ‘strong’ form of the elastic wave equation can be
written as

ρ∂2
t s = ∇ · (c :∇s), (1)

where s is the displacement vector, c is the elastic tensor and ρ is
the density. The frequency-domain form is

−ρω2s = ∇ · (c :∇s), (2)

where ω denotes angular frequency. In a homogeneous, isotropic
medium, this equation permits plane-wave solutions of the form A
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exp [i(k · x − ωt)], where A represents the amplitude and polar-
ization of the plane wave, k = kx x̂ + ky ŷ + kz ẑ is its wave vector
with Cartesian components kx, ky and kz, x = x x̂ + yŷ + zẑ is the
position vector and ω denotes angular frequency. For plane P waves
A × k = 0 and k = (k2

x + k2
y + k2

z )1/2 = ω/α, where α denotes the
P-wave velocity, whereas for plane S waves A · k = 0 and k = ω/β,
where β denotes the S-wave velocity.

The objective of the PML method is to construct a new wave
equation that permits plane-wave solutions of the form A exp [i( k · x
− ωt) − γ x], γ > 0, i.e., plane waves that decay exponentially in the
direction of increasing x, say, while ensuring a reflection coefficient
between the medium and the PML region that is exactly zero for
all angles of incidence and all frequencies before discretization.
Following the discussion of Collino & Tsogka (2001), to which
the reader is referred for more details, this may be accomplished
by introducing a new variable x̃ = x − iγ and transforming the
original eq. (1) in terms of variables x, y, z, to a new wave equation
in terms of variables x̃, y, z, where we have defined the origin of
coordinates x = 0 at the contact between the regular domain and the
PML layer, and the PML region corresponds to x > 0 (see Fig. 1).
This new wave equation permits plane-wave solutions of the desired
form A exp[i(kx x̃ + ky y + kz z − ωt)] = Aexp[i(k · x − ωt) − γ x].
The key in this mapping is the choice of γ .

Suppose the normal to the interface between the model and the
PML layer is given by n̂ (Fig. 1). We define the coordinate in the
direction of increasing n̂ to be n. The gradient operator ∇ can now
be split in terms of components perpendicular and parallel to the
interface:

∇ = n̂∂n + ∇‖, (3)

where ∂n = n̂ · ∇ and ∇‖ = (I − n̂n̂) · ∇, where I is the 3 × 3
identity tensor, and I−n̂n̂ is the projection operator on to the surface
with normal n̂.

2.1 Classical PML formulation for first-order systems

In the classical first-order velocity-stress formulation, one first
rewrites eq. (1) as

ρ∂t v = ∇ · σ,

∂tσ = c :∇v,
(4)

where v is the velocity vector andσ is the second-order stress tensor.
The frequency-domain form is

iωρv = ∇ · σ,

iωσ = c :∇v.
(5)

PML

0

Regular
domain

n

n̂

Figure 1. Definition of the regular domain and the PML region. The PML
layer starts at n = 0 and extends to n > 0. The local normal to the interface
is denoted by n̂.

Using eq. (3), one obtains

iωρv = n̂∂n · σ + ∇‖ · σ,

iωσ = c : n̂∂nv + c :∇‖v.
(6)

Next, one introduces a damping profile d across the PML region,
such that d = 0 inside the medium and d > 0 in the PML, and a new
complex coordinate ñ:

ñ(n) = n − i

ω

∫ n

0
d(s) ds, (7)

or, equivalently, upon differentiating

∂n

∂ ñ
= iω

iω + d(n)
. (8)

One then replaces the wave eq. (6) written in terms of n with a
generalized wave equation written in terms of ñ:

iωρv = n̂∂ñ · σ + ∇‖ · σ,

iωσ = c : n̂∂ñv + c :∇‖v.
(9)

Inside the medium, both equations are identical because d = 0.
However, in the PML, this modified wave equation permits expo-
nentially decaying plane-wave solutions in the n̂ direction. Note that
the choice of decay is γ = ω−1

∫ n
0 d(s) ds, and that it is inversely

proportional to the angular frequency ω of the plane wave. One then
uses the mapping (7) to rewrite the wave equation (9) in terms of n
rather than ñ:

iωρv = n̂(∂n/∂ ñ)∂n · σ + ∇‖ · σ,

iωσ = c : n̂(∂n/∂ ñ)∂nv + c :∇‖v.
(10)

Note that we have not had to assume that the interface is aligned with
a coordinate axis, i.e., this PML formulation works in curvilinear
coordinates (Collino & Monk 1998b). Next, using the split-field
technique (e.g. Chew & Weedon 1994; Collino & Monk 1998b),
one splits the velocity and the stress into two parts, v = v1 + v2 and
σ = σ1 + σ2, such that

iωρv1 = (∂n/∂ ñ)n̂ · ∂nσ,

iωρv2 = ∇‖ · σ,

iωσ1 = (∂n/∂ ñ)c : n̂∂nv,

iωσ2 = c :∇‖v.

(11)

Substituting (8) in (11) and converting back to the time domain we
obtain

(∂t + d)ρv1 = n̂∂n · σ,

∂tρv2 = ∇‖ · σ,

(∂t + d)σ1 = c : n̂∂nv,

∂tσ
2 = c :∇‖v.

(12)

Eq. (12) permits the desired exponentionally decaying plane-wave
solutions and governs wave propagation in the classical first-order
PML.

2.2 Second-order systems

The key idea in this article is that we can apply the same concept to
the wave equation formulated as a second-order system in displace-
ment. Based upon the splitting of the gradient operator (3), eq. (2)
can first be rewritten as

−ρω2s = n̂∂n · (c : n̂∂ns) + n̂∂n · (c :∇‖s)

+ ∇‖ · (c : n̂∂ns) + ∇‖ · (c :∇‖s). (13)
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Introducing the new complex coordinate ñ as defined by eq. (7), we
obtain

−ρω2s = n̂∂ñ · (c : n̂∂ñs) + n̂∂ñ · (c :∇‖s)

+ ∇‖ · (c : n̂∂ñs) + ∇‖ · (c :∇‖s). (14)

Using the mapping (7), we now rewrite the wave equation (14) in
terms of n rather than ñ:

−ρω2s = n̂∂n · (c : n̂∂ns)(∂n/∂ ñ)2

+ n̂ · (c : n̂∂ns)(∂n/∂ ñ)∂n(∂n/∂ ñ)+[n̂∂n · (c :∇‖s)

+ ∇‖ · (c : n̂∂ns)](∂n/∂ ñ) + ∇‖ · (c :∇‖s). (15)

Next, we split the displacement into four parts

s = s1 + s2 + s3 + s4, (16)

such that

−ρω2s1 = n̂∂n · (c : n̂∂ns)(∂n/∂ ñ)2,

−ρω2s2 = n̂ · (c : n̂∂ns)(∂n/∂ ñ)∂n(∂n/∂ ñ),

−ρω2s3 = [n̂∂n · (c :∇‖s) + ∇‖ · (c : n̂∂ns)](∂n/∂ ñ),

−ρω2s4 = ∇‖ · (c :∇‖s).

(17)

Upon differentiating eq. (8) we find that

∂

∂n

(
∂n

∂ ñ

)
= − iω

(iω + d)2
d ′(n). (18)

Substituting this and eq. (8) in eq. (17) and converting back to the
time domain we obtain

ρ(∂t + d)2s1 = n̂∂n · (c : n̂∂ns),

ρ(∂t + d)3s2 = −d ′n̂ · (c : n̂∂ns),

ρ∂t (∂t + d)s3 = n̂∂n · (c :∇‖s) + ∇‖ · (c : n̂∂ns),
ρ∂2

t s4 = ∇‖ · (c :∇‖s).

(19)

Eq. (9) also permits the desired exponentially decaying plane-
wave solutions and governs wave propagation in the PML formu-
lated in displacement. Note that we have obtained a third-order
system in time, in contrast to the classical first-order velocity-stress
formulation (12). In many numerical schemes, it is simpler to rewrite
it as a second-order system using an intermediate variable

t = (∂t + d)s2 (20)

such that eq. (19) becomes

ρ(∂t + d)2s1 = n̂∂n · (c : n̂∂ns),
ρ(∂t + d)2t = −d ′n̂ · (c : n̂∂ns),
ρ∂t (∂t + d)s3 = n̂∂n · (c :∇‖s) + ∇‖ · (c : n̂∂ns),
ρ∂2

t s4 = ∇‖ · (c :∇‖s).

(21)

The main drawback of eq. (21) is that one needs to modify existing
numerical codes in order to handle the first-order system (20), i.e. an
Euler or a Runge–Kutta time scheme has to be used, in addition to the
classical explicit finite-difference time schemes used for the other
variables s1, s3 and s4. For instance, the four terms in eq. (21) can
be marched based upon an explicit Newmark scheme (e.g. Hughes
1987), evaluating the terms on the right-hand side at the current time
step, and discretizing the second-order time operators on the left-
hand side (∂ t + d)2, ∂ t (∂ t + d) and ∂2

t explicitly. One can then use a
first-order scheme to march eq. (20) explicitly as well by discretizing
(∂ t + d) to obtain s2 from the known value of t computed in eq. (21).
The total displacement vector s can then be computed by summing
the known values of s1, s2, s3 and s4 according to eq. (16).

Another drawback of the PML in general (either as a first-order
or as a second-order system) is that additional memory is required

to store the split-field arrays. However, this applies to the PML
region only, which, because of the efficiency of the PML, is small
compared with the main model, therefore in practice this problem is
negligible. It is worth mentioning in this regard that in the context of
electromagnetics an alternative ‘anisotropic’ PML formulation has
been introduced to overcome this problem (e.g. Sacks et al. 1995;
Zhao & Cangellaris 1996). How this formulation could be used in
elastodynamics remains to be studied.

In order to use this PML system in the context of techniques
such as the finite-element or spectral-element methods, one needs
to write a variational formulation of the problem. The ‘weak’ or
variational form of the classical wave eq. (1) is obtained by dotting
it with any test vector w and integrating by parts over the volume V
of the domain:∫

V
ρw · ∂2

t s d3r = −
∫

V
(∇w) :c : (∇s)d3r, (22)

where we have used the free surface boundary condition and the fact
that the match with the PML layer is ‘perfect’, i.e. on the boundary
between the PML region and the regular domain the respective wave
equations are identical. Similarly, the weak form of the PML system,
eq. (21), is∫

V
ρ(∂t + d)2s1 · w d3r = −

∫
V

(n̂∂nw) :c : (n̂∂ns) d3r

+
∫

�

n̂w :c : (n̂∂ns) d2r,
∫

V
ρ(∂t + d)2t · w d3r = −

∫
V

d ′n̂w :c : (n̂∂ns) d3r,
∫

V
ρ∂t (∂t + d)s3 · w d3r = −

∫
V

[
(n̂∂nw) :c : (∇‖s)

+(∇‖w) :c : (n̂∂ns)
]

d3r +
∫

�

n̂w :c : (∇‖s) d2r,
∫

V
ρ∂2

t s4 · w d3r = −
∫

V
(∇‖w) :c : (∇‖s) d3r. (23)

Again the match with the regular domain is assumed to be perfect.
The boundary � denotes the surface of the PML that is not in contact
with the regular domain.
We note that a very similar second-order PML system could be
written for the acoustic wave equation formulated either in pres-
sure or using a generalized potential (Komatitsch & Tromp 2002).
This would allow one to use the PML in the context of fluid-solid
simulations.

3 N U M E R I C A L VA L I DAT I O N

To illustrate the efficiency of the PML system, eqs (20) and (21), we
simulate the propagation of P–SV waves in a 2-D elastic isotropic
homogeneous medium. The medium is a block with P velocity α =
2000 m · s−1 and S velocity β = 1154.7 m · s−1, which corresponds
to a value of 0.25 for Poisson’s ratio, and density ρ = 2200 kg m−3.
The size of the model is 30 m × 30 m. The source time function
is a Ricker wavelet, i.e. the second derivative of a Gaussian, with a
dominant frequency of 1000 Hz.

We first want to validate the PML condition for surface waves.
Therefore, we place the source, which is a vertical force, very close
to the surface at a depth of 1.5 m and a horizontal distance of 3 m
from the centre of the block, in order to generate a large incident
Rayleigh wave. A receiver is located on the surface at a horizontal
distance of 10.5 m from the centre of the block, and records the
two components of displacement. On the two vertical edges of the
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finite-size medium, PML absorbing conditions are imposed in order
to mimic a half-space. We do not use the PML at the bottom of the
mesh for simplicity because we stop the simulation before waves
can come back to the receiver.

We choose to compute synthetic seismograms based upon the
spectral-element method because it has proven to be very precise
in the context of elastic wave propagation, with very little numer-
ical dispersion, and also because the free surface boundary condi-
tion is automatically taken into account, which means that surface

Figure 2. Snapshots of a spectral-element simulation for surface waves at time t = 10 ms (top) and t = 15 ms (bottom), using the ‘A1’ paraxial treatment
of Clayton & Engquist (1977) (left) and the PML (right). The small arrows represent the displacement vector. The grid cells represent the spectral elements.
Each element contains (N + 1)2 = 36 Gauss–Lobatto–Legendre gridpoints. The cross indicates the position of the vertical force and the diamond indicates
the receiver. The display has been truncated below 1 per cent of the maximum amplitude of the wavefield, with the same graphical normalization factor used
for both tests. One can clearly see that the PML condition is more efficient, in particular for the Rayleigh wave, as well as for body waves with non-normal
incidence (bottom).

waves are very accurately modelled (Komatitsch & Tromp 1999,
2002).

The model is discretized using 60 × 60 spectral elements, and
we use a polynomial degree N = 5 in each element, which means
that the entire model contains a total of (60N + 1)2 = 90 601
Gauss–Lobatto–Legendre gridpoints (for details on the spectral-
element method, the reader is referred to Komatitsch & Tromp 1999,
2002). The PML region consists of two layers of spectral elements,
and therefore contains 2N + 1 = 11 Gauss–Lobatto–Legendre
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Figure 3. Vertical (left) and horizontal (right) components of displacement recorded on the surface at the receiver denoted by the diamond in Fig. 2, using the
PML (solid line) and the ‘A1’ paraxial condition of Clayton & Engquist (1977) (dashed line). In the case of the PML, there is almost no spurious wave reflected
off the boundary, while in the case of the paraxial treatment, a large signal is recorded.

grid points in the damping direction. At the bottom of the PML, i.e.
on the edge of the grid, we impose Dirichlet boundary conditions
(zero displacement). The time step is 10 µs and the total duration of
the simulation is 25 ms. In the PML, we use the empirical damping
profile

d(x) = 3α

2δ
log

(
1

R

) ( x

δ

)2
, (24)

which is used by many authors, e.g. Collino & Tsogka (2001), where
δ is the width of the PML layer, x is the horizontal coordinate with
the origin chosen at the top of the PML layer and R is the theoretical
reflection coefficient after discretization, which can be chosen to be
very small (typically 10−3, which is the value used in this article).

In Fig. 2, we compare snapshots obtained using the PML condi-
tion and the so-called ‘A1’ paraxial condition of Clayton & Engquist
(1977). The large Rayleigh wave can easily be identified based upon
its elliptical polarization. The PML is clearly superior in terms of
absorbing both body and surface waves; in particular, in regions of
the mesh where the waves are not incident close to the normal to the
boundary. The efficiency of the paraxial condition for body waves
is not satisfactory when the angle of incidence differs from 90◦, as
can be seen in particular in the bottom part of the last snapshot; it
also behaves poorly for surface waves, as expected from the fact that
the polarization of the Rayleigh wave is elliptical, and a significant
part of the incident energy is reflected back into the model. More
sophisticated paraxial conditions could have been used as a refer-
ence (e.g. Higdon 1991 or Quarteroni et al. 1998), but Collino &
Tsogka (2001) demonstrated than Higdon (1991) is far less efficient
than the classical first-order PML.

Fig. 3 shows the seismogram recorded at the receiver at the sur-
face. Because it is located on the surface, it mostly records a large-
amplitude Rayleigh wave, in addition to the smaller direct body
waves. In the case of the simulation with the Clayton & Engquist
(1977) boundary condition, a large spurious signal is reflected off
the boundary, while in the case of the PML, this unwanted reflection
is almost completely suppressed.

Next, we validate the efficiency of the PML for body waves in a
medium with a high value of Poisson’s ratio. Low values of Pois-
son’s ratio have already been shown to be stable and accurate in the
context of the PML by Collino & Tsogka (2001), but high values are
known for creating stability issues in some classical paraxial absorb-
ing boundary conditions (Clayton & Engquist 1977; Stacey 1988;
Mahrer 1990). Therefore, it is of interest to test such high values.

We change the S velocity of the medium to β = 880 m s−1, which
corresponds to a value of 0.38 for Poisson’s ratio. We also change
the size of the model to 15 m × 60 m, and discretize it using 30 ×
120 spectral elements, i.e. a total of (30N + 1) × (120N + 1) =
90 751 Gauss–Lobatto–Legendre gridpoints. We place the source at
x s = 4.5 m and zs = 24 m, and the receiver in x r = 12 m and zr = 33 m
(see Fig. 4). To avoid numerical dispersion related to the high value
of Poisson’s ratio, and the related short S wavelength, we reduce
the dominant frequency of the Ricker source to 900 Hz. The other
parameters of the simulation are unchanged. In Fig. 4, the snapshots
obtained using the PML condition show that the condition is stable
and efficient for both P and S waves, while the paraxial condition
of Clayton & Engquist (1977) is stable but reflects a significant
amount of spurious energy into the domain. The seismogram of
Fig. 5 confirms that the PML condition is superior and exhibits very
high efficiency.

C O N C L U S I O N S

We formulated a PML condition for the elastic wave equation writ-
ten as a second-order system in displacement. This allows one to
use the PML in the context of numerical techniques such as the
finite-element method, the spectral-element method and second-
order finite-difference methods. The excellent efficiency of the con-
dition was demonstrated using 2-D benchmarks for body and surface
waves. The condition was observed to be stable for a wide range
of values of Poisson’s ratio, including high values that can create
stability issues in the case of other classical absorbing boundary
conditions.

We did not change the basic idea behind the PML, but simply
reformulated the classical first-order condition. Therefore, we ex-
pect to find the same properties as in the classical PML, i.e. use of
the formulation for 3-D problems is straightforward (e.g. Bérenger
1996; Chew & Liu 1996), and the case of the corners of the model
can be handled by combining different PMLs written along different
grid axes (e.g. Bérenger 1994; Collino & Tsogka 2001).

However, we also find the same limitations as with the classi-
cal first-order PML. First, at grazing incidence the behaviour of the
discrete PML is poor, and the associated numerical reflection coef-
ficient is high (Collino & Monk 1998a; Winton & Rappaport 2000).
Following the work of these authors, one can numerically optimize
the damping profile of eq. (24) in order to optimize the behaviour at
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A second-order PML condition 151

Figure 4. Snapshots of a spectral-element simulation for body waves at time t = 6 ms (A and B, left) and t = 12 ms (C and D, right), using the ‘A1’ paraxial
treatment of Clayton & Engquist (1977) (A and C) and the PML (B and D). The small arrows represent the displacement vector. The grid cells represent
the spectral elements. Each element contains (N + 1)2 = 36 Gauss–Lobatto–Legendre gridpoints. The cross indicates the position of the vertical force and
the diamond indicates the receiver. The display has been truncated below 1 per cent of the maximum amplitude of the wavefield, with the same graphical
normalization factor used for both tests. One can clearly see that the PML condition is more efficient for both P and S waves.

grazing incidence. Secondly, as noted by Bécache et al. (2003), for
some anisotropic media intrinsic instabilities appear, even though it
could seem from eqs (2) and (13) that any anisotropic elastic tensor
could be used.

Let us finally mention that, in addition to seismic wave propa-
gation, the second-order implementation of the PML method in-
troduced in this article could be applied in the context of other
second-order equations.
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Bérenger, J.P., 1994. A perfectly matched layer for the absorption of elec-
tromagnetic waves, J. Comput. Phys., 114, 185–200.

C© 2003 RAS, GJI, 154, 146–153

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/154/1/146/603527 by guest on 16 August 2022



152 D. Komatitsch and J. Tromp

-4

-2

0

2

4

6

0 5 10 15 20 25

A
m

pl
itu

de
 (

m
)

Time (ms)

Vertical exact
Vertical Clayton

-4

-2

0

2

4

6

0 5 10 15 20 25

A
m

pl
itu

de
 (

m
)

Time (ms)

Vertical exact
Vertical PML

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25

A
m

pl
itu

de
 (

m
)

Time (ms)

Horizontal exact
Horizontal Clayton

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25

A
m

pl
itu

de
 (

m
)

Time (ms)

Horizontal exact
Horizontal PML
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