
16 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.2, NO.1 MAY 2006

A Performance Analysis of Compressed
Compact Genetic Algorithm

Orawan Watchanupaporn,
Nuanwan Soonthornphisaj, Members, and Worasait Suwannik, Non-member

ABSTRACT

Compressed compact genetic algorithm (c2GA) is
an algorithm that utilizes the compressed chromo-
some encoding and compact genetic algorithm (cGA).
The advantage of c2GA is to reduce the memory us-
age by representing population as a probability vec-
tor. In this paper, we analyze the performance in
term of robustness of c2GA. Since the compression
and decompression strategy employ two parameters,
which are the length of repeating value and the repeat
count, we vary these two parameters to see the perfor-
mance affected in term of convergence speed. The ex-
perimental results show that c2GA outperforms cGA
and is a robust algorithm.

Keywords: Compresssed Compact Genetic Algo-
rithm, Compact Genetic Algorithm, Compression
Encoding, OneMax, Royal Road, De Jong, Robot
arm control programs.

1. INTRODUCTION

Genetic Algorithm (GA) is an algorithm inspired
by natural evolution [1]. In order to solve problems,
GA encodes a candidate solution in a chromosome.
A typical chromosome is in binary encoding. The
evolution process of GA aims to explore the search
space to find the optimal solution. The fitness of
each chromosome is evaluated. Good chromosomes
are selected to create the next generation. The cy-
cle of fitness evaluation, selection, and creating the
next generation continue until the optimal solution is
found or maximum generation is reached. GA has an
advantage that it can be used to solve a variety of
problems with large search space [2,3].

Traditional GA requires large amount of memory
to store population of chromosome and spends quite
long time during the evolutional process. We pro-
posed a new algorithm called compressed compact ge-
netic algorithm (c2GA) [4]. We found that c2GA con-
sumes less memory and takes less computation time
in fitness calculation. In this paper, we investigate the
performance of c2GA on OneMax and Royal Road
problem in order to analyze its behavior. Further-

Manuscript received on December 7, 2005; revised on March
20, 2006.

The authors are with the Department of Computer Sci-
ence , Kasetsart University,Bangkok,10900 Thailand; E-mail:
orawan@src.ku.ac.th, fscinws@ku.ac.th, worasait.s@ku.ac.th

more, different compressed encoding format which is
the run length encoding method is investigated in our
experiments.

The remainder of this paper is organized as follows.
Section 2 presents some related works done on com-
pact genetic algorithm. Section 3 gives details about
c2GA. Section 4 gives experimental results. Section 5
gives discussions about experimental results. Finally,
we conclude our work in Section 6.

2. RELATED WORKS

2.1 Compact Genetic Algorithm

To improve the performance of GA, different chro-
mosome encoding techniques are proposed. For ex-
ample, Harik et al. [5] introduced a compact genetic
algorithm (cGA) with uniform crossover (see Figure
1). The algorithm uses a single probability vector
to represent the whole population that makes cGA
consumes less memory than traditional Genetic Al-
gorithm. Mutation is not used because cGA was de-
signed to model uniform crossover behavior in simple
GA. GA needs more memory than cGA since GA uses
n × l bits, whereas cGA requires only log2n × l bits
(cGA requires only L(log2N) bits of on-chip RAM to
represent a population of size N , in which L is the
length of each bit string. On the other hand, a stan-
dard GA, which explicitly stores the population as a
set of bit strings requires L×N bits).

Aporntewan and Chongstitvatana [6] implemented
the cGA on FPGA using Verilog HDL. Hardware im-
plementation of cGA runs 1,000 times faster than
running on software executing on a workstation.

Figure 1 shows the cGA algorithm. The first step
is to initialize all bits in chromosome to be 0.5. The
value 0.5 means that each bit in the chromosome has
equal chance to be 1 or 0. Then we randomly gener-
ate two individuals from the probability vector. Next,
both individuals are evaluated for the fitness value.
Note that the individual with higher fitness score is
called the winner, whereas the one with the lower
score is called the loser. Each number in the proba-
bility vector is updated as follows.
• Increase the probability value by 1

n , if the win-
ners bit = 1 and the losers bit = 0
• Decrease the probability value by 1

n , if the win-
ners bit = 0 and the losers bit = 1 (n is the population
size)

The last step is to check whether the probability



A Performance Analysis of Compressed Compact Genetic Algorithm 17

vector has been converged. If not, the evolutional
process is continued started from step 2 through step
5.

Some approaches use heuristic function in an evo-
lution process to reduce search space of GA, which
make the algorithm quickly converged. In [7, 8], the
specific type of crossover that preserves some con-
straints can beneficially reduce the search space. The
result shows that the proposed crossover can find bet-
ter solution in a flow shop scheduling problem.

Parameters
n : population size
l : chromosome length

1) Initialize probability vector.
for i := 1 to l do

p[i] := 0.5;

2) Generate two individuals from the vector
a := generate(p);
b := generate(p);

3) Let them compete.
winner, loser := evaluate(a, b);

4) Update the probability vector towards the bet-
ter individual.

for i := 1 to l do
if winner[i] 6= loser[i] then

if winner[i] = 1 then p[i] := p[i] + 1
n

else p[i] := p[i]− 1
n ;

5) Check if the vector has converged.
for i := 1 to l do

if p[i] > 0 and p[i] < 1 then
return to step 2;

6) p represents the final solution.

Fig.1: Compact Genetic Algorithm.

2.2 Compressed Encoding

2.2.1 Encoding used in CompressedGA

Another approach aims to reduce the search space
is compressedGA [9]. It encodes chromosomes in com-
pressed format. The algorithm can effectively re-
duces the search space. The result shows that com-
pressedGA solved OneMax and a robotic problem us-
ing less fitness evaluation than GA.

Watchanupaporn et al. [4] introduced a new ap-
proach in order to improve the performance of cGA
by encoding a chromosome in a compressed format
in order to reduce the size of the chromosome. This
method is called Compressed Compact Genetic Al-

Fig.2: Compressed format of CompressedGA.

Fig.3: The compressed chromosome which will be
decompressed as 100000010000001000000.

gorithm (c2GA). The advantage of c2GA is that it
consumes less memory by representing population as
a vector of probabilities. The experimental results
show that c2GA requires less fitness evaluations than
cGA on OneMax and the Royal road problems by 4
and 9 times, respectively.

Furthermore, c2GAs performance has been investi-
gated using another benchmark called De Jong prob-
lem [10]. The experimental results show that c2GA
outperforms cGA on function F1 to F4 and quickly
converges to the solution since it uses less number of
fitness calculation time than cGA.

2.2.2 Chromosome Encoding

As shown in Figure 2, the compressed chromosome
consists of compressed data blocks. Each block has
3 fields: length of repeating value, repeat count and
repeating value.

The chromosome in c2GA needs to be decom-
pressed before the fitness evaluation starts. The
length of the decompressed chromosome is varied.
If the length of decompressed chromosome is longer
than the size of the solution encoding, the excess
string is discarded. If the length is less than the size
of the solution encoding, the zero bits are added (see
Figure 3).

3. COMPRESED COMPACT GENETIC AL-
GORITHM

This section describes our approach in details. Our
algorithm (c2GA) applies compressed encoding to
cGA.

As shown in Figure 4, the algorithm starts with
the probability vector initialization, then two com-
pressed individuals are randomly generated based on



18 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.2, NO.1 MAY 2006

Parameters
n : population size
l : chromosome length

1) Initialize probability vector.
for i := 1 to l do

p[i] := 0.5;

2) Generate two individuals from the vector
a := generate(p);
b := generate(p);

3) Decompress chromosome.

4) Let them compete.
winner, loser := evaluate(a, b);

5) Update the probability vector towards the bet-
ter individual.

for i := 1 to l do
if winner[i] 6= loser[i] then

if winner[i] = 1 then p[i] := p[i] + 1
n

else p[i] := p[i]− 1
n ;

6) If a and b is not final solution
return to step 2;

Fig.4: Compressed Compact Genetic Algorithm.

the probability values. Our algorithm differs from
cGA as follows:

1)The chromosome is decompressed before the fit-
ness evaluation (step 3).

2)The terminating criteria are different. c2GA will
terminate when it find the solution. In our experi-
ment, we changed the terminating criteria of the orig-
inal cGA to be the same as c2GA in order to make a
fair comparison.

4. EXPERIMENTAL RESULTS

4.1 Benchmark Problems

The objective of our experiments is to investigate
the robustness of c2GA with respect to the com-
pressed encoding parameters. Since the compression
format has two important parameters which are the
length of repeating value and the repeat count. The
ranges of these parameters depend on the number of
bits allocated for them. Changing the number of bits
might affect the performance of c2GA. We measure
the robustness of c2GA using the number of fitness
evaluations on OneMax, Royal Road and robot arm
control programs. In order to empirically investigate
the performance of c2GA, we conducted several ex-
periments using different problems. Four benchmark
problems are introduced in our study as follows.

4.1.1 OneMax problem

The OneMax Problem [11] (or BitCounting) is a
simple problem that aims to maximize the number of
1s in a bit string. Formally, this problem can be de-
scribed as finding a string −→x = {x1, x2, . . . , xn}, with
xi ∈ {0, 1}, that maximizes the following function:

F (−→x ) =
N∑

i=1

xi (1)

For this problem, we experimented on different
string lengths, which are 128, 256 and 512 bits, re-
spectively.

4.1.2 Royal Road problem

A simple Royal Road functions [12,13] denoted by
R are defined as:

R(x) =
∑
i=1

ciδi(x),where δi(x) =

{
1 ifx ∈ si

0 otherwise
(2)

For a problem with block size k, si is a schema that
have 1 defined in the range i×k to ((i+1)×k)−1. All
other positions contain a wildcard ‘*’. Each schema
si is given with a coefficient ci.

Each fixed-length chromosome consists of n blocks;
each block is k bits long. In each block, a candidate
bit string makes no contribution to the fitness unless
it is a perfect match to the corresponding block on
the target. Conventionally, the fitness of a candidate
is taken to be the number of such perfectly matched
blocks. The objective is to evolve some bit strings
to perfectly match the target. We vary the problem
size from 60 to 240 bits and use different block sizes
which are 2, 4 and 6, respectively.

4.1.3 De Jong problems

De Jong problems [14] consists of five test functions
(F1-F5). These functions represent different levels of
difficulty dealing with the optimization.

The test functions F1 to F5 are given by:

F1(−→x ) =
3∑

i=1

x2
i (3)

F2(−→x ) = 100× (x2
1 − x2)2 + (1− x1)2 (4)

F3(−→x ) =
5∑

i=1

bxic (5)

F4(−→x ) =
30∑

i=1

ix4
i + GAUSS(0, 1) (6)

1
F5(−→x )

=
1
K

+
25∑

j=1

1
fj(−→x )

(7)



A Performance Analysis of Compressed Compact Genetic Algorithm 19

where fj(−→x ) = cj +
∑2

i=1(xi + aij)6

All of the parameter settings can be found in [14]
F1 is the sphere function that smooth, unimodal,

and symmetric. It is a simple optimization problem
and serves as a basic benchmark for the performance
measurement. F2, the Rosenbrock function, has a
very narrow ridge that runs around a parabola. F3,
the step function, is the representative of optimiza-
tion problems with flat surfaces that provide no in-
formation on which direction is favorable. F4, the
random quadratic function is a simple, smooth, and
unimodal error function polluted with random noise.
F5, the foxholes function, provides an error landscape
in which there are many local optima [15].

4.1.4 Robot arm control programs [9,16]

This problem simulates a robot arm in a working
environment. Figure 5 shows the initial robot arm
configuration. The three lines are the obstacles for
the robots arm. The arrow points to a target. The
objective is to moves the tip of robot arm to the target
(see Figure 6). The rotation angle for each joint is 15
degrees clockwise and 15 degrees counter clockwise.
The arm can sense if it hits an obstacle and knows
the distance between the tip and the target. The arm
cannot move any of its parts out of the boundary.

Fig.5: Initial robot arm configuration.

Fig.6: The robot arm reaches the target.

4.2 Performance of c2GA compared to cGA

We conducted experiments to compare the perfor-
mance of c2GA and cGA on OneMax, Royal Road,
De Jong and Robot arm control programs. We set
the length of repeating value and repeat count to 4.
The size of compressed chromosome is one fourth of
that of decompressed chromosome for OneMax, Royal
Road, and Robot arm control programs. The exper-
imental results show that c2GA outperforms cGA on
OneMax and Royal Road problems (see Figures 7 and
8). We found that c2GA used less number of fitness
evaluation than cGA.

The experimental results obtained from OneMax
and Royal Road problem experiment are averaged
over 70 runs. The experimental results obtained from
the Robot arm experiment is averaged over 30 runs.

The experimental results show that c2GA requires
less fitness evaluations less than cGA. c2GA takes
only one fourth and one ninth fitness evaluations of
that of cGA to solve OneMax and Royal Royal prob-
lems respectively.

The length of the chromosome for each of De Jong
problem varies. The length is equal to the number of
variables multiply by the number of bits that store
data. The length of compressed chromosome is half
of that of uncompressed chromosome. The results
are averaged over 50 runs. The experimental results
show that c2GA outperforms cGA on function F1 to
F4. We found that c2GA can quickly converge to
the solution and use less number of fitness calcula-
tion time than cGA. However, cGA performs better
than c2GA in F5 problem. This might be because F5
problem has too many local optima and considered
as the most difficult problem (see Table 1).

Table 2 shows the experimental result of cGA and
c2GA on Robot arm control programs problem. On
average, c2GA can solve the six hundred bits. c2GA
can find solution using 2 times less number of fitness
calculation than cGA.

Fig.7: The plots illustrate the number of fitness cal-
culation times of cGA and c2GA for the various prob-
lem sizes on OneMax problem. The solid lines are for
c2GA, and the dashed lines are cGA.



20 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.2, NO.1 MAY 2006

Fig.8: These plots compare cGA and c2GA on
Royal Road problem. The graphs plot the number
of fitness calculation times. The solid lines are for
c2GA, and the dashed lines are cGA. Problem sizes
are 60, 120, and 240 bits, which are marked with
crosses, white squares, and black squares respectively.

Table 1: The chance in finding solution of cGA and
c2GA on De Jong problem.

Function cGA(%) c2GA(%)
F1 20 86
F2 66 100
F3 100 100
F4 18 100
F5 96 82

4.3 Analysis of two parameters in c2GA

We study the affect of repeat count (R) and the
length of repeating value (L). These parameters
were varied on many experiments, which are One-
Max, Royal Road, and Robot arm control program
problem.

4.3.1 Experimental results on OneMax problem

c2GA was tested against 128, 256 and 512-bit One-
Max problems. For each problem setting, we varied
the parameters, L and R, from 1 to 10. The result
of 128-bit OneMax experiment is shown in Table 3.
In Table 4, the column titled “128 bits” summarizes
the result in Table 3 by selecting only the best result
for each row (or for each length of repeating value
(L)). Similarly, the columns titled “256 bits” and
“512 bits” in Table 4 summarized the best result in

Table 2: Average fitness evaluations of cGA and
c2GA on robot arm control programs.

Algorithm Fitness calculations
cGa 6510

c2GA 3184

Table 4: Performance of c2GA on OneMax problem
with different problem sizes.

128 bits 256 bits 512 bits
L, R Fitness L, R Fitness L, R Fitness

calc calc calc
1,10 3.43 1,10 3.37 1,10 3.40
2,10 4.09 2,10 4.71 2,10 5.57
3,10 7.09 3,10 9.74 3,10 11.80
4,10 14.14 4,10 19.83 4,10 20.66
5,10 30.77 5,10 35.91 5,10 50.43
6,10 59.14 6,10 61.54 6,10 73.57
7,10 94.80 7,10 95.20 7,10 127.60
8,10 164.83 8,10 158.89 8,10 207.97
9,10 238.34 9,10 270.06 9,10 262.20
10,10 379.31 10,10 373.86 10,10 399.49

256 and 512-bit respectively.
From the experimental result, we found that the

repeat count (R) affects the performance of c2GA:
greater repeat count causes less fitness calculation.
From Table 4, we found that the smaller number of
the length of repeating value (L) can enhance the
performance of c2GA in solving OneMax problem.

4.3.2 Experimental results on Royal Road problem

c2GA was tested against 60, 120 and 240-bit Royal
Road problems. For each size of problem, we experi-
ment on the problem with block size 2, 4, and 6. For
each problem, we varied the parameters, L and R,
from 1 to 10 as we did in OneMax problem. The re-
sult of 60-bit Royal Road with block size 2 is shown in
Table 5. In Table 6, the column titled “block size=2”
summarizes the result in Table 5 by selecting only the
best result for each row (or for each length of repeat-
ing value (L)). Similarly, the columns titled “block
size=4” and “block size=6” in Table 6 summarized
the best result in block size 4 and 6 on 60-bit Royal
Road experiments. Table 7 and 8 show the result of
120 and 240-bit Royal Road experiments respectively.

For Royal Road problem, we found that the larger
block size needs more fitness evaluation. The greater
repeat count (R) and smaller length of repeating
value (L) are preferred. As shown in Tables 6, 7 and
8, when the block size is large, the algorithm needs
more fitness calculation times. Considering the prob-
lem size, we found that the bigger problem size needs
more fitness calculation time.

4.3.3 Experimental results on Robot arm control
programs

We conducted another set of c2GA experiment on a
simulated robot arm reaching problem. Table 9 shows
the number of fitness evaluation for different values
of the repeat count (R) and the length of repeating
value (L) in the robot arm experiment. The best



A Performance Analysis of Compressed Compact Genetic Algorithm 21

Table 3: Performance of c2GA on 128-bit OneMax problem. Parameters L and R are varied from 1 to 10.
The dash means that the algorithm cannot find a solution after 20,000 fitness evaluations. The bold number
is the minimum number.

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10
L = 1 - - - - - 84.60 16.71 3.97 3.51 3.43
L = 2 - - - 829.91 176.66 27.74 9.17 5.80 5.37 4.09
L = 3 - - - 516.43 122.71 40.29 16.60 9.54 9.31 7.09
L = 4 - - - 473.63 196.37 83.91 41.97 20.60 17.83 14.14
L = 5 - - 1056.24 933.74 311.31 139.89 81.34 41.77 30.97 30.77
L = 6 - - 1142.09 934.77 418.37 196.40 121.46 71.83 63.03 59.14
L = 7 - - 1257.06 781.31 497.43 287.43 161.43 113.91 104.40 94.80
L = 8 - - 1120.26 757.14 527.51 374.57 268.20 182.09 165.57 164.83
L = 9 - - 1419.75 818.99 668.60 427.94 402.49 279.49 266.63 238.34
L = 10 - - 1621.90 984.58 781.59 618.94 530.35 501.11 399.23 379.31

Table 5: Performance of c2GA on 60-bit Royal Road problem. Parameters L and R are varied from 1 to 10.
The dash means that the algorithm cannot find a solution after 20000 fitness evaluations. The bold number is
the minimum number.

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10
L = 1 - - - - 321.23 43.71 8.43 6.23 4.94 4.54
L = 2 - - - - 47.29 13.26 6.89 6.69 5.53 5.32
L = 3 - - - 137.37 53.43 27.80 13.11 11.40 10.22 12.28
L = 4 - - - 219.54 79.66 51.49 25.79 22.45 23.51 29.17
L = 5 - - - 475.00 201.49 100.89 60.00 57.74 69.57 *
L = 6 - - - 922.75 483.31 212.09 159.39 197.00 * *
L = 7 - - - 2365.52 1280.45 1114.36 504.71 * * *
L = 8 - - - - 2345.50 1935.69 * * * *
L = 9 - - - - - * * * * *
L = 10 - - - - * * * * * *

performance is obtained when R = 6 and L = 5.
Note that the number of active paths required to

solve the problem depends on an instance of the task.
Large number of paths does not guarantee high level
of robustness. But for the same instance of the prob-
lem, a larger number of paths are usually more robust.

4.4 Comparison of Compressed Encoding For-
mats

Originally, c2GA used a compressed encoding pro-
posed in CompressedGA. However, the algorithm
does not require that we have to use such compressed
encoding. In this subsection, we conducted the ex-
periment to compare the performance of compressed
encoding in solving OneMax and a Robot arm prob-
lems. Those compressed encodings are the original
compressed encoding and run length encoding (RLE).

RLE is a straightforward way to encode data so
that it takes up less space. It is a simple compres-
sion algorithm that counts the number of repeating
bits in the chromosome. This encoding method is
chosen because it fits to our approach which oper-
ates on a compressed chromosome and needs the de-

compression function in order to measure the fitness
value. Moreover, this encoding is well known, sim-
ple, and widely used in a variety of applications that
need the compression mechanism such as computer
network and image comparison [17].

In RLE, if the original string is “aaaaabcd-
dccc”, for example, the encoder should output
a,a,4,b,c,d,d,0,c,c,1. The decompression is the re-
versed of compression. Here, we used RLE to decom-
press a binary string. For example, the input and the
output of RLE uncompression is shown in Figure 9.

The experimental results show that c2GA using
compressedGA format outperforms c2GA using run
length encoding format on OneMax and a robot arm
problems (see Tables 10 and 11).

5. DISCUSSIONS

By experimenting with various compression pa-
rameters in OneMax and Royal Road problems, we
found that c2GA performs better if we assign a small
number to the repeat length and large number to the
number of repeat bits. For example, (see Figure 10)
it shows that when we uncompress the first data set,



22 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.2, NO.1 MAY 2006

Table 9: Performance of c2GA on robot arm control programs.

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10
L = 1 - - - - - - - - - -
L = 2 - - - - 5778 6638 6383 - - -
L = 3 - - 10798 11793 1939 1841 2921 2957 2250 1909
L = 4 - - 12959 3184 1492 1712 1910 1753 2064 1676
L = 5 - 16230 9419 2072 1465 1261 1368 1825 1529 1794
L = 6 - - 10555 2963 2304 1934 2300 2021 3089 2349
L = 7 - 17802 8205 3110 3210 1738 2905 2259 3381 3072
L = 8 - 11606 7447 5547 3780 3440 3253 2187 3334 3514
L = 9 - 11730 6092 5937 4843 3221 5389 3723 3227 2411
L = 10 - 11671 9208 5278 5795 3968 4423 4117 3168 3800

Table 6: Performance of c2GA on Royal Road prob-
lem (problem size = 60 bits).

Block size = 2 Block size = 2 Block size = 2
L, R Fitness L, R Fitness L, R Fitness

calc calc calc
1,10 4.54 1,10 4.49 1,10 4.83
2,10 5.32 2,10 5.49 2,10 5.77
3,9 10.22 3,9 10.94 3,9 10.45
4,8 22.45 4,8 21.14 4,8 24.97
5,8 57.74 5,8 52.14 5,8 56.17
6,7 159.39 6,7 132.83 6,7 142.34
7,7 642.51 7,7 408.67 7,7 493.47
8,6 1935.70 8,6 1963.50 8,6 1986.74
9 - 9 - 9 -
10 - 10 - 10 -

Table 7: Performance of c2GA on Royal Road prob-
lem (problem size = 120 bits).

Block size = 2 Block size = 2 Block size = 2
L, R Fitness L, R Fitness L, R Fitness

calc calc calc
1,10 3.11 1,10 3.06 1,9 3.26
2,9 4.54 2,9 3.71 2,9 5.00
3,10 8.00 3,10 8.23 3,10 6.89
4,10 15.77 4,9 17.00 4,10 13.71
5,8 34.57 5,10 35.37 5,10 31.49
6,10 67.46 6,10 71.60 6,10 75.94
7,9 116.97 7,8 118.63 7,10 146.60
8,10 192.31 8,10 255.74 8,10 346.72
9,9 475.45 9,10 569.97 9,9 486.03
10,10 917.23 10,10 947.35 10,10 923.90

Table 8: Performance of c2GA on Royal Road prob-
lem (problem size = 240 bits).

Block size = 2 Block size = 2 Block size = 2
L, R Fitness L, R Fitness L, R Fitness

calc calc calc
1,10 3.23 1,10 2.74 1,10 3.17
2,10 4.83 2,10 4.74 2,10 3.94
3,9 9.97 3,10 8.49 3,10 9.77
4,10 17.11 4,10 20.77 4,9 18.63
5,10 31.91 5,10 40.34 5,10 40.66
6,10 58.80 6,10 70.11 6,9 69.74
7,10 114.29 7,9 122.51 7,10 151.14
8,10 156.74 8,10 225.57 8,10 272.34
9,10 309.51 9,10 446.66 9,10 595.11
10,10 552.49 10,9 889.43 10,10 1094.75

Table 10: The average number of fitness calculation
times measured by c2GA on OneMax problem using
CompressedGA and Run length encoding.

Problem size Compression Algorithm
(bits) CompressedGA Run length encoding
128 2.54 4.20
256 2.83 5.57
512 3.23 5.86

Table 11: The average number of fitness calcu-
lation times measure by c2GA on robot arm con-
trol programs using different encoding formats (com-
pressedGA vs run length).

Compression algorithm Fitness calculations
CompressedGA 1,032
Run length encoding 1,246



A Performance Analysis of Compressed Compact Genetic Algorithm 23

Fig.9: Uncompression of run length encoding.

we can get a chromosome with 672 ones which is the
solution to 512-bit OneMax or 240-bit Royal Road
problems. However, the best number of bits for L
and R in the robot problem is different from One-
Max and Royal Road. c2GA performs best in the
robot problem when L=5 and R=6.

The search space of c2GA is much smaller than
that of cGA. However, if the search space is too small,
a solution might not exist in this space. For example
to solve 128-bit OneMax problem, if the length of
the chromosome is 5 bits, the chromosome cannot be
decompressed to a solution. In general, if we set the
c2GA chromosome too short, it will not be able to
find a solution. On the contrary, if we set the length
too long, the search space will become larger and it
might take longer time to solve a problem.

In the compressed encoding experiments, even
though the original compressed encoding outperforms
RLE. RLE might be more attractive because it has
one less parameter to be adjusted. The number of
parameter settings in the original compressed encod-
ing and RLE are different. The original compressed
encoding uses three parameters, which are the length
of compressed chromosome, the length of L, and R.
For RLE, there are two parameters, which are the
length of compressed chromosome and the length of
number of repeating bits.

Fig.10: The example data when the repeat length is
1 and the number of repeat bits is 10.

6. CONCLUSIONS

c2GA employs the compressed encoding. The main
feature of c2GA is an ability to reduce the search
space so that it can effectively find a solution. We
investigate two parameters used in the compressed
chromosome of c2GA and found that the length of
L and R affects the performance of c2GA. From the
problems that we experimented, the best length of L
and R depends on the problems. We also compared
CompressedGA encoding and RLE and found that
the original encoding outperformed RLE.

ACKNOWLEDGEMENT
We would like to thanks the anonymous reviewer

for helpful comments.

References

[1] M. Mitchell, Genetic Algorithms: An Overview.
An Introduction to Genetic Algorithm, A Brad-
ford book, United Stated of America, 1996.

[2] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, January 1, 1989.

[3] D.E. Goldberg, The Design of Innovation, Kluwer
Academic Publishers, USA, 2002.

[4] O. Watchanupaporn, W. Suwannik and P.
Chongstitvatana, “Compressed Compact Genetic
Algorithm,” Proceedings of National Computer
Science and Engineering Conference (NCSEC),
October 27-28, 2005, pp. 801-811. (abstract in En-
glish)

[5] G.R. Harik, F.G. Lobo and D.E. Goldberg,
“The Compact Genetic Algorithm,” IEEE World
Congress on Intelligent Control and Automation,
pp. 523-528, 1998.

[6] C. Aporntewan and P. Chongstitvatana, “A Hard-
ware Implementation of the Compact Genetic Al-
gorithm,” IEEE Congress on Evolutionary Com-
putation Seoul, Korea, May 27-30, pp. 624-629,
2001.

[7] S. Chen and S. Smith, “Improving Genetic Al-
gorithms by Search Space Reduction (with Ap-
plications to Flow Shop Scheduling),” GECCO-
99: Proceedings of the Genetic and Evolution-
ary Computation Conference, Morgan Kaufmann,
1999.

[8] Z. Yong and N. Sannomiya, “An Improvement
of Genetic Algorithms by Search Space Reduc-
tions in Solving Large-scale Flowshop Problems,”
T.IEE Japan. 121-c(6), 2001, pp. 1010-1015.

[9] W. Suwannik, N. Kunasol and P. Chongstit-
vatana, “Compressed Genetic Algorithm,” Pro-
ceedings of Northeastern Computer Science and
Engineering Conference, March 31-April 1, 2005,
pp. 203-211. (abstract in English)

[10] O. Watchanupaporn, W. Suwannik, N. Soon-
thornphisaj, “Compressed Compact Genetic Al-
gorithm : A Case Study on De Jong Problems,”
Proceedings of Joint Conference on Computer Sci-
ence and Software Engineering (JCSSE), Novem-
ber 17-18, 2005, pp. 91-97. (abstract in English)

[11] J.D. Schaffer and L.J. Eshelman, “On crossover
as an evolutionary viable strategy,” In R.K. Belew
and L.B. Booker, editors, Proceedings of the 4th
International Conference on Genetic Algorithms,
Morgan Kaufmann, 1991, pp. 61-68.

[12] M. Mitchell, J. Holland, S. Forrest, “When Will
a Genetic Algorithm Outperform Hill Climbing?,”
Advances in Neural Information Processing Sys-
tems, vol. 6, pages 51-58, 1994.



24 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.2, NO.1 MAY 2006

[13] E. van Nimwegen, J.P. Crutchfield and M.
Mitchell, “Statistical dynamics of the Royal Road
genetic algorithm,” Theoretical Computer Sci-
ence, Special Issue on Evolutionary Computation,
A. E. Eiben and G. Rudolph (eds.), 1999, pp. 41-
102.

[14] A. De Jong, An Analysis of the Behavior of a
Class of Genetic Adaptive Systemsh, Ph.D. thesis,
Michigan University, 1975.

[15] J.C. Gallagher, S. Vigraham, and G. Kramer,
“A Family of Compact Genetic Algorithms for In-
trinsic Evolvable Hardware,” IEEE Transactions
on Evolutionary Computation vol. 8 (2004), pp.
111-126, 2004.

[16] C. Jassadapakorn and P. Chongstitvatana, “Re-
active Planning with Evolutionary Computa-
tion,” National Computer Science and Engineer-
ing Conference, Pattaya, Thailand, 2002, pp. 357-
361.

[17] D. Salomon, Data Compression, Springer-
Verlag, Inc., New York, 2004.

Orawan Watchanupaporn received a
bachelor’s degree in Computer Science
from Bangkok University in 2004 and
master’s degree from Kasetsart Univer-
sity in 2006. She is a lecturer at the De-
partment of Computer Science, Kaset-
sart University, Sriracha Campus, Thai-
land. Her research interests include the
compressed compact genetic algorithms

Nuanwan Soonthornphisaj is an As-
sistant Professor at the Department of
Computer Science at Kasetsart Uni-
versity, Bangkok, Thailand. She re-
ceived Ph.D. (Computer Engineering)
from Chulalongkorn Univeristy in 2002.
Her research interests include data min-
ing, machine learning and medical infor-
matics.

Worasait Suwannik received a Ph.D.
in computer engineering from Chula-
longkorn University, Thailand, in 2006.
At present, he is a lecturer at the De-
partment of Computer Science, Kaset-
sart University, Bangkhen Campus,
Thailand. His research interests include
evolutionary robotics and compressed
genetic algorithms.


