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ABSTRACT 

This paper presents a new upper bound on the pairwise error 
probability (PEP) of trellis-coded modulation (TCM) schemes 
over nonindependent Rician fading channels. The bound is quite 
general, e.g., applicable to ideal coherent and pilot-tone aided de- 
tection, and differential detection, etc. Being quite accurate, the 
bound can be used in conjunction with a truncated union bound 
to estimate the bit error probability when ideal interleaving is 
not possible. 

I. INTRODUCTION 
Prompted by the current boom and the anticipated growth in m e  
bile communication services, many authors have considered var- 
ious coding strategies for mobile communication channels. The 
use of TCM for these systems, typically modelled as Rician or 
Rayleigh, yields coding gain. However, a potential for correlated 
channel errors exists because of the channel memory, and it is well 
known that TCM coding gain is realizable only for random error 
channels(memory1es.s channels). Consequently, the ordering of 
the transmitted symbol sequences may be permuted to random- 
ize errors at  the receiver. This operation, known as interleaving, 
may be implemented by using two buffers of size Nd x N ,  (block 
interleaving) at the transmitter and the receiver. The total de- 
lay introduced limits the degree of interleaving allowable. .4s a 
result of interleaving/deinterleaving, the fading process appears 
to vary N d  times faster than in a noninterleaved case, i.e., the 
effective channel memory is now reduced to  l/Nd-th of before. 
Accordingly, a channel is said to be ideally interleavedif Nd -+ 00 

and non-ideally interleaved if Nd is finite. 
In light of the foregoing, the channel memory is reduced, but 

not eliminated, with non-ideal interleaving. In this work, the 
effect of this residual memory on the error performance of TCM, 
measured in terms of the bit error probability Pb, is addressed. 
The key to Pb estimation is the pairwise error probability (PEP), 
which is the probability that the decoder selects the erroneous 
codeword out of only two choices. 

An early relevant example is Pierce and Stein [I], who present 
analysis of multiple-diversity performance (assuming maximal- 
ratio combining) for nonindependent fading among the signals. 
The pdf of the sum of the received powers has been obtained in 
terms of the eigenvalues of the covariance matrix of signals from 
all the diversity branches. Because of the duality between diver- 
sity methods and coding, for instance, for binary convolutional 
codes the PEP can be obtained similarly. For this case, Gagnon 
and Haccoun [2] have derived several new upper bounds, 

For TCM on Rayleigh fading channels, the PEP can again be 
expressed in terms of the poles of the characteristic function, 
which in turn are the reciprocals of the eigenvalues of a weighted 
covariance matrix. Thus, in [3, 41 the exact PEP of a TCM 
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Figure 1: System Model. 

scheme has been obtained by the method of residues, applicable 
for ideal and non-ideally interleaved Rayleigh channels. Then a 
truncated union bound on the bit error probability is computed 
using exact PEP’S. 

The performance analysis of coding schemes in non-ideally in- 
terleaved fading channels has been studied mostly through com- 
puter simulation rather than analysis. Some exceptions, to our 
knowledge, are that of [2, 4, 51. Straightforward extension of the 
results in [2] to the TCM case may not be fruitful in that the 
Chernoff bound derived therein is known to be weak when ap- 
plied to TCM schemes [3]. Likewise, the results in [4] are confined 
to  the Rayleigh channel. 

For non-ideally interleaved Rician fading channels, this paper 
derives a new upper bound on the PEP. Unlike in [4], the residue 
calculation is unnecessary, and the bound is quite general in that 
it can be applied to trellis-coded multilevel phase shift keying 
(TC-MPSK) and trellis-coded multilevel differential phase shift 
keying (TC-MDPS I<). 

The paper is organized as follows. Section I1 describes the 
system model used here and the characterisation of Rician fading 
channels. The bound is derived in Section 111. Several examples 
are presented in Section IV. Conclusions are provided in Section 
v. 

11. SYSTEM MODEL 
We consider the typical system model shown in Fig. 1. Binary 
input data is convolutionaly encoded at rate n / (n  + 1). The en- 
coded n + 1 bit words are block interleaved and mapped into 
a sequence x = ( ? I ,  k 2 , .  . . ,?N) of M-ary PSI< symbols, which 
constitute a normalized constellation, i.e., z t  e {exp (jXxk/M) : 
k = 0,1 , .  . , , M - 1) for all symbols. A pilot tone is added to 
to measure the true channel gain. The receiver deinterleaves and 
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then applies soft-decision Viterbi decoding. Here we consider a. 
block interleaver of N, columns (interleaving span) and Nd (in- 
terleaving depth) rows of memory. The encoder output is written 
into the memory row by row and then read out column by col- 
umn. The received symbols are reordered in the reverse manner. 

The transmitted signal is represented in the baseband as [3] 
00 

k = - m  

where s ( t )  is a unit-energy pulse that satisfies Nyquist’s condi- 
tions for zero inter-symbol interference, T, is the symbol dura- 
tion, and 

where Z k  denotes the k-th convolutional encoder output. Al- 
though interleaving implies that the transmitted sequence will 
be a scrambled version of the encoder output sequence, to sim- 
plify the notation, this effect is ignored in (1). Instead, the effect 
of interleaving is accounted for by modifying the channel auto- 
covariance function. 

The signal is demodulated using a filter matched to s ( t ) .  
Hence, the received sample corresponding to the k-th coded sym- 
bol can be denoted by 

Y k  = ( Y k v k  + R k  (3) 

where 7 t h  is a complex-Gaussian random-variable with zero mean 
and variance u2 = (27 . ) - ’  where y, = E,/No. The channel gain 
(Yk is modelled as a complex-Gaussian random variable having 
statistical parameters: 

where the constant mean A denotes the line-of-sight (LOS) and 
specular components of the received signal, and bo is the vari- 
ance of the diffuse component (Rayleigh fading) of the received 
signal. The normalizations A’ + 2b0 = 1 and K = A 2 / 2 b o  enable 
the Rician channel to be characterized by a single parameter K 
Clearly, the (Yk’S constitute a piece-wise constant approximation 
to the continuous random process a(t) ,  and this approximation 
in effect converts the continuous random process into one with a 
discrete time parameter. The normalized auto-covariance func- 
tion of this discrete channel is modelled as 

(5) 
JO ( 2 * f D  NdTa I rl - rZ I) { exp(-2rf~NdT,Ir1 - rzI) e q l r 1 - ~ 2 1  

p( r1  - n) = 

where f~ is the Doppler spread of the fading process and Nd is 
the interleaving depth. Clearly, for ideally interleaved channels, 
we have NdfDT. -+ 00. Alternatively, ( 5 )  can be interpreted as 
indicating that the effective fade rate at the decoder is NdfD. 
A detailed description of this effect can be found in [4]. Other 
possible correlation models are given in [6]. 

111. PAIRWISE ERROR PROBABILITY 
In the following, we derive an upper bound on the PEP when non- 
ideal interleaving exists. The upper bound is quite general in that 
it is derived for the pilot-tone concept [3, 71, which encompasses 
the cases such as ideal and partial coherent detection, differential 
detection, etc. 

We assume here the availability of channel measurements: & k  

being an estimate of ( Y k .  In order to evaluate the error per-. 
formance, a statistical description of &k is necessary. That, 
is, &k is Gaussian with the mean ( & k )  and the variance bl =: 

+ ( ( & k  - ( & b ) ) ( c % k  - ( & k ) ) * ) .  The normalized correlation coeffi- 
cient between (Yk and &k is p = + ( ( Q k - ( Q k ) ) ( & k - ( & k ) ) * ) / ~ .  

As in [3], we take the Viterbi decoder metric to  be Euclidean, 
that is, 

m ( y k , x k )  = -1Yk - h k X k 1 ’ .  (6) 

We remark that decoding with this decoding metric is not nec- 
essarily optimum for non-ideally interleaved channels. The o p  
timum metric presumably would take into account the residual 
correlations. However, for ease of analysis and implementation 
this metric is used. 

The PEP P ( x - 2 )  is defined to be the probability of 
choosing the coded sequence ir = (21, kz,. . . , 2 w )  when x = 
(XI, 22,. . . , X N )  was transmitted, given only two choices. Let 
pl = {k., : X k ,  # * k , }  and L denote the number of elements in 9, 
which IS known as the ‘length” of the error event. The smallest 
possible L, L,,,, is known as the code diversity. 

The PEP, since the total metric for a codeword is the sum of 
component metrics, is 

0 

P ( x  -+ a) = Pr{E 2 0) 

where 

L 

E = x v k , c % E , ( i k ,  - Z k , ) *  + $ / i , & k , ( i k ,  - X k , )  

t = l  

Let V ,  denote the 2 x 1 column matrix 

(7) 

The decision variable E can then be compactly represented as 

L 

Z = V,’F,V, = V’FV 
i= 1 

where the dagger denotes conjugate transpose, and V ,  F are 
given by 

with 

From (3), (4) and (9), it follows that each V,  is Gaussian with 
mean (v) = ( A ,  A x k , ) T  and the 2 x 2 covariance matrix 

We also need the covariance matrix R of the random vector V. 
R is defined as the 2 L  x 2L matrix 

(14) 
1 R = 2([V - (V)]’[V - (V)IT). 

The element of R, other than those given by Eq. (13), can be 
obtained from Eqs. (5) and (9). For example, in the following R 
is computed for the case of ideal channel measurements. 
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A. Ideal TC-MPSK 
In this case it is assumed that prior measurements provide perfect 
channel estimation for each symbol interval. Thus, & k  = f f k ,  

bl = bo ,  and p = 1. Assuming, without loss of generality, that 
the all-zero symbol sequence is transmitted, Ra can be readily 
obtained. To find the remaining elements of R, we note that 
V,  = and that the covariance between V, and V, (I # 
3, i , j  = 1 , 2 , .  . . , L )  is 

1 p - W))(V, - (WT) = 

A similar approach can be taken for differential detection and 
pilot tone aided detection [8]. 

B. 
To upper bound the PEP in (7), we slightly modify a lemma 
derived in [5]. 

Lemma 1 Let U be a random function, w ~ ( z )  i t s  pdf, and 

The upper bound on PEP 

a 
$ U ( W )  = exp ( i d )  its characteristic function. Then 

where 00 is the boundary of the convergence region of the integral 
m J-, W d . 1  exp (Pz)dz .  

Proof: From [5] 

Since I s g dal 5 s 191 da, the lemma follows immediately. When 
using this lemma, one needs t o  know the value of PO,  which, as 
will be seen next, depends on the largest positive eigenvalue of 
R'F. 

Now the characteristic function of Z (8) is given by [7, App. 
BI 

where 4a9 i = 1 , 2 , .  . . , 2 L  are the eigenvalues of R*F. Note 
that R' has positive eigenvalues, but due t o  the structure of 
F the matrix R'F has L positive eigenvalues and L negative 
ones. Thus, let 4, < 0 for i = 1 , 2 , .  . . , L and + i  > 0 for i = 
L + 1 , .  . . , 2 L .  

To apply (16) to bound the PEP in (7), one needs the range of 
P,  which is related to the positive poles of G E ( ~ ) .  Since @ must 
be less than the minimum pole on the right hand plane, the range 
of p is 

(1!3) 

where dmaz denotes the largest positive eigenvalue, i.e., 
max($il i = L + 1 , .  . . , 2 L ) .  Having established the range of 
/3, we combine (7), (16), and (18) to obtain 

where 

Thus we have 

1 -  1 P ( x  -t 2 )  < - 
2* 1, @TiF 

In principle, we need to  find the P which minimizes this upper 
bound, a quite difficult task. Instead, we may choose 

and evaluate (22) numerically, again a computationally intensive 
task. Dividing each square root by 4&, (22) can be recast as 

(24) 
exp [@( V ) +  (F-' - 2pR*)-'(V)] 

1 det (2R*F)( P(x  -t 9) < A(P) 

where 

(35) 

and where PO = P ,  pi = I(l/2+, - P)I for i = 1 , 2 , .  . . ,2L. Rather 
than integrating numerically, this integral can be bounded by a p  
plying Schwarz's inequality (for real positive functions z ( t )  and 
y ( t ) ,  J z ( t ) y ( t )  dt  5 (J z2 ( t )  d t  J y2 (t) dt)" ') .  Splitting the in- 
tegrand into two parts, squaring each part,, and evaluating the 
two resulting integrals, we readily have 

\ 112 

/ \ 112 

( 2  i = L + 1  

2 L  
1 

k = L + 1  
k# i 

In deriving this, it is tacitly assumed that the pa's  ( z  = 
1 , 2 , .  . . ,2L)  are distinct. This is indeed the case for non-ideal 
interleaving. However, depending on the structure of an error 
event, with ideal interleaving, there may exist repeated eigenval- 
ues. In this case, (26) must be modified accordingly. 

Combining (24) and this, we get 

exp [@(V)'(F-' - 2@R*)-'(V)] 
P ( x  + %) < AI I det (2R'F)I (27) 

where AI is the upper bound on A(@, as defined by (26). It will 
be shown later that this upper bound is extremely accurate, and 
remains so even when no interleaving is employed. Furthermore, 
little is to be gained by searching for the ,Cl that minimizes this 
bound, and, therefore, the choice (23) will be adequate. 

Note that this bound can be readily used with a truncated 
union bound, an approach proposed by [3], to est,imate the bit 
error probability: 

N 
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where w ( j )  is the number of bit errors associated with the j-th 
error event, and N is the maximum span of the included error 
events. Since the sum includes only a limited number of error 
events, in general, this is not an upper bound on the bit error 
probability. 

IV. RESULTS 
To see the accuracy of the bound (27), consider an error event 

For Rician fading (A’ = 5 dB) with normalized Doppler 0.01, 
Fig. (2) depicts the exact PEP and the upper bound (27) as 
functions of the signal-to-noise ratio E,/No and the interleaving 
depth N d .  The exact PEP is computed by numerical integratiosn 
of Eq. (17). It appears that the upper bound is very accurate for 
pb < For instance, the difference between two curves ca.n 
be as small as 0.2 dB asymptotically. To put this in perspective, 
we note that the difference between the Chernoff upper bound 
and the exact result for this particular error event can be 3.6 dB 
[3]. It is also noted that the accuracy of the bound increases as 
(1) A’ decreases, (2) ys + 00, and (3) N d  -+ 00. This may be 
explained by noting that the bound ignores the phase function 
of the integrand in (17). 

For the same error event, the upper bound is plotted as 
a function of the interleaving depth N d  in Fig. 3 for auto- 
covariance functions: Bessel and exponential. For the exponem- 
t id  model, N d  is sufficient when N d f D T s  = 0.5, a further in- 
creme in interleaving capacity does not reduce the error prolb- 
ability. For the Bessel model, however, the error probability 
shows an oscillatory behaviour; consequently, the optimum in- 
terleaving depth for a given Doppler is now N d  f D T s  = & where 
&(&) = 0, k = 1 , 2 , .  . . and J o ( z )  is the zero-order Bessel func- 
tion. Since these conditions hold for most error events, the overall 
bit error probability would behave similarly. 

For Rician fading with exponential auto-covariance functions, 
the approximate Pb (see Eq. (28)) and simulation results are 
presented in Fig. (4) for the eight-state trellis code given in [!)I. 
For simulation results, the interleaving span, N , ,  is chosen to be 
18 symbols. Following [4], a set of error events has been picked 
from the modified error state diagram, as defined by Zehavi and 
Wolf [lo], of this trellis code. Here the set includes all error events 
whose span is less than or equal to  3 [4, Table I]. Simulation 
results and the approximate Pb agree quite well even for the no- 
interleaving case. 

of length two between x = ( 1 , 1 , .  . .) and 2 = , . . .). 

V. CONCLUSION 
A tight upper bound on the PEP of a TCM scheme operating on 
the non-ideally interleaved Rician channel has been introduced. 
The bound is quite general and can be used with a truncated 
union bound to estimate the bit error probability. This approach 
may be used to obtain accurate performance estimations, thus 
alleviating the need for lengthy computer simulations when ideal 
interleaving is not possible. 
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Figure 2: Exact and upper bound the PEP of an error event in 
a Rician fading (K = 5 dB) with ideal coherent detection. The 
normalized Doppler f d T ,  is 0.01 with exponential correlation. 
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Figclre 3: IJppcrbound on the PEP versus the interleaving depth. Figure 4: Simrllation the approximate Pb of the 8-state trellis-code. 
Rician fading ( I (  = 5 dB). Z/No= 12.0 dB. The normalized Rician fading (IC = 5 dB) with ideal col~erent detection. The 
h p p h  j d y i  is 0.05. normalized Doppler fdT* is 0.01 with exponential correlation. 
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