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ABSTRACT 
With the emergence of accelerator devices such as multicores, 
graphics-processing units (GPUs), and field-programmable gate 
arrays (FPGAs), application designers are confronted with the 
problem of searching a huge design space that has been shown to 
have widely varying performance and energy metrics for different 
accelerators, different application domains, and different use 
cases. To address this problem, numerous studies have evaluated 
specific applications across different accelerators. In this paper, 
we analyze an important domain of applications, referred to as 
sliding-window applications, when executing on FPGAs, GPUs, 
and multicores. For each device, we present optimization 
strategies and analyze use cases where each device is most 
effective. The results show that FPGAs can achieve speedup of up 
to 11x and 57x compared to GPUs and multicores, respectively, 
while also using orders of magnitude less energy. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems, C.4 [Performance of Systems]: 
Design studies. 

Keywords 
FPGA, GPU, multicore, sliding window, speedup, parallelism. 

1. INTRODUCTION 
Over the past decade, computing architectures have started on a 
clear trend towards increased parallelism and heterogeneity, with 
most mainstream microprocessors now including multiple cores, 
and system architectures commonly integrating accelerators such 
as graphics-processing units (GPUs) [2][4][21] and field-
programmable gate arrays (FPGAs) [3][6][10][28] over PCIe and 
even on the same chip [19][27]. Numerous studies have shown 
that such architectures can accelerate applications by orders of 
magnitude compared to sequential software [2][3][4][5][26]. 

However, the multitude of accelerator options has significantly 
increased application design complexity due to the need for 
extensive design-space exploration to choose an appropriate 

device. Although GPUs have become a common accelerator due 
to widespread availability, low cost, and a simplified 
programming model compared to FPGAs, numerous device 
characterization [5][26] and application studies [2][3][4][20] have 
shown that metrics for different devices can vary significantly for 
different applications. Therefore, design-space exploration of 
different devices for different applications is critical to prevent 
designers from choosing inappropriate devices. 

One challenge that makes such exploration difficult is that there is 
rarely a globally optimal device for a particular application. 
Instead, applications generally have a set of Pareto-optimal 
implementations that tradeoff numerous metrics such as 
performance, power, energy, cost, size, reconfigurability, 
application-design complexity, fault tolerance, etc. Furthermore, 
such exploration is complicated by numerous use cases. For 
example, an embedded system performing convolution may 
involve much smaller input sizes than convolution in high-
performance computing, which would likely have different 
optimal or Pareto-optimal implementations.  

In this paper, we perform an extensive analysis of sliding-window 
applications to determine the most effective devices for different 
use cases by considering performance and energy, different input 
sizes, different precisions, and different interconnects (e.g. PCIe, 
same chip). Sliding-window applications are a subdomain of 
digital signal processing that involve sliding a smaller signal (i.e., 
a window) across all positions in a larger signal (e.g., image), 
while generally performing a computationally intensive function 
at each window position. We evaluate sliding-window 
applications due to their frequent usage in digital signal 
processing, which is common on multicores, FPGAs, and GPUs.  

The results show that an Altera Stratix III E260 FPGA is 
generally the fastest device for sliding-window applications 
compared to an NVIDIA GeForce 295 GTX GPU and quad-core 
Xeon W3520, with speedups of up to 11x and 57x, respectively. 
For an Information Theoretic Learning [24] based application, the 
FPGA was the only device capable of real-time usage. 
Furthermore, the FPGA used orders of magnitude less energy than 
other devices in many situations, providing the only realistic 
embedded system implementation for high-definition video.  

The main contributions of the paper are summarized as follows: 

 Highly optimized circuit architectures for FPGA 
implementations of sliding-window applications 

 Optimization strategies for sliding-window applications 
on GPUs and multicores 

 Analysis of performance and energy for different use 
cases such as different input sizes, precisions, and 
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interconnect types, including estimations for emerging 
single-chip CPU/GPU devices. 

 To our knowledge, we present the first sliding-window 
implementations demonstrated to achieve real-time 
usage with high-definition video, even while supporting 
larger window sizes than previous work. 

The remainder of the paper is organized as follows. Section 2 
discusses previous work. Section 3 describes the sliding-window 
applications that we evaluate. Section 4 describes the custom 
circuit architectures for our FPGA implementations, in addition to 
optimization strategies for the GPU and multicore 
implementations. Section 5 presents experimental results. 

2. PREVIOUS WORK 
Numerous studies have evaluated application performance for 
FPGAs [4][10] and GPUs [20][25]. Much work has focused 
specifically on image and video processing [4][15][23][25]. For 
example, Sinha et al. [25] evaluated the Kanade-Lucas-Tomasi 
(KLT) Feature Tracker algorithm on a GPU, which tracks 
specified features in a given image. Porter et al. [23] implemented 
several stereo matching algorithms on an FPGA, including sum of 
absolute differences (SAD). We also evaluate SAD, but using 
different use cases on different devices. [23] measured relative 
cost to perform real-time computations using a custom 
technology-independent cost function.  

Previous work has also compared performances of FPGAs, GPUs, 
and CPUs. Baker et al. [3] evaluated a matched filter algorithm on 
a Cell processor, FPGA, and GPU, concluding that the Cell 
provided the best performance and energy efficiency, but the 
GPU exhibited the best performance per dollar. Pauwels et al. 
[21] compared two complex vision-based algorithms requiring 
real-time throughput. The multi-stage algorithm involved a Gabor 
filter, stereo disparity estimates, local image features, and optical 
flow. That study found that although FPGAs were faster for 
certain single-stage algorithms, the GPU exhibited better 
performance when executing the entire multi-stage algorithm.  

Several studies have considered different use cases of some of the 
same applications as this paper. The authors of [6] implemented 
2D convolution and color correction on a GPU and FPGA to 
determine if GPUs can replace FPGAs in video processing. The 
authors optimized both implementations, and measured 
throughput using kernel sizes up to 11x11 for the 2D convolution. 
They concluded that the FPGA had better performance at higher 
kernel sizes than the GPU. Our study differs by evaluating 
multiple sliding-window applications, including 2D convolution, 
while also considering different precisions, larger image and 

kernel sizes that represent current use cases, and newer devices 
including multicore microprocessors. 

Yu et al. [28] introduced an analytical approach to determine 
potential FPGA performance of sliding-window applications, 
while also creating on-chip buffers to exploit data reuse. In this 
paper, we evaluate custom FPGA circuits with similar buffering 
techniques for various common and emerging applications, while 
also comparing to GPUs and multicores. 

In [2], Asano et al. studied image-processing techniques on a 
multicore CPU, GPU, and FPGA. The implementations included 
a 2D filter algorithm, SAD stereo vision disparity, and k-means 
clustering. The 2D filter’s performance was measured up to a 
15x15 kernel size, 241 SAD operations, and 48x4 distances in k-
means clustering. In contrast to the SAD implementation in this 
paper, that previous study implemented a stereo-vision specific 
SAD algorithm. In that study, the FPGA had better performance 
for SAD and k-means, but was outperformed by the GPU for the 
2D filter. The CPU outperformed the GPU in both SAD and k-
means. Our study extends this previous work by providing a more 
in depth analysis of sliding-window applications. We present a 
generalized circuit architecture for sliding-window applications 
over a wider range of image and kernel sizes that apply to current 
and emerging use cases of sliding-window applications [12]. 
Additionally, we provide superior performance at significantly 
higher image and kernel sizes, and are the first to our knowledge 
to deliver real-time sliding-window processing of high-definition 
video on a single GPU or FPGA. We also evaluate a new 
application based on Information Theoretic Learning [24], which 
is an emerging area highly amenable to FPGA implementation. 

3. SLIDING-WINDOW APPLICATIONS 
For all applications, the input is a 2D image with dimensions x×y. 
Although sliding-windows applications also apply to 1D 
examples and signals other than images, this input is 
representative of many applications. Each application also takes 
as input a 2D kernel of size n×m, whose purpose varies depending 
on the application (e.g., an image to search for, a set of constants, 
etc.).  Each application slides a window of the same size as the 
kernel across all possible positions in the image, as shown in 
Figure 1, where the data associated with each window are the 
underlying image pixels. For each window, the application 
performs some application-specific window function, shown as f() 
in Figure 2, based on the current window and the kernel. 
Although the number of outputs is application specific, sliding-
window applications often generate one output per window, as 
shown in the pseudo-code. In some cases, the exact ranges of 
sliding windows are application specific. In this paper, we 
consider use cases where the kernel is fully immersed in the 
image, meaning that the window never exceeds the image 

 

Figure 1: Input access patterns of sliding-window applications, 
where a “window” slides over all possible positions in the image. 

Input: image of size x×y, kernel of size n×m 
for (row=0; row < x-n; row++) { 
  for (col=0; col < y-m; col++) { 
    // get n*m pixels (i.e., windows  
    // starting from current row and col) 
    window=image[row..row+n-1][col..col+m-1];   
    output[row][col]=f(window,kernel); 
  } 
} 

Figure 2: Pseudo-code for typical sliding window applications, 
assuming fully immersed windows, where the window function f() 

varies depending on the application. 



boundaries. We chose this use case because windows that extend 
past image boundaries generally require a padded image. Such 
padding commonly requires software pre-processing that is not 
relevant to the device comparison, which we therefore excluded.  

Note that for the remainder of the paper we use these terms: 
 n and m: kernel dimensions 
 x and y: image dimensions 

Sliding-window applications tend to be highly memory intensive 
due to the need to gather each window. For example, a 40×40 
window consists of 1,600 pixels. For a 1000×1000 image, there 
are (1000-40+1)2 = 923,521 windows. Therefore, the total amount 
of pixels an application must read from memory is approximately 
1,477,633,600. For 16-bit images, these reads correspond to 
approximately 3 terabytes of data, much of which must be 
accessed from memory non-sequentially. 

Similarly, sliding-window applications are often computationally 
intensive due to complex window functions. For example, 2D 
convolution multiplies each pixel of a window with a constant in 
the kernel and then accumulates the results. For a 40×40 window, 
each window requires 1,600 multiplications and 1,599 additions. 
For a 1000×1000 image, there are 923,521 different windows, 
thus requiring approximately 3 teraoperations. 

Many sliding-window applications have a similar behavior as 
shown in Figure 2. Therefore, in the following sections, we 
simply define the window function f() for each application, along 
with characteristics of the image, kernel, and output. 

3.1 Sum of Absolute Differences (SAD) 
Sum of absolute differences (SAD) is used in content-based 
image retrieval [8][29] and other image-processing applications as 
a measure of similarity between two images. For example, a 
security system may search a video stream for other images (i.e., 
kernels) from a database of criminals. For each kernel, the output 
with the lowest SAD value represents the closest match. 

As the name suggests, the window function for SAD calculates 
the absolute difference between each window pixel and kernel 
pixel, and then accumulates the differences for the entire window. 
Therefore, each output is a measure of similarity between the 
corresponding window and the kernel image, where lower values 
represent a closer match. The output upon completion is a two-
dimensional data structure of dimensions (x-n+1)×(y-m+1), which 
corresponds to the total number of windows. Although specific 
applications would post-process the output, we instead simply 
generate the output due to the large variation in SAD applications. 

For all evaluations, we consider 16-bit grayscale images for both 
the image and the kernel image, while exploring numerous 
combinations of image and kernel sizes. 

3.2 2D Convolution 
2D convolution is a common operation in digital signal 
processing and scientific computing used in computing systems 
ranging from small embedded systems to high-performance 
embedded computing systems (e.g., satellites) to supercomputers.  

For 2D convolution, the window function multiplies each image 
pixel with a constant in the kernel. The method for generating 
each output pixel is shown by the following formula: 

output[a][b] =

n−1∑

i=0

m−1∑

j=0

image[a+ i][b+ j]× kernel[n− i][m− j]

 

This formula multiplies each image pixel with a constant at the 
same location in a “flipped” version of the kernel. For a 3×3 
window, 2D convolution multiplies pixel (0,0) of the window 
with the constant at (2,2) in the kernel, followed by the 
multiplication of pixel (0,1) with constant (2,1), etc. 

After multiplying the window with the flipped kernel, 2D 
convolution accumulates the products, which generates a single 
output. The entire output for fully immersed windows is an image 
of size (x-n+1)×(y-m+1). For 2D convolution, we consider 16-bit 
grayscale images and kernels consisting of various precisions, 
including 32-bit floating point and 16-bit fixed point. 

One optimization commonly implemented for 2D convolution 
consists of performing convolution twice with one-dimensional 
kernels, which is possible when the two-dimensional kernel is 
separable. In this paper, we evaluate non-separable kernels, due to 
their larger computational requirements. 

Similarly, applications often perform large 2D convolutions using 
FFT convolution due to a lower time complexity. Although we do 
evaluate 2D FFT convolution for the GPU and multicore, we did 
not evaluate 2D FFT convolution on the FPGA analysis due to the 
lack of a 2D FFT core. Therefore, reported FPGA speedups 
represent a pessimistic lower bound. Additionally, we found that 
our 2D FFT multicore implementation, coded with the FFTW 
3.2.2 2D FFT function [9], did not perform significantly better 
than the OpenCL sliding-window 2D convolution for the kernel 
sizes we tested. While we would expect significant speedup for 
larger kernels, we omitted the FFT CPU results from this paper 
because they are not applicable to our use cases. 

3.3 Correntropy  
Correntropy [14] is a measure of similarity based on Information 
Theoretic Learning (ITL) [24]. Correntropy can be used for many 
purposes [12][14], but we evaluate an application similar to 
Section 3.1 that searches an image to find the closest match of 
another image. Correntropy is defined as: 

k(imagei,j − kernela,b) =
1

σ
√
2π

exp(− (imagei,j − kernela,b)
2

2σ2
)
 

For the application in this paper, function k() is a Gaussian. Based 
on these equations, the correntropy application performs the 
following computation for each window. First, correntropy finds 
the difference between each pixel in the window (imagei,j)and 
each corresponding pixel in the kernel image (kernela,b). 
However, instead of summing these differences, each difference is 
used as a parameter to the Gaussian function. For an exact match 
(i.e., a difference of zero), the Gaussian function will return 1, 
which corresponds to a perfect measure of similarity. For larger 
differences, the similarity measure will drop increasingly fast 
depending on the exact characteristics of the Gaussian curve. 
After computing the similarity for each pixel of the window, the 
application sums the similarities for all pixels to create a single 
value that represents the similarity for the entire window. 
Although different applications would process the similarity 
values in different ways, the application in this paper outputs the 
the two largest values and their corresponding window locations. 

4. DEVICE IMPLEMENTATIONS 
In this section, we present implementation strategies for the three 
sliding-window applications from the previous section. Section 
4.1 describes custom circuit architectures for the FPGA. Section 



4.2 describes GPU implementations and optimizations. Section 
4.3 is similar for OpenCL on multicore processors.  

For the FPGA analysis, we target a GiDEL ProcStar III board 
with a 65 nm Altera Stratix III E260 FPGA. The board has four 
FPGAs, in addition to 3 external memories per FPGA, although 
we only use one FPGA to keep device comparisons fair. The 
board is connected over PCIe x8 to a 2.26 GHz quad-core Xeon 
E5520 CPU with 6 GB of RAM.  

For the GPU analysis, we target a 55 nm EVGA GeForce GTX 
295 PCIe x16 board with Compute Capability 1.3. This board also 
has multiple devices, but we limit analysis to a single device for 
fair comparisons. All implementations use CUDA Version 3.2. 
All GPU examples were tested using a Red Hat Enterprise 5 
Linux 64-bit server with 12 GB of RAM and a 45 nm 2.67 GHz 
Intel Xeon 4-core W3520 with 8 threads via Hyper-Threading 

The OpenCL multicore implementations use the same system as 
the GPU, but with Windows 7 Enterprise 64-bit instead of Linux 
in order to use the latest OpenCL Intel SDK Version 1.1.  

Although evaluating an older 65 nm FPGA results in a slightly 
unfair comparison, the FPGA is still generally the most effective 
device for most use cases, as shown in Section 5. Also, although 
the slower processor used with the ProcStar III potentially makes 
the FPGA results pessimistic, the CPU was responsible for less 
than 1% of execution time. 

For the SAD and correntropy applications, we limit window sizes 
to 45×45 due to shared memory limitations on the GPU. 
Interestingly, the FPGA implementations have resource 
restrictions that support only slightly larger windows. For 2D 
convolution, we restrict window sizes to 25×25 due to limited 
FPGA multipliers, as discussed later. The FPGA circuits can 
support arbitrary kernel sizes with trivial extensions, but we limit 
the analysis to sizes that the FPGA can execute in parallel. 

4.1 FPGA Circuit Architecture 
Because much of the sliding-window functionality is shared 
across multiple applications, all custom circuits used for the 
FPGA evaluation use the architecture shown in Figure 3. This 
architecture consists of a controller and pipelined datapath that 
takes as input a window and the kernel for the application. 

To keep the pipelined datapath from stalling, the circuit must 
provide a new window every cycle, which requires very high 

bandwidth. For example, a 40×40 window of 16-bit data requires 
3,200 bytes per cycle, or 320 GB/s for a 100 MHz clock, which 
cannot be provided by external memory. However, the window 
generator buffers the overlap between consecutive windows 
inside of the FPGA, significantly reducing bandwidth 
requirements. Although previous studies have introduced various 
window generators [28][30], we use a buffer similar to [7]  that 
aims to maximize performance at the cost of extra area.  

The window generator buffers n-1 complete rows of the image 
using on-chip RAMs that act as specialized FIFOs. Like all 
FIFOs, these specialized FIFOs pop from the front and push to the 
back. However, pop operations do not actually delete the data and 
simply move the front pointer to the next element.  

To use the window generator, the controller initially starts a 
sequential read from an external DDR2 memory that stores the 
image. The window generator stores arriving pixels in a FIFO 
corresponding to the current row. When the current FIFO is full 
(i.e., the entire row is buffered), the window generator starts 
storing pixels in the next FIFO. After the nth FIFO has received 
pixels, the window generator begins to create windows. 
Specifically, whenever there are pixels in all n FIFOs, the window 
generator pops a pixel from each FIFO into an n×m set of shift 
registers used to store the current window. After the window 
generator pops m pixels from each FIFO, the shift registers 
contain a valid window. The window generator continues to pop 
pixels, producing a new window each cycle, until all the FIFOs 
are empty, which corresponds to the end of one row of windows. 
At this point, the window generator adjusts internal pointers to 
move each FIFO up one row, while moving the first FIFO to the 
back and discarding the contents because the remaining windows 
will not require data from the first row. Because the other FIFOs 
already contain the buffered data for a row of the image, the 
window generator resets the front pointer for each FIFO to the 
first pixel, effectively making the FIFOs full again without having 
to reread data from memory. After resetting the front pointers, the 
window generator repeats this process for the remaining windows. 

To buffer n rows of the image, the window generator requires n*y 
words of memory. For example, for a 1920×1080 image with 
40×40 windows, the window generator requires 1920*40 memory 
words. For 16-bit grayscale images, these words require only 154 
kilobytes of on-chip memory, which is a small amount for current 
FPGAs. Although other window-generation techniques use less 
area [28], those techniques trade off performance. Because on-
chip memory was not a bottleneck for the evaluated applications, 
we used the described approach to maximize performance. 

For each window, the datapath performs the application-specific 
window function using the window and the kernel, which the 
circuit also stores in n×m registers. After some latency, the 
datapath produces an output each cycle, which a memory 
controller writes to a second external DDR2 memory. 

The circuit connects to a PCIe bus that allows the host 
microprocessor to read and write data into the external memories, 
the kernel registers, and the controller. For all applications, the 
host software transfers the image into the input DDR2 memory 
and then initializes the kernel. Next, the software enables the 
controller to start the computation and then polls the controller 
until the datapath has produced all outputs. Finally, the software 
reads back all outputs from the second DDR2 memory.  

 

Figure 3: Circuit architecture for sliding window applications. 



4.1.1 SAD 
For the SAD application, we created the datapath shown in Figure 
4. The datapath takes 2*n*m inputs, where half of the inputs are 
the window pixels (shown as w[]), and the other half are kernel 
pixels (k[]). The datapath initially subtracts every corresponding 
pair of window and kernel pixels, and then takes the absolute 
value, which is stored in a register. The datapath then passes all 
n*m absolute differences to a pipelined adder tree that contains 
registers at each level. The datapath then outputs the result from 
the adder tree. For all SAD evaluations, we use an image and 
kernel consisting of 16-bit grayscale images of varying sizes. The 
adder tree generates carry bits at each level of the tree to ensure 
that overflow cannot occur. Therefore, for 16-bit inputs, each 
output is 16+log2(n*m) bits. We could have potentially reduced 
area requirements by using 16-bit adders in the adder tree, but 
preventing overflow is important for many use cases and also 
provides a lower bound on FPGA performance. 

The total number of parallel operations for the SAD datapath is 
n*m subtractions, n*m absolute values, and n*m-1 additions. For 
a 40×40 window, the datapath executes 1,600 subtractions, 1,600 
absolute values, and 1,599 additions every cycle after the initial 
pipeline latency of 1+log2(n*m).  

This SAD circuit, for a 1920×1080 image and 45×45 kernel, 
complete with all IP for the GiDEL board, uses 137,260 LUTs 
(67%), 156,377 registers (76%), 2,256,464 block memory bits 
(15%), and zero DSP blocks on the Stratix III E260. Resource 
utilization increases linearly with kernel size and the limiting 
resource is logic elements. The circuit was operated at frequencies 
between 100 and 115 MHz depending on the kernel size. 

4.1.2 2D Convolution 
The datapath for 2D convolution is similar to Figure 4, with the 
difference that the subtraction and absolute value operations are 
replaced by a multiplication. In addition, convolution flips the 
order of the kernel in the inputs as described in Section 3.2. The 
pipelined adder tree is identical to the description in the previous 
section. For the convolution examples, we evaluate 16-bit 
grayscale images, and kernels consisting of both 32-bit floating-
point values and 16-bit fixed-point values. To reduce resource 
usage from fixed-to-float conversions, we pre-process the 16-bit 
image in software and transfer 32-bit float pixels to the FPGA. 

The total number of parallel operations for this datapath is n*m 
multiplications and n*m-1 additions every cycle. For the floating-
point kernels, the output is also floating point. For the fixed-point 

kernels, the output is 16+log2(n*m) bits due to the adder tree 
accounting for overflow. 

When using a 1920×1080 image and a 16-bit fixed-point 25×25 
kernel, this circuit with all GiDEL IP uses 33,547 LUTs (17%), 
57,122 registers (28%), 1,601,104 block memory bits (11%), and 
738 DSP blocks (96%) on the Stratix III E260. For this circuit, the 
limiting resource is multipliers in the DSP blocks. The circuit was 
operated at frequencies between 104 and 115 MHz depending on 
the kernel size. 

The floating-point version uses significantly more DSP blocks to 
achieve the same kernel size. The resources available allow up to 
a 13×13 kernel, and the circuit uses 129,024 LUTS (63%), 
126,821 registers (62%), 1,633,872 block memory bits (11%), and 
676 DSP blocks (88%). The limiting resource is DSP blocks and 
the circuit used frequencies between 103 and 114 MHz. 

4.1.3 Correntropy 
Figure 5 illustrates the correntropy datapath. The initial stages of 
the pipeline calculate the absolute difference of each pair of 
window and kernel pixels, which is identical to SAD. The 
datapath then connects the absolute difference to a lookup table 
that implements a Gaussian curve. The datapath uses the absolute 
difference to take advantage of the symmetry of the Gaussian 
curve. By ignoring negative values, we reduce the size of the 
lookup table by 50%. Choosing the exact size of the lookup tables 
is highly application dependent, but we chose a size of 64 words 
based on the curves required by a correntropy-based optical flow 
application [12]. In addition to the lookup table, the datapath uses 
a comparator and mux that treats points on the Gaussian for 
differences of greater than 64 as zero. The output of the Gaussian 
lookup is an 8-bit fixed-point value between 0 and 1 that 
represents the similarity between each pair of pixels. We chose 
the 8-bit precision based on the requirements of [12] and point out 
that other applications may require different precisions. These 
similarity values are then summed using the same pipelined adder 

 

Figure 4: Datapath for sum of absolute differences (SAD). 
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Figure 5: Datapath for correntropy. 



tree as the previous examples. Finally, the datapath monitors the 
output of the adder tree and saves the two largest similarity values 
for all possible windows, along with the corresponding window 
positions (not shown). Each output is 8+log2(n*m) bits. 

The correntropy datapath performs n*m subtracts, n*m absolute 
values, n*m Gaussian lookups, and n*m-1 additions every cycle. 

For a 1920×1080 image and 45×45 kernel, the correntropy circuit, 
with all GiDEL IP, uses 141,633 LUTs (69%), 143,137 registers 
(70%), 2,256,464 block memory bits (15%), and zero DSP blocks 
on the Stratix III E260. Resource utilization increases linearly 
with kernel size, and the limiting factor is logic elements. The 
circuit was operated at frequencies between 101 and 111 MHz 
depending on the kernel size. 

4.2 GPU 
A graphics processing unit (GPU) is a highly parallel architecture 
which can run thousands of threads. An overview of GPU 
functionality is described in [20]. We use the CUDA framework 
[17] to implement applications for GPUs.  

A complete discussion of the CUDA code is omitted for brevity. 
Instead, we focus on optimizations for the CUDA memory 
hierarchy, which previous work has shown can significantly 
improve performance [20]. The CUDA memory hierarchy 
consists of local memory, shared memory, texture memory, 
constant memory, and global memory. Ideally, threads should use 
local or shared memory, which have the lowest latency, but their 
limited size and their restriction of only sharing data within a 
thread block requires applications to also use the other memories. 
By contrast, global memory has the largest size due to the use of 
external memory, and can be accessed by all thread blocks, but 
also has the highest latency. Texture memory is a cached version 
of global memory, which is more suitable for 2D locality.  

The presented GPU implementations use a specialized memory 
organization that maximizes the usage of shared memory for the 
numerous repeated accesses in sliding-window applications. This 
organization stores the entire kernel in shared memory, as well as 
a subset of the image needed by the corresponding thread block, 
while storing the entire image in texture memory rather than 
global memory due to a lower penalty for uncoalesced reads and 
improved access times from cache hits. 

The basic functionality of the GPU implementations is described 
as follows, which is based on [15] and illustrated in Figure 6. 
Each thread block initially loads a subset of the image from 

texture memory into shared memory, then generates the 
corresponding subset of the output pixels. Individual threads 
generate small groups of output pixels that we refer to as 
macroblocks, which are stored to global memory. Shared memory 
stores all image pixels used by a thread block, in addition to the 
kernel, which requires (a+n-1)*(b+m-1)+n*m words, where a×b 
are the dimensions of the output pixels generated by the thread 
block. For this paper, we determined output groups of 64×32 
performed well on the targeted device. Therefore, each thread 
block uses (64+n-1)*(32+m-1)+n*m words of shared memory. 

Another consideration for the GPU is macroblock size. Smaller 
macroblocks increase threads per block, but increased thread 
count may also increase shared memory bank conflicts. We 
empirically determined that 2×2 macroblocks performed well on 
the targeted device for sliding-window applications, which 
differed from previous work [15] that used 8×8 macroblocks. 
Based on this macroblock size, each thread block consists of 
32×16=512 threads, which is the maximum amount. 

One limitation of this memory organization is that shared memory 
limits the maximum window size. For example, for the evaluated 
GPU, the shared memory supports window sizes up to 45x45. For 
larger windows, implementations must use other memories, which 
would likely significantly reduce performance.  

The SAD application’s threads compute the sum of absolute 
differences between the kernel and the four windows in the 
corresponding macroblock. 

The 2D convolution threads are similar, but with each thread 
performing multiply accumulates as described in Section 3.2. For 
the GPU, we also evaluate a frequency-domain implementation of 
2D convolution using a 2D FFT as described in [22], which used 
the CUFFT library [18]. The frequency-domain implementation 
computes the 2D FFT of the kernel and of the image, then 
performs a point-wise multiplication of the frequency-domain 
signals. The implementation then performs an inverse FFT on the 
resulting products to produce the output.  Pre and post-processing 
is required to account for small kernel sizes and to extract the 
output desired. Note that we refer to the original time-domain 
implementation as sliding-window convolution and the 
frequency-domain version as FFT convolution. 

The correntropy implementation for the GPU extends the SAD 
implementation by adding the intermediate step of taking the 
Gaussian of each absolute difference before accumulating. We 
optimized performance by storing the Gaussian function in a 
lookup table in shared memory, using the same size lookup table 
as the FPGA implementation. Absolute differences cannot be 
predicted here, so shared bank conflicts likely cannot be 
prevented, but we still expect shared memory to provide the best 
performance due to low latency. 

One challenge with the GPU implementation of correntropy is 
locating maximum similarity values. On the FPGA this 
functionality only required two registers, a comparator, and 
muxes. However, for the GPU implementation, there is no way to 
communicate between thread blocks other than global memory, 
and there is no way to synchronize or guarantee the order in 
which thread blocks execute. Therefore, finding the maximum 
value from multiple thread blocks must take place after the 
sliding-window outputs have been produced. We implement this 
maximum function as a reduction problem, where each thread 
compares a subset of the outputs simultaneously. Each thread 
temporarily stores the results, which the implementation then uses 
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Figure 6. Organization of shared memory for each thread block. 



for a smaller reduction. This reduction process continues until it 
computes the two maximum values. We implemented this 
reduction by altering a highly optimized reduction adder from 
NVIDIA [11]. 

4.3 Multicore 
We used the OpenCL parallel programming standard [16] for the 
multicore implementations. Similar to CUDA’s thread 
organization, OpenCL organizes threads into a 1, 2, or 3 
dimensional grid called an NDRange. This NDRange is divided 
into work-groups, which are further divided into work-items. The 
work-items are the threads that run on a device, and each work-
item has access to three types of memory (listed from greatest to 
smallest latency): global, local, and private. Global memory is 
available to all threads. Each work-group has local memory that is 
shared among threads in the group. Private memory stores 
individual thread data.   

Like the CUDA implementations, leveraging the NDRange and 
memory hierarchy effectively are vital for optimizing OpenCL 
applications. To ensure good performance, we followed all 
guidelines specified in [13]. Since caching OpenCL memory 
objects on a CPU is managed automatically by hardware, 
managing the memory hierarchy is limited to coalescing memory 
accesses. As a result, we focused our optimizations on minimizing 
communication between threads. Each implementation uses the 
same following structure. The NDRange is a 2D grid with the 
same dimensions as the output. As recommended in [13], we 
stored the image, kernel, and output as buffers in global memory. 
Each work-item computes the result of one window. Unlike the 
GPU implementations, the OpenCL compiler automatically 
groups the work-items into work-groups as well as unrolls loops 
and vectorizes operations when applicable [13].  

The implementation of each work-item was a straightforward 
specification of the window function for each application. The 
correntropy implementation used a global lookup table buffer for 
the Gaussian calculations. This lookup table was the same size as 
the one used for the GPU and FPGA. Like the GPU correntropy 
implementation, locating the maximum similarity values required 
a two-phase reduction where each work-item locates the 
maximum values for a section of the output. 

5. EXPERIMENTAL RESULTS 
The experiments section is organized as follows. We first define 
the experimental setup (Section 5.1). We then evaluate 
application performance individually for each device in terms of 
frames per second (Section 5.2), while also providing a speedup 
analysis. Next, we estimate speedup for emerging single-chip 
CPU/GPU systems and standalone FPGAs (Section 5.3). We then 
discuss the energy efficiency and performance in embedded 
systems (Section 5.4) of all implementations.  

5.1 Experimental Setup 
Details of the targeted systems are given in Section 4. We also 
estimated performance for emerging single-chip systems that 
integrate CPUs and GPUs, in addition to standalone FPGAs not 
requiring PCIe and a host processor. For simplicity, we refer to 
these GPU and FPGA systems as single-chip systems. We 
obtained upper-bound performance estimates for these systems by 
removing PCIe transfer times. 

In addition to the implementations in Section 4, we also evaluate 
a sequential C++ implementation on the same microprocessor as 

the multicore examples, which we use as a baseline for speedup 
comparisons. These baseline implementations were compiled 
using g++ 4.1.2 with -O3 optimizations.  

All implementations were evaluated for image sizes of 640×480 
(480p), 1280×720 (720p), and 1920×1080 (1080p), which are 
common video resolutions. The SAD and correntropy 
implementations were evaluated at kernel sizes of 4×4, 9×9, 
16×16, 25×25, 36×36, and 45×45. 2D convolution was evaluated 
at kernel sizes of 4×4, 9×9, 16×16, 25×25. Section 4 explains the 
maximum kernel sizes for each example.  

5.2 Application Case Studies 
In this section, we evaluate the performance of each application 
on each device in terms of frames per second (FPS). The frame 
rate is derived by inverting the execution time for one frame.  

5.2.1 Sum of Absolute Differences 
Figure 7 shows the frame rates for each implementation of SAD. 
All of the implementations were able to achieve real-time frame 
rates of 30 FPS or greater at small image and kernel sizes. 
However, the CPU rapidly decreased in performance. The GPU 
supported real-time usage when either the image or kernel size 
was small, but fell below 30 FPS for kernels larger than 25×25 in 
720p and 1080p images. The FPGA was the only device able to 
maintain real-time performance over all of the input sizes tested.  

The frame rates of the FPGA were constant across all kernel sizes 
for the same image size because the circuit computed one window 
each cycle regardless of kernel size. For larger kernel sizes that 
the circuit cannot compute in parallel, FPGA performance would 
decrease linearly as kernel size increased. FPGA frame rate 
decreased linearly with larger images, due to larger PCIe transfers 
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Figure 7. Performance of the SAD implementations measured in 
frames per second (1/execution time). Each chart corresponds to 
the results for all kernel sizes across one image size. The y-axis 

uses a log 10 scale for clarity. 
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and the increased number of windows. 

CPU and GPU frame rates decreased linearly with kernel size 
(width×height) and image size (width×height). The kernel and 
image sizes in Figure 7 each increase quadratically, causing the 
CPU and GPU graphs to decrease quadratically for each image 
size and O(n4) overall. This trend occurs because these 
implementations calculate every subtraction and addition using a 
limited pool of parallel resources that quickly becomes saturated 
as kernel size increases. The GPU always delivers a faster frame 
rate than the CPU running OpenCL, which in turn is always faster 
than the CPU sequential C++ baseline.   

5.2.2 2D Convolution 
The frame rates for each implementation of 2D Convolution, 
using 16-bit fixed-point kernels, are given in Figure 8. The trends 
for 2D convolution were similar to SAD, except on a smaller 
scale due to the more limited set of kernel sizes. As mentioned in 
Section 4.1.2, the FPGA supports a maximum window of 25×25 
due to a shortage of multipliers.  

The GPU-FFT and FPGA implementations were able to maintain 
frame rates over 30 across all input sizes tested. The two CPU 
implementations were only able to provide real-time performance 
for 4×4 and 9×9 kernels and had low frame rates overall for 
1080p images. The GPU sliding-window (i.e., time domain) 
implementation provided the highest frame rates for 4×4 kernels 
and was able to deliver 30 FPS for all kernel and image size 
combinations except the maximum of 25×25 and 1080p.  

It should be noted that the GPU-FFT implementation performs 
independently of kernel size when the kernel fits within the FFT 
size (i.e. the 1080p version could operate with a 128×128 kernel 
in the same amount of time as the 25×25 kernel). 

2D convolution using floating-point kernels was also evaluated. 
The sequential C++ baseline took an average of 2x longer to use 
floating point. The OpenCL and GPU implementations performed 
within 5% of their execution times for 16-bit fixed-point kernels. 
The FPGA used an average of 20% more time for the same kernel 
sizes, due entirely to the additional cost of moving a 32-bit image 
over the PCIe bus as described in Section 4.1.2. 

5.2.3 Correntropy 
The FPS of each implementation of correntropy is given in Figure 
9. The trends for correntropy and SAD were extremely similar. 

The FPGA delivered real-time performance across all feature 
sizes at 480p and 720p, and 27 FPS for all kernel sizes at 1080p. 
The GPU provided more than 30 FPS for 25×25 and lower at 
480p, 16×16 and lower for 720p, and 9×9 and lower for 1080p. 

The CPU implementations only provided real-time frame rates at 
the smallest kernel sizes in 480p and 720p.  

5.2.4 Discussion 
Performance, as indicated by speedup over the CPU sequential 
C++ implementation for each application, is shown for 720p 
images in Figure 10. The trends for 480p, 720p, and 1080p were 
similar enough that it is only necessary to display one image size. 

The data shows that, for each application, the sliding-window 
GPU implementation (i.e., time domain) was faster than the 
FPGA for 4×4 and 9×9 kernel sizes and roughly equivalent in the 
16×16 case. The FPGA gained significantly over the GPU at 
36×36 and larger kernels, reaching a maximum speedup over the 
baseline of 240x, 45x, and 298x for SAD, 2D convolution, and 
correntropy, respectively. While the GPU had nearly constant 
speedup, the FPGA increased its speedup linearly with kernel size 
due to its kernel-size independent performance.  

CPU OpenCL implementations provided steady speedup over the 
baseline, with a maximum of 3.9x, 3.7x, and 5.3x for SAD, 2D 
convolution, and correntropy, respectively. This consistency was 
supplied by performing similar operations spread out over the 4 
CPU cores. OpenCL was marginally faster than the FPGA at 4x4 
kernels and significantly slower at all other sizes. 

The GPU-FFT implementation for 2D Convolution was faster 
than the FPGA for all kernel sizes tested, with an average of 3x 
better performance than the FPGA. As mentioned previously, a 
FFT implementation on the FPGA may reduce this speedup. 

The data in Figure 11 shows that performance can vary by 
application for each device, despite each application sharing the 
same basic structure and memory access pattern. The sequential 
C++ CPU took an average of 1.7x longer to execute SAD than 2D 
convolution because of the extra steps for calculating the absolute 
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Figure 9. Performance of the correntropy implementations 

measured in frames per second (1/execution time). Each chart 
corresponds to the results for all kernel sizes across one image 

size. The y-axis uses a log 10 scale for clarity. 
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Figure 10. Speedup of all implementations over the sequential 
C++ baseline for SAD, 2D Convolution, and correntropy at all 

kernel sizes tested on 720p images. A log 10 scale is used on the 
y-axis for improved clarity. 
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Figure 11. Performance of all implementations in frames per 
second for SAD, 2D Convolution, and correntropy at all kernel 

sizes tested on 720p images. A log 10 scale is used on the y-axis 
for improved clarity. 



value. Correntropy took significantly longer for the sequential 
C++ than either SAD or 2D Convolution because of the additional 
step of accessing the Gaussian lookup table. Additionally, 
tracking the maximum value required extra comparisons. The 
same trends apply to the CPU OpenCL implementation. 

The FPGA implementations took nearly the same amount of time 
to execute regardless of the sliding-window function because the 
pipelined architecture amortizes any extra steps as latency without 
affecting throughput. The GPU implementation for SAD executed 
slightly faster than the correntropy implementation because the 
Gaussian lookups and the comparisons for establishing the 
maximum output became an expensive reduction operation, as 
mentioned in Section 4.2. 

5.3 Single-Chip Systems 
Figure 12 presents speedup of emerging single-chip CPU/GPU 
devices in addition to standalone FPGAs over traditional PCIe 
accelerators, which we collectively refer to as single-chip 
systems. The graphs in Figure 12 are limited to 720p images only 
because the trends for all image sizes were similar. 

The results show significant improvements compared to 
accelerator boards due to the elimination of PCIe transfer times, 
which accounted for as much as 65% of execution time for the 
GPU and 64% for the FPGA. 

The single-chip, sliding-window GPU implementations 
experienced the greatest speedup at low kernel sizes, which 
resulted from low computation compared to data set size. The 
speedup decreased quickly as data transferred over the PCIe x16 
bus was amortized against quadratically larger computations.  

The standalone FPGA implementations had a nearly constant 
speedup averaging 2x over PCIe versions. Speedup was constant 
because the execution time did not change as kernel size changed, 
leading to no amortization of data-transfer times. The GPU-FFT 
convolution implementation followed the same trend. 

It should be noted that as of this writing, the available CPU/GPU 
chips on the market, such as the AMD Fusion APU and NVIDIA 
Tegra 2, do not come close to the performance of the NVIDIA 
GeForce GTX 295 used in these experiments. Still, the severity of 
the PCIe bottleneck points to huge potential for devices that 
hardware can accelerate without bus transfers. 

5.4 Energy Comparisons 
To evaluate energy consumption, we calculate the energy for a 
given implementation by multiplying the execution time of each 
implementation by the reported worst-case power consumption of 
the corresponding device. Although such an analysis may be 
pessimistic, sliding-window applications are likely to reach these 

worst-case power levels due to their memory-intensive and 
computation-intensive behavior. The CPU implementations have 
a worst case power of 130 watts, the GPU implementations use 
274.5 watts (130 watt CPU + 144.5 watt GPU), and the FPGA 
uses 100 (80 watt CPU + 20 watt FPGA) [1]. When used as a 
standalone device the FPGA consumes 20 watts. 

The data in Figure 13 shows the stratification between the energy 
efficiency of each device. The FPGA was clearly the most 
energy-efficient device, with one and two orders of magnitude 
lower energy than the sliding window GPU and CPU, 
respectively, at the 45×45 kernel size. The GPU-FFT 
implementation was able to obtain comparable energy efficiency 
to the FPGA for convolution because of its better performance. 

Next, we evaluate the amenability of each device for real-time 
embedded systems usage by determining the theoretical power 
required to provide 30 frames per second. Note that many of the 
devices where not capable of providing such performance, 
causing the resulting power to far exceed the worst-case power of 
the device. We calculate this data by multiplying the energy for 1 
frame by 30 frames per second (FPS). Figure 14 presents the 
power analysis for correntropy, which was selected for its 
applications in resource-limited embedded systems [12]. The 
results show that an embedded system using correntropy for target 
tracking under a realistic power budget can only be achieved 
using an FPGA, as the other devices required orders of magnitude 
more power for larger kernels sizes. In addition, the wattage for 
non-FPGA systems was optimistic because those implementations 
were not capable of providing 30 FPS without parallelizing across 
multiple devices, for example 2 GPUs in an SLI configuration.  

The FPGA was able to produce 30 FPS correntropy results for 2, 
5.5, and 12 watts for 480p, 720p, and 1080p, respectively. The 
CPU and GPU required several orders of magnitude higher 
power, using a theoretical 8 kW and 3 kW, respectively, for the 
1080p 45×45 case.  
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Figure 12. Speedup of single-chip implementations over their 

PCIe equivalents for SAD, 2D Convolution, and correntropy at all 
kernel sizes tested on 720p images. 

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

En
e
rg
y 
(J
o
u
le
s)

SAD Convolution Correntropy

Kernel Size (N x N)
 

Figure 13. Energy consumed to process one frame for SAD, 2D 
Convolution, and correntropy at all kernel sizes tested on 720p 

images. A log 10 scale is used on the y-axis. 
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A system consisting of a standalone FPGA is practical for this 
application because the correntropy architecture described in 
Section 4.1.3 is capable of receiving data directly from a camera 
with the same Stratix III E260 used in these experiments. By 
contrast, the single-chip GPU estimation is excluded from this 
comparison because current state-of-the-art embedded GPU 
solutions, such as the NVIDIA Tegra 2, do not come close to the 
GeForce GTX 295 in performance and do not support CUDA as 
of this writing. We plan such analysis as future work. 

6. CONCLUSIONS 
In this paper, we compared performance and energy of sliding-
window applications when implemented on FPGAs, GPUs, and 
multicore devices, under a variety of different use cases. For most 
cases, the FPGA provided significantly faster performance, except 
for small inputs sizes, with speedups up to 11x and 57x compared 
to GPUs and multicores, respectively. GPUs provided the best 
performance when the basic sliding-window functionality could 
be replaced by frequency-domain algorithms. FPGAs provided 
the best energy efficiency in almost all situations, and were in 
some cases orders of magnitude better than other devices. For 
large input sizes, FPGAs were the only device capable of realistic 
embedded system usage. The consistency of the results across the 
3 applications studied suggests that the trends described in this 
paper can be applied to other sliding-window applications, with 
only minor differences caused by the operation applied to the 
sliding window. To our knowledge, we also demonstrated the first 
real-time sliding-window implementations to operate on high 
definition video with kernels up to 45×45.  
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