A Performance Characterization of High Definition
Digital Video Decoding using H.264/AVC

Mauricio Alvarez, Esther Salami, Alex Ramirez, Mateo Valero
HiPEAC. European Network of Excellence on High-Performance Embedded Architecture and Compilation
Universitat Politecnica de Catalunya
Barcelona, Spain
{alvarez, esalami, aramirez, mateo} @ac.upc.edu

Abstract— H.264/AVC is a new international video coding
standard that provides higher coding efficiency with respect to
previous standards at the expense of a higher computational
complexity. The complexity is even higher when H.264/AVC is
used in applications with high bandwidth and high quality like
high definition (HD) video decoding. In this paper, we analyze
the computational requirements of H.264 decoder with a special
emphasis in HD video and we compare it with previous standards
and lower resolutions. The analysis was done with a SIMD
optimized decoder using hardware performance monitoring. The
main objective is to identify the application bottlenecks and to
suggest the necessary support in the architecture for processing
HD video efficiently. We have found that H.264/AVC decoding of
HD video perform many more operations per frame that MPEG-
4 and MPEG-2, has new kernels with more demanding memory
access patterns and has a lot data dependent branches that are
difficult to predict. In order to improve the H.264/AVC decoding
process at HD it is necessary to explore a better support in media
instructions, specialized prefetching techniques and possibly, the
use of some kind of multiprocessor architecture.

I. INTRODUCTION

In recent years, multimedia applications have become an
important workload of computing systems. One of the most
computational demanding tasks in the multimedia domain
is video processing, specially due to its high information
processing bandwidth and its real time requirements. Emerg-
ing applications like video over wireless channels and the
increasing popularity of High Definition (HD) are requiring
higher video quality and, at the same time, higher compres-
sion efficiency than the existing standards like MPEG-2 and
MPEG-4 are capable to provide. For solving these issues a
new international video standard called H.264/AVC has been
defined which provides higher coding efficiency by using
advanced compression techniques, that in turn, require more
computational power. In applications with high bandwidth and
high quality, like HD video, the computational requirements
are even bigger [1].

The decoding of HD video using H.264/AVC is a big
challenge for current processor architectures, specially in em-
bedded systems where the processor not only needs to provide
the required performance for real time operation but also to
maintain a low power consumption and to allow low cost
implementations. As a measure of the information processing
requirements, Table I shows the bitrate for common appli-
cations of H.264/AVC. The high bandwidth for compressed

0-7803-9461-5/05/$20.00 ©2005 IEEE

Application Resolution | Frame | Uncompressed Compressed
PP rate bit rate bit rate
HD-DVD 1920x1080 25 607 Mbps 8-20 Mbps
HDTV 1280x720 25 270 Mbps 2-8 Mbps
DVD 720x576 25 121 Mbps 1-2 Mbps
Video conferencing 352x288 25 30 Mbps 128 - 1000 kbps
Mobile video 176x144 15 9 Mbps 50 - 1000 Kbps
TABLE I

BITRATE REQUIREMENTS FOR VIDEO DECODING

bitstreams translates directly into high real time processing
requirements.

In this paper, we analyze the computational requirements
of H.264 decoder with a special emphasis in the processing
of HD video and compare it with MPEG-2 and MPEG-4. The
analysis was done over both the reference and an optimized de-
coder. The objective of this performance characterization is to
identify the application bottlenecks and to suggest architecture
support for processing H.264/AVC HD video efficiently. With
such a performance characterization analysis the processing
requirements for real time video decoding can be estimated
and potential for optimization can be identified.

II. OVERVIEW OF H.264/AVC STANDARD

H.264/AVC is based on the same block-based motion
compensation and transform-based coding framework of prior
MPEG video coding standards. It provides higher coding
efficiency through added features and functionality that in turn
entail additional complexity.

H.264/AVC includes a lot of new coding tools with different
application scenarios. Here we present a summary of the most
relevant ones for the performance of the decoder application.
First, H.264/AVC introduces a variable block-size motion
compensation with small block sizes that range from 16 x 16
to 4 x 4 pixels. Second, it is possible to use multiple reference
frames for prediction with a weighted combination of the
prediction signals. Third, fractional (1/2, 1/4) pixel precision
is used in motion compensation. Fourth, the main transform
is an integer DCT-like transform applied to 4 x 4 blocks,
and in high definition profiles it is allowed to select between
4 x 4 and 8 x 8 transforms. Fifth, an adaptive deblocking filter
was added in order to reduce the artifacts produced by the
block-based structure of the coding process. Sixth, an adaptive

24

arithmetic coding technique (called CABAC) was developed
for the entropy coding process. Finally in H.264/AVC different
profiles have been defined that restrict the coding tools that
can be used. The most relevant for HD are the main and high
profiles.

In Table II the main features H.264/AVC are summarized
and compared with MPEG-2 and MPEG-4 [2], [3]. One of the
main differences between H.264 and the other video codecs
is that the former allows a variable block size which adapts
better to motion changes in input content, and MPEG-2 only
support 16x16 pixel blocks and MPEG-4 16x16 down to
8x8 pixel blocks. Additionally H.264 uses a quarter sample
resolution for motion estimation, a feature that is optional in
MPEG-4 and not available in MPEG-2. Another important
difference is that H.264 supports multiple reference frames
for motion compensation compared to a single one in the
other two codecs; and in the same way H.264 includes an
in-loop deblocking filter that is not available in the previous
standards. In general H.264 standard has more coding tools
than the previous ones, and this is the main reason for the
increase in the complexity of the codec. Next, a description
of the H.264/AVC coding/decoding process is presented.

In H.264/AVC all frames are either spatially or temporally
predicted. Intra-macroblocks are spatially predicted and inter-
macroblocks are temporally predicted using motion compen-
sation. The prediction residual (difference between prediction
and current data block) is encoded using transform coding.
The transform is applied to 4 x 4 blocks using an integer DCT
transform. The transform coefficients are then quantized and
encoded using entropy coding methods. In the decoder these
operations are performed in reverse order. First, video block
is entropy decoded and the resultant coefficients are inverse
quantized. An inverse transform is applied to those coefficients
in order to obtain the error signal. If the macroblock was
inter-predicted, motion compensation is applied using decoded
reference frames that are stored in an image buffer. The result-
ing prediction block is added to the previously derived error
signal to form a decoded macroblock. Finally the deblocking-
blocking filter is applied to the macroblock and the resulting
filtered macroblock is stored in the reference buffer and send
it to the display memory.

III. RELATED WORK

Due to the fact that microprocessors are increasingly spend-
ing their cycles in multimedia applications, there has been a
great effort on characterizing these applications. One of these
studies was the design and characterization of the Mediabench
benchmark which includes a MPEG-2 encoder and decoder
with low resolution input sequences [4]. At that time the
MPEG-4 and H.264/AVC video codecs were not available,
for what most of the works based on Mediabench do not
include results for these codecs. The Berkeley Multimedia
Workload benchmark is based on Mediabench and for the
video applications they use the same MPEG-2 codec but
with input sequences at DVD, HD-720 (1280x720) and HD-
1080 (1920x1080) resolutions [5]. This benchmark does not

25

include the most recent video codecs either. This issue was
partially solved by an extension to Mediabench in which
the MPEG-4 and H.263 codecs were included [6]. But they
do not address the issue of the increase in frame resolution
either. Although these studies perform an analysis of the
potential for optimization they do not include an analysis of
the performance effect of using SIMD instructions.

On the other hand, in a study about the available parallelism
in video applications the authors analyze the performance of
the MPEG-1, MPEG-2, H.263 and MPEG-4 video codecs by
simulating an idealistic machine with infinite resources [7].
They show that with such a machine it is possible to obtain
speed-ups from 30X to 1000X compared to a reference imple-
mentation. They do not address the problem of the increase in
image resolution, and do not use SIMD instructions. In a sim-
ilar study the authors analyze several multimedia applications
including MPEG-2 and H.263 video codecs and conclude that
the variability observed in the execution of these applications
comes from application properties, like I-P-B type of frames,
not from the unpredictability introduced by cache memories
and other architecture features of superscalar processors [8].
In a comparison of different multimedia instruction sets the
authors use the MPEG-2 codec and analyze in detail the
motion compensation kernels with different image resolutions,
but the focus of this analysis is the comparison of media
ISAs [9]. In another study the authors present an evaluation
of some multimedia applications including the MPEG-2 codec
but using low resolution sequences [10]. They analyze the
impact in performance by using the VIS extension of the
SPARC architecture.

There are some studies that deal with the cache perfor-
mance of multimedia applications. One of them explored the
cache behavior of various applications including the MPEG-2
codec [11]. The authors perform an experiment for evaluating
the effect of cache capacity on miss ratio for different frame
resolutions that shows that for determined size of the data
cache the miss rate is not influenced by the frame resolution.
Similarly a more recent study performs an analysis of cache
performance for some Mediabench applications and compares
their performance with SPECint and SPECfp benchmarks [12].
They conclude that multimedia applications have better cache
behavior than SPEC benchmarks and argue that this is due to
the block based structure of media applications.

There are some recent works that deal with the performance
of the H.264 codec. Some of them perform a complexity analy-
sis of H.264 with special attention on the video quality for low
bitrate applications [13], [14]. They study the complexity of
the H.264 decoder and conclude that H.264 is approximately
2.5 times more complex than H.263. In an another study the
authors have developed a SIMD optimized version of the
H.264 decoder using Intel SSE instructions and analyze the
performance of the decoder for CIF and DVD resolutions [15].
In a different microarchitectural study of the H.264 reference
decoder, the authors use low and standard video resolutions
in order to analyze the availability of ILP by simulating
a machine with infinite resources [16]. They suggest that

| Features | MPEG-2 | MPEG-4 ASP | H.264/AVC Main | H.264/AVC High |
Macroblock size 16216 16216 16216 16216
. 16216,1628,8216, 16216,1628,8x16,
Block size 8x8 16216,16x8,8x8 818,428 824,424 828,428 824,424
Transform 8x8 828 DCT 424 integer DCT 8x8,4x4 integer DCT
Pel-Accuracy 1,1/2 pel 1,1/2,1/4 pel 1,1/2,1/4 pel 1,1/2,1/4 pel
Reference frames One frame One frame Multiple jrrames Multiple frames
(up to 5 frames) (up to 5 frames)
forward/backward forward/backward
Bidirectional prediction forward/backward | forward/backward forward/forward forward/forward
backward/backward forward/backward
deblocking filter No No Yes Yes
Weighted prediction No No Yes Yes
Custom Quantizer Matrix No No No Yes
Entropy Coding VLC VLC CAVLC, CABAC CAVLC, CABAC
TABLE 11

COMPARISON OF VIDEO CODING STANDARDS

Processor IBM PowerPC 970 1.6 GHz
Level 1 I-cache 64 KB

Level 1 D-cache 32 KB

Level 2 cache 512 KB

Main Memory 512 MB

System Bus 800 MHz
Operating System Mac 0S-X
Compiler gee 3.3.3
Compiler Optimizations -03, mtune=G5

TABLE III
EXPERIMENTATION PLATFORM

the main bottleneck of the application is the unpredictable
branch behavior. In an another performance characterization
of MPEG-2 and H.264 decoders the authors develop a perfor-
mance analysis of these codecs on the Pentium architecture
in which they compare the differences between the kernels of
H.264 and MPEG-2 for video at DVD resolution[17]. They
conclude also that branch misprediction is a limiting factor for
H.264 decoding due to the data dependent branches of some
kernels.

The main difference of our study with respect to all the pre-
viously mentioned works is the performance characterization
of H.264 at very high resolutions. Most of the published results
are focused on low bitrate applications like mobile video or
video conferencing; some of then explore applications with
higher bandwidth like DVD playback but the performance
requirements of HD has been not analyzed previously. Addi-
tionally our study performs a comparison of the performance
of H.264 with other video codecs like MPEG-2 and MPEG-4.

IV. METHODOLOGY

The performance of a video decoding application depends
on the algorithm, the input sequences and the architecture in
which it is implemented [13]. For making a complete analysis
we have selected various input sequences and different video
codecs. The measurements have been done on a real machine
using hardware performance monitoring.

A. Performance Monitoring

The experiments have been done on a PowerPC970 machine
using the performance monitoring counters and the Apple

26

CHUD tools. The experimentation platform is described in
Table III. Hardware monitor counters have been used to collect
profiling information, completed instructions, CPU cycles,
cache accesses and misses, and branch prediction. Additionally
a time interval sampling analysis was conducted for analyzing
the phase behavior of the program execution [18].

B. Codec Configuration

H.264/AVC has a lot of coding configuration parameters
that can be varied depending on the target application and in
turn they can have a great impact in the decoder performance.
The selection of configuration parameters was done trying to
reproduce the scenario of HD applications. The main profile
of the JIM-9.5 reference codec [19] was selected, and used
with a constant quantization parameter and a I-P-B-B-P-B-B
sequence of pictures. The baseline decoder is the IM-9.5 ref-
erence decoder with some platform independent optimizations
for better memory performance and SIMD optimizations in
some relevant kernels. The reference decoder is compared with
the FFMPEG highly optimized H.264 decoder [20] and with
the XviD MPEG-4 decoder [21] and the libmpeg2 MPEG-2
decoder [22]. The configuration parameters of all codecs were
equally balanced in order to maintain a similar quality in the
resulting videos.

C. Test Sequences

Due to the fact that our goal is to characterize the perfor-
mance of the decoder at HD resolutions we selected input
sequences for 720x576, 1280x720 and 1920x1088 pixel reso-
lutions [23]. The set of input sequences has different motion
characteristics in order to cover a broad range of video content.
All of them have 100 frames with progressive scanning at 25
frames per second and use a 4:2:0 chroma subsampling format.
The selected input sequences are described in Table IV with
the average bit rate and quality (PSNR) for the three codecs
under study. The efficiency of H.264 over the others codecs
is represented by its ability to provide a similar quality at a
smaller bit rate.

V. ANALYSIS

By running the workloads on a real machine we have
collected different kind of measures. First, we have performed

Sequence Resolution H.264 MPEG-4 MPEG-2
bit rate | PSNR | bitrate | PSNR | bit rate | PSNR
Kb/s dB Kb/s dB kb/s dB
576_blue_sky 720x576 2033 42.1 2236 41.3 6318 43.0
576_pedestrian 720x576 2372 43.5 2827 43.6 4562 44.1
576_riverbed 720x576 10863 40.6 15368 42.7 17295 422
576_rush_hour 720x576 1914 44.3 2136 44.0 3567 45.0
720_blue_sky 1280x720 3471 42.9 4050 42.4 10010 43.9
720_pedestrian 1280x720 4155 43.8 5199 44.1 8278 44.4
720_riverbed 1280x720 19057 41.2 27571 43.3 31848 427
720_rush_hour 1280x720 3363 44.6 3972 44.4 6248 45.2
1088 _blue_sky 1920x1088 6724 43.3 8064 43.0 17723 442
1088_pedestrian 1920x1088 8132 43.4 11723 43.8 18424 44.2
1088_riverbed 1920x1088 34710 41.5 51508 43.4 60216 42.8
1088 _rush_hour 1920x1088 6469 44.0 8900 43.9 14076 44.4

TABLE IV

INPUT TEST SEQUENCES AND CODEC COMPARISON

Execution Time [s]

y
Yy
Yy

576_riverbed

576_blue_sk
720_blue_sk
720_riverbed

576_rush_hour
576_pedestrian
720_rush_hour
720_pedestrian
1088_rush_hour
1088_blue_sk

1088_pedestrian
1088_riverbed

Others ——1

Picture Buffer ———
Entropy Decoding ===
Deblocking Filter s

Inverse Transform 1
Chroma Interpolation ——
Intra Prediction ===
Luma Interpolation s

Fig. 1. Profiling of H.264 reference decoder with altivec optimizations.
("Others” is on top, "Luma Interpolation” is at the bottom)

a profiling, next we calculated average results per frame, and
finally we have performed a sampling analysis that allows us
to detect the presence of phases in the program execution.

A. Profiling of the H.264

In order to improve the performance of the reference
decoder we have implemented some kernels using Altivec
media instructions [24]. The selected kernels were the luma
interpolation (part of the motion compensation process) and
the inverse discrete transform. In Figure 1 the profiling of the
H.264/AVC decoder with Altivec optimizations is shown. With
the Altivec optimizations the total execution time has been
reduced in 1.3X in average, and the luma interpolation kernel
itself has a speed-up of 3.27X. After Altivec optimization the
execution time is dominated by the deblocking filter (49.01%),
the chroma interpolation (19.98%) and the entropy decoding
(12.08%). It is important to note that there is more room for
SIMD optimization, specially in the interpolation of chroma
signals [15] but the execution time now is dominated by the
deblocking filter and entropy decoding (61%).

1) Kernels of the H.264: The interpolation process is a
computationally intensive kernel used for generating sub-
sample positions. Half-sample positions are generated with a
6-tap FIR filter and, once these are available, quarter-sample
positions are generated using linear interpolation. Chroma
interpolation is done at eighth-sample resolution by using
a linear interpolation from integer positions. Interpolation
is a computationally intensive kernel but also it is mem-
ory demanding because half-sample interpolation requires six
neighbor pixels in vertical, horizontal or diagonal directions
inside the frame.

The deblocking filter is a very significant kernel because it
is applied to each decoded macroblock. Filtering is applied to
vertical or horizontal edges of 4 x 4 blocks, but the decision of
filtering depends on the boundary strength and on the gradient
of image samples across the boundary [25]. Both of these
conditions are evaluated based on the values of the pixels at
the edges and on some coding parameters like quantization
parameter (QP). The filter itself is a FIR filter with different
taps (3, 4 or 5) that are selected depending on the filtering
conditions. As a result of that there are a lot of data dependent
branches and a small data level parallelism in this kernel.

The inverse integer transform (IT) takes an average of 5.74%
of the execution time, which is smaller than the Discrete
Cosine Transform (DCT) in MPEG-2 that takes 29% [9]. The
inverse transform (IT) kernel has a very low speed-up of 1.05X
when implemented with Altivec SIMD instructions. That is
due to the small DLP exhibited by the implementation of the
algorithm in the reference code and the small quantity of data
to be processed [26]. As a way to overcome these problems
some implementations have reported bigger speed-ups using
the original matrix multiplication algorithm [15].

H.264 uses a entropy coding technique called context adap-
tive binary arithmetic (CABAC) that achieves higher com-
pression ratios than previous techniques by selecting different
probability models for each syntax element, adapting the
probability of each model based on local statistics and using
arithmetic coding [25]. Due to the fact that each type of syntax
element has different models the arithmetic decoder has to
execute a lot of branches that are data dependent; and because

27

[Sequence [[H264-REF | H.264-HO | MPEG-4 | MPEG-2 ||
| I fps | fps | fps | fps]
576-rush_hour 2.84 27.04 66.80 338.98
576-blue_sky 3.43 30.68 5821 299.40
576_pedestrian 341 31.04 78.55 158.98
576_riverbed 2.36 18.75 53.88 23753
AVG 576 3.01 26.88 64.36 258.72
720_rush_hour 1.25 14.15 3172 179.53
720_blue_sky 1.38 14.82 31.28 161.29
720_pedestrian 1.37 14.53 37.98 167.50
720riverbed 1.04 9.30 27.09 80.84
AVG 720 1.26 13.20 32.02 147.29
1088-rush_hour 0.60 6.36 13.91 71.28
1088-blue_sky 0.62 6.73 13.98 72.10
1088_pedestrian 0.61 6.56 15.52 67.34
1088.riverbed 0.50 4.50 12.73 37.01
AVG 1088 0.58 6.04 14.04 61.93
TABLE V

DECODING PERFORMANCE IN FRAMES PER SECOND

of the serial nature of the arithmetic decoder it has to perform
a lot of bit serial operations that restrict SIMD parallelization.
2) Decoding performance: Using the Altivec optimized
version of the reference decoder (H.264-REF) we have cal-
culated the decoding performance in frames per second which
is shown in Table V. The table also presents a comparison
with the FFMPEG highly optimized H.264 decoder (H.264-
HO) and with the MPEG-2 and MPEG-4 decoders. For all the
resolutions the MPEG-2 decoder can process the sequences
in real time (25 frames per second), but for MPEG-4 this
is not possible for the 1920x1088 resolution. For the H.264-
REF decoder the performance is far from real time in all the
resolutions, but it is necessary to take into account that the
reference decoder defines the functionality of the H.264/AVC
standard and it is not designed for high performance. Results
from the H.264-HO decoder show that it is possible to decode
sequences at DVD resolution in real time but for 1280x720
and 1920x1088 resolutions the obtained performance is half
and a quarter of the necessary for real time respectively.!

B. Instruction Breakdown

Using H.264-REF decoder we have performed an analysis
of dynamic instruction distribution, which is shown in Ta-
ble VI. H.264/AVC is dominated by integer operations, most
of them are adds, subs and shifts. In the Altivec portion of
the code there are more overhead instructions (permute 54%)
than effective computation ones. That is very important in the
luma interpolation kernel where there is a lot of instructions
dedicated to data re-organization.

C. Instructions and Cycles

Table VII shows the average CPU cycles and instructions
per frame for the different input sequences and different codecs
under study. The H.264-REF decoder executes 10.5X and
66X more instructions in average than MPEG-4 and MPEG-2

'The H.264-HO decoder is a very recent software that was not available
at the beginning of this study, it is only used when H.264 is compared with
other MPEG codecs. The rest of the study is based on H.264-REF

28

Instruction Type

% of Class | % of Total |

All Integer 100 50.5
Integer Add/Sub 49.7 25.1
Integer Multiply 4.4 22
Integer Divide 2.6 1.3
Integer Logical 17.3 8.7
Integer Shift 10.7 5.4
Integer Compare 14.2 7.2
All AltiVec 100 0.8
AltiVec Simple 30.0 0.3
AltiVec Complex 15.4 0.1
AltiVec Permute 54.6 0.4
All Load 100 24.7
All Store 100 7.5
All Branch 100 14.6
Miscellaneous 100 2.0
TABLE VI

DYNAMIC DISTRIBUTION OF INSTRUCTIONS H.264 REFERENCE DECODER

respectively, and the H.264-HO decoder executes 1.36X and
8.61X more instructions respectively.

Also can be noted that the IPC changes with different input
sequences but not with the increase in frame resolution. Taken
that I PC = (InstCount)/(Freq x ExecTime) and with the
information of instructions per frame and assuming a 3.0 GHz
clock frequency it is possible to estimate the necessary IPC for
decoding H.264/AVC in real time. The results are 2.99, 6.43
and 14.33 for the reference decoder at 720x576, 1280x720
and 1920x1088 resolutions respectively. For the H.264-HO
decoder it is possible to reach the real time performance
at 720x576, 1280x720 resolutions at 3.0 GHz, but for the
1920x1088 resolution it is necessary an IPC of 1.83. From
these results we can note that even with a high performance
next generation processor and highly optimized decoder it is
not possible to process HD video in real time. Based on that we
can conclude that it is necessary to explore multiple ways of
parallelization apart from SIMD extensions in order to achieve
the required performance for real time operation.

Similar to other video standards H.264/AVC has three dif-
ferent kind of frames: intra-coded (I-frames), inter-coded with
unidirectional references (P-frames) and inter-coded with bi-
directional references (B-frames). The impact of the different
types of frames in performance is shown in Figure 2 with the
distribution of cycles and instructions in I, P and B frames.
The increase in cycles and instructions is proportional to the
increase of the image area. The 1280x720 and 1920x1088
frame resolutions have an area that is 2.2 and 5 times bigger
that the 720x576 resolution respectively. Also it can be noted
that intraprediction takes more cycles and instructions than in-
terprediction (P and B). Consequently for the sequences with a
lot of I-macroblocks, like riverbed, the decoding time is bigger.
In intra-prediction the samples of a macroblock are derived
from macroblocks of the same image using different spatial
modes which require quite complicated memory accesses.

D. IPC variability

A previous study [8] has demonstrated that most of the
variability in the performance of frame based multimedia
applications comes from the different kind of frames that exist

Cycles *10°

Cycles *10°

H.264-REF H.264-HO MPEG-4 MPEG-2
Cycles Inst. Cycles Inst. Cycles Inst. Cycles Inst.
Sequence x10° | x10° ‘ tPe ‘ x10° | x10° ‘ tPe ‘ x10° | x106 | PO %i0¢ | x10° | €
576.rush_hour 438 337 | 0.77 2 43 [1.03 32 34 [1.05 5.6 40 [071
576_blue_sky 426 336 | 0.9 20 2 | 1.05 34 37 [107 6.6 49 [0.74
576_pedestrian 129 330 | 0.77 40 20 | 1.02 28 27 | 097 538 42 [0.73
576.riverbed 580 432 | 0.74 72 68 | 0.94 44 41 [093 11.0 9.9 | 0.90
Average 576 468 359 | 077 43 48 | 101 34 34 | 1.00 73 58 | 0.77
720_rush_hour 945 729 | 0.77 88 90 [1.03 70 74] 1.05 11.0 80 | 0.13
720 blue_sky 913 726 _| 0.80 82 86 | 1.05 71 77 | 107 11.9 9.0 | 0.76
720_pedestrian 925 714 | 0.77 83 86 | 1.04 60 59 | 098 115 86 | 0.5
720 riverbed 1239 917 | 0.74 144 139 | 0.96 o1 85 | 093 21.6 193 | 092
Average 720 1005 771 | 0.77 99 100 | 1.02 73 73 | 101 14.0 1.4 | 0.9
T088_rush_hour 2128 | 1632 | 0.77 192 198 | 1.03 160 165 | 1.03 265 92 | 0.2
T083_blue_sky 2060 | 1631 | 0.79 181 o1 | 1.05 160 168 | 1.05 259 01 | 0.74
T083_pedestrian 2094 | 1613 | 0.77 185 196 | 1.06 146 144 | 0.99 275 | 207 | 075
1088 _riverbed 2717 | 2004 | 0.74 295 295 | 1.00 194 182 | 0.94 74 | 411 [087
Average 1083 2250 | 1720 | 0.77 213 220 | 1.04 165 165 | 1.00 318 | 250 | 077
TABLE VII
CYCLES, INSTRUCTIONS AND IPC PER FRAME
3000 T T T T T T T T T T T T 3000 T T T T T T T T T T T T
| ——— m | ———
P = B P =
B D B s
2500 |- b 2500 |-
P o - -
@® 2000 [% 2000 [=
= L £
S P = Ao
= < I
S 1500 [> 1500 |-
= L 2
W o
S 1000 i % 1000 |- -
500 | H_IH‘I m 500 [l
Iy 7 o AN
= = = =] = = =] = = o =3 = = = k=] = = =] = = =]
2FEERFEE 28T 2FEE2FEE 28
=<+ =<+ S S D > D s D
E58 5858585 % 3 238-85E5835%°
d e TE SIS T 28 o8 d 8 ITE SIS ITE 28 o8
FEePE°"RE~Eg"888~° EPg”"E~RETE8EE"
Fig. 2. Cycles and instructions per frame H.264-REF decoder
in the application (ie I,P,B). Figure 3 shows the instructions
2500 1088 oval and cycles classified by P and B frames for the blue_sky
- _cycles . o -
2000 1088_instr - sequence. Instructions and cycles exhibit a small variation
/ SR R S P © 720_cycles -
1500 {fy=mm T T e 720_instr between frames of the same type, and because of that the
i , 576_cycles —---- .
1000 |- B 576_instr - - IPC remains almost constant. Based on that we can conclude
) S — I — that the amount of computational work necessary to decode
0 each frame depends on the frame type (P and B) and on the
© 5 10 15 20 25 30 B density of I-macroblocks in each frame.
P frames
2000 1088_cycles E. IPC samp lmg
1088_instr - s . .
1500 B A A e o 720 cydes In addition, we have made an analysis of the decoding of
=] 20 i . . g e
1000 R i — the whole sequence and we found that the application exhibits
2 576.instr - a phase behavior at the granularity of a P-B-B sequence.
500 puooex s it ROt S s
R e Figure 4 shows the time behavior for the decoding of a P-
0 -
o 10 20 30 40 0 0 70 B-B group of frames for the 1988_b1ue_sky sequence. The
B frames three frames are separated by big peaks and fluctuations of
IPC which corresponds to the copy of the decoded frame out
Fig. 3. Cycles and instructions in P and B frames for blue_sky of the frame buffer. In turn, the processing of each frame has

three clearly differentiated stages: the first, which includes the

29

IPC

0.5

0 0.5 1 1.5 2 25 3 3.5 4 4.5
time [s]

Fig. 4. Sampling of IPC for 1088_blue_sky

entropy decoding, inverse transform and motion compensation,
has an IPC close to one; the second, which consist of the
deblocking filter, has a lower IPC near 0.6; and the third
phase the IPC exhibits big fluctuations due to the "memcopy”
kind of operations. The behavior is similar for both P-and-B
frames (I frames are not analyzed) and in B frames the motion
compensation stage is longer. For space reasons we only
show the results for 1920x1088 resolution but for the other
resolutions the figure is very similar with the only difference
of time scale.

F. Cache Analysis

Table VIII shows the average number of accesses and
misses per frame for the L1 data cache. H.264/AVC decoder
has many more L1 data cache accesses and misses than the
other two codecs; for example in the 1920x1088 resolution
the H.264-REF decoder performs 15.2X and 79.06X more
memory accesses than MPEG-4 and MPEG-2 respectively
and the H.264-HO decoder performs 1.29X and 6.6X more
memory accesses.

Although H.264/AVC performs more memory accesses per
frame it has a smaller miss rate. This good cache behavior is
due to the fact that H.264/AVC perform more operations per
frame than the other codecs but it has a high data locality at the
macroblock level in which most of the operations are done,
and macroblocks fits well into the data cache, even where
the whole frame will not. Additionally the miss rate remains
almost equal with the resolution, only in MPEG-4 there is an
increment in miss rate with resolution. These results are in
consonance with some previous studies on memory behavior
for multimedia applications [11], [12] that claim that the use of
cache memories benefits in a significant way the performance
of these applications.

Figure 5 shows the distribution of L1 data cache accesses
and misses for the different type of frames in the H.264/AVC
sequences. In I-frames the decoder performs more accesses
to the L1 data cache than the other type of frames, mainly
because intra-prediction uses several spatial prediction modes
with different memory access patterns. On the contrary B

30

o % 1088_access

g 1200 NS TORSONT] 25 & 1088_misses
o 1000 e 1 09 @ 720_access -
£ 800 / € 720_misses

£ 115 £ 576_access ———--
3 600 " 110 576_misses -----
] 400 2

8 200 & 15 2

® €

0 0
0 5 10 15 20 25 30 35
P frames
1000 40

o % 1088_access

% 800 [% 1088_misses -
° B VASYi PRAS o 720_access -
€ 600 € 720_misses

s ® 576_access -~
o 400 Fs R W 576_misses -~
173 [0}

& 200 3

& £

0

0O 10 20 30 40 50 60 70
B frames

Fig. 6. dL1 accesses and misses in P frames for blue_sky

45

40

35

30

25

20

miss rate %

. VR Y, MM%M ‘ HM.M‘

0 0.5 1 15 2 25 3 3.5 4 4.5
time [s]

Fig. 7. Sampling of d-L1 miss rate for 1088_blue_sky

frames have more data cache misses, and that is because these
kind of frames have to access multiple reference frames, that
are stored in a picture buffer, which does not fit in the L1 level
cache.

Figure 6 shows the variation of accesses and misses in P and
B frames respectively. In the P-frames L1 data cache accesses
and misses remain almost constant, then the miss rate is not
affected by the resolution and input content. But in B-frames
the misses exhibit big variations for the 1920x1088 resolution
(more than 40% of the total misses) that are not present in
lower resolutions. This result shows that for HD resolution
the bidirectional prediction puts a big pressure on the data
cache. This behavior can be more severe if the encoder uses
more than two frames for the predictions of the current frame,
which is a technique available in H.264/AVC.

Figure 7 shows the L1 data cache time behavior for the
decoding of a P-B-B sequence of the 1088_blue_sky sequence.
As with the time behavior for IPC shown in Figure 4 there
are three different phases of the execution. The first phase, in
which motion compensation is performed, has a bigger miss
rate than the second phase in which deblocking filtering is
applied. Motion compensation exhibits a bigger miss rate that

H.264-REF H.264-HO MPEG-4 MPEG-2
Sequence Accesses | Misses | Miss Accesses | Misses | Miss Accesses | Misses | Miss Accesses | Misses | Miss
d x10° | x10% | rate x10° | x10°% | rate x10°% | x10°% | rate x10° | x10% | rate
576_rush_hour 204 5.0 2.4 18 0.52 2.9 15 0.54 3.6 2.2 0.15 6.8
576_blue_sky 192 5.1 2.7 18 0.51 2.9 16 0.46 2.9 2.3 0.16 6.8
576_pedestrian 205 4.8 24 17 0.44 2.6 13 0.54 4.2 2.3 0.16 6.9
576_riverbed 299 5.0 1.7 35 0.35 1.0 15 0.82 5.5 3.6 0.22 6.1
Average 576 225 5.0 2.3 22 0.45 2.3 15 0.59 4.1 2.6 0.17 6.6
720_rush_hour 442 10.5 24 37 1.04 2.9 34 1.46 4.3 52 0.30 5.8
720_blue_sky 415 10.7 2.6 36 1.17 33 35 1.39 4.0 5.4 0.33 6.0
720_pedestrian 446 10.2 2.3 35 0.91 2.6 29 1.47 5.1 5.5 0.33 6.0
720_riverbed 646 10.3 1.6 69 1.22 1.8 31 1.79 5.7 7.8 0.47 6.1
Average 720 487 10.4 2.2 44 1.09 2.6 32 1.53 4.8 6.0 0.36 6.0
1088_rush_hour 1002 24.1 2.4 79 2.24 2.8 77 4.95 6.4 12.6 0.79 6.2
1088_blue_sky 948 24.8 2.6 79 3.22 4.1 78 5.04 6.5 12.4 0.80 6.4
1088_pedestrian 1015 233 2.3 78 2.07 2.7 68 4.55 6.7 13.1 0.82 6.2
1088_riverbed 1431 22.6 1.6 139 242 1.7 67 4.09 6.1 17.6 1.11 6.3
Average 1088 1099 23.7 22 93 2.48 2.8 T2 4.66 6.4 13.9 0.88 6.3
TABLE VIII
D-L1 ACCESSES, MISSES AND MISS RATE COMPARISON
1600 T T T T T T T T T T T 30 T T T T T T T T T
| /—— — | [—]
P oo |
1400 |-B B Do
: . o5 i
1200 | ‘
© = [© 20 |
S 1000 | 2
[<5) f<b)
s s
£ 800 |- £ 15 |
3 8
8 600 8
2 e 10 fi s
400
5
200
o = = = o = = - _>\ " =
= f = =] = f = =] = = E=J = f = E=J = = E=3 = = =]
§2£23528253¢82 g3€25282838%:2
S o 9L D998 S 98 S L 5o 98 S 938
gBgbgRgRglgs gfghbgRg gggs
Fig. 5. L1 accesses and misses per frame

is related to the inter-prediction decoding process in which a
reference frame is used to predict the current frame. The time
of this phase is bigger in the B frames in which there are
more than one reference frame. The peaks are related again
with the third phase in which the decoded frame is sent out
of the decoded picture buffer.

The access to multiple reference frames in interprediction
seems to be the main factor for the high cache miss rate. For
solving that some prefetching mechanism could be used. In
this case software prefetching could help to reduce signifi-
cantly the cache miss rate because the algorithm knows what
frames (and macroblocks in that frame) are going to be used
as reference.

G. Branch Prediction

H.264/AVC has a lot of different coding options that can
change from macroblock to macroblock and has some kernels
with a lot of data dependent branches, altogether results in
a high density of branches and branch mispredictions as

31

can be seen in Table IX. The reference decoder executes
4X and 119X more branches compared to MPEG-4 and
MPEG-2 respectively and the H.264-HO decoder executes
1.67X and 15X more respectively. In all the codecs branch
prediction exhibits variations with input content but not with
frame resolution. The H.264-HO decoder has a bigger branch
misprediction rate than the H.264-REF decoder (2X for the
1920x1088 resolution). This comes from the fact that the
reference decoder supports more (exotic) coding options than
the H.264-HO decoder, and these options need to be checked
in each each frame (sometimes each macroblock) but are easier
to predict.

In Figure 8 the branch misprediction sampling is shown for
a P-B-B sequence of the 1088 blue_sky sequence. The three
phases scheme is again evident, and in this case the entropy
decoding and motion compensation stage exhibits a bigger
misprediction rate than filtering. CABAC entropy decoding has
a lot of data dependent branches that are difficult to predict

H.264-REF H.264-HO MPEG-4 MPEG-2

Sequence Branches | Mispred. | Mispred. Branches | Mispred. | Mispred. Branches | Mispred. | Mispred. Branches | Mispred. | Mispred.

q x10° x10° rate x10° x10° rate x10° x10° rate x10° x10° rate
576_rush_hour 54 2.54 4.7 6.4 0.63 9.8 3.4 0.12 3.5 0.39 0.04 11.2
576_blue_sky 53 2.51 4.7 5.5 0.57 10.2 3.5 0.11 3.2 0.52 0.06 12.0
576_pedestrian 54 243 4.5 6.5 0.61 9.4 33 0.14 4.4 0.43 0.05 12.1
576_riverbed 79 3.64 4.6 11.3 1.48 13.1 7.2 0.54 7.6 1.14 0.14 12.4
Average 576 60 2.78 4.63 7.4 0.82 10.7 4.3 0.23 4.68 0.62 0.07 11.90
720_rush_hour 117 5.41 4.6 13.6 1.22 8.9 7.3 0.24 33 0.71 0.07 10.3
720_blue_sky 115 5.35 4.7 11.6 1.11 9.5 74 0.23 3.1 0.90 0.10 11.7
720_pedestrian 115 5.14 4.5 13.8 1.18 8.6 7.1 0.29 4.1 0.82 0.09 11.5
720_riverbed 165 7.51 4.5 23.3 2.86 12.3 14.8 1.10 7.4 2.15 0.26 12.2
Average 720 128 5.85 4.57 15.6 1.59 9.8 9.2 0.46 4.47 1.14 0.13 11.44
1088_rush_hour 261 11.89 4.6 30.5 2.52 8.3 16.9 0.58 3.4 1.64 0.17 10.3
1088_blue_sky 258 11.9 4.6 26.5 2.34 8.8 16.2 0.49 3.1 1.78 0.20 11.5
1088_pedestrian 260 11.6 4.5 31.1 2.51 8.1 17.4 0.72 4.1 1.87 0.21 11.4
1088_riverbed 357 15.96 4.5 50.0 5.71 114 32.0 2.28 7.1 4.25 0.51 12.0
Average 1088 284 12.84 4.52 34.5 3.27 9.1 20.6 1.02 4.44 2.38 0.27 11.29

TABLE IX

BRANCHES AND BRANCH MISPREDICTION

25

20

miss prediction %

—
-

2 25 3
time [s]

-
ma

0.5 1 1.5

o

4 4.5

3.5

Fig. 8. Branch misprediction

and also motion compensation has a lot of options that can
change inside each macroblock (block size, pixel interpolation)
and these values are selected by the encoder according to the
content of the input sequence also making them difficult to
predict. As the problems with the branch prediction come from
the values of the data and not from the internal flow of the
code, it is difficult to design a branch predictor that predicts
these values. For this case it could be beneficial to use of
techniques like total or partial predication.

VI. CONCLUSIONS AND FUTURE WORK

We have evaluated the performance of the H.264/AVC video
decoder with an emphasis on HD resolution. Using profiling
techniques we identified the most time demanding kernels
and some of them were optimized using SIMD extensions.
Two H264/AVC decoders were compared with previous video
codecs, and the decoding of HD sequences was compared with
lower resolutions. We measured and presented statistics such
as IPC, branch prediction and cache statistics. Additionally
we performed sampling analysis of key performance metrics
in order to analyze the variability and presence of phases in
the execution.

32

The profiling analysis has shown that the H.264/AVC has
new kernels, like pixel interpolation and deblocking filter, that
have different computational requirements and performance
behavior than the kernels of previous video standards. Con-
versely some kernels that are more important in former MPEG
codecs like the IDCT have a little impact on the performance
of the H.264/AVC decoding. In addition the proportion of
execution time of each kernel changes severely with the coding
parameters. In this study we select the coding parameters for
high bitrate applications and they are somewhat different to
other published results that address low bitrate applications.
Specifically in our study the deblocking filter is the most time
consuming kernel, followed by pixel interpolation.

Although with the SIMD optimization of some kernels it is
possible to speed-up the application, the dynamic instruction
breakdown shows that most of media instructions are devoted
to data transformation and reorganization, that suggest that
there is a mismatch between the data structures of kernels and
the register structure of the multimedia extension.

In addition we have quantified the complexity of the
H.264/AVC decoding process by measuring the instructions
and cycles that are necessary for decoding a frame. The
comparison with MPEG-4 and MPEG-2 shows that H264/AVC
requires many more operations than these codecs. This enor-
mous amount of data that needs to be processed makes
harder the real time operation at HD resolutions. Although
it could be possible to provide this processing requirements
with some new generation of high frequency high performance
superscalar processors, this choice is not suitable for embed-
ded systems that have strict power and cost constraints. For
this application scenario there is an open research field for
finding processor architectures that meet the high performance
processing requirements and at the same time maintain a low
power consumption. Our future work goes in that direction.

On the other hand we have confirmed the results from
previous works that the variability in performance is mainly
due to the different type of frames. For H.264/AVC this
behavior is stronger because I, P and B frames have very

different coding tools. For instance I frames performs more
accesses per frame than the other ones but B frames have
more misses per frame. This behavior suggests the possibility
of including different architectural support for each type of
frames. In B frames it seems to be more useful to include
some type of macroblock prefetching to reduce the miss rate,
but for I-frames it would be better a special type of load
that facilitates the different memory patterns of the spatial
intraprediction process.

With respect to memory behavior we have found that, al-
though H.264/AVC performs many more memory accesses per
frame than the other codecs, it has a higher cache hit rate. This
result suggest that H.264/AVC performs more operations per
frame but these additional operations are done over small units,
like macroblocks or sub-macroblocks, then the increment in
memory accesses does not mean an increment in cache miss
ratio.

We also found that the H.264/AVC decoding process has
different phases of execution which correspond to the P-B-B
sequence of frames. Additionally we have found that inside
each frame there are well defined execution phases that are
directly related with key functional sections of the decoder.
Our study reveals that the motion compensation process and
the deblocking filter are the most dominant and differentiated
stages. Taken that into account it is possible to suggest
different architecture support for each one of these execution
phases.

Our fundamental conclusion is that H.264/AVC decoding of
HD video is a big challenge for current processor architectures,
because it presents a tremendous amount of data that needs
to be processed in real time but not as regular as it has been
with other video codecs. H.264/AVC has new kernels, some of
them computationally intensive, some with demanding mem-
ory access patterns and some with high branch misprediction
rates. Based on that we can conclude that the H.264/AVC
decoding of HD video will require not only more performance
for the multimedia instruction sets of one processor, but the
use of specialized prefetching techniques and possibly the use
of some kind of multiprocessing approach.

Currently we are working on the development of extensions
to the current multimedia ISAs for better support of the new
features of the video processing with H.264 and also we are
analyzing the memory and multiprocessor organizations that
can provide the required performance under low power design
constraints.

ACKNOWLEDGMENTS
This work has been supported by the Ministry of Science
and Technology of Spain, the European Union (FEDER funds)
under contract TIC2004-07739-C02-01 and by IBM. We ac-
knowledge the Barcelona Supercomputing Center (BSC) for
supplying the computing resources for our research.

REFERENCES

[1] T. Sikora, “Trends and Perspectives in Image and Video Coding,”
Proceedings of the IEEE, vol. 93, no. 1, pp. 617, Jan 2005.

33

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

A. Tamhankar and K. R. Rao, “An Overview of H.264/MPEG-4 PART
10,” in 4th EURASIP Conference focused on Video/Image Processing
and Multimedia Communications, July 2003, pp. 1-51.

J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools,
Performance, and Complexity,” IEEE Circuits and Systems Magazine,
vol. 4, no. 1, pp. 7-28, Jan 2004.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench:

A Tool for Evaluating and Synthesizing Multimedia and
Communicatons ~ Systems,” in 30th International ~ Symposium
on Microarchitecture, 1997, pp. 330-335. [Online]. Available:

citeseer.nj.nec.com/lee97mediabench.html

N. T. Slingerland and A. J. Smith, “Design and Characterization of the
Berkeley Multimedia Workload,” Multimedia Systems, vol. 8, no. 4, pp.
315-327, 2002.

J. Fritts, W. Wolf, and B. Liu, “Understanding Multimedia Application
Characteristics for Designing Programmable Media Processors,” in SPIE
Photonics West, Media Processors "99, 1999, pp. 2—13.

H. Liao and A. Wolfe, “Available Parallelism in Video Applications,”
in International Symposium on Microarchitecture, 1997, pp. 321-329.
C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan,
“Variability in the execution of multimedia applications and implications
for architecture,” in Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001, pp. 254-265.

N. Slingerland and A. J. Smith, “Measuring the Performance of Mul-
timedia Instruction Sets,” IEEE Transactions on Computers, vol. 51,
no. 11, pp. 1317-1332, Nov 2002.

P. Ranganathan, S. V. Adve, and N. P. Jouppi, “Performance of Image
and Video Processing with General-Purpose Processors and Media ISA
Extensions,” in International Symposium on Computer Architecture,
1999, pp. 124-135.

N. T. Slingerland and A. J. Smith, “Cache Performance for Multimedia
Applications,” in ICS '01: Proceedings of the 15th International Con-

ference On Supercomputing, 2001, pp. 204-217.

Z. Xu, S. Sohoni, R. Min, and Y. Hu, “An Analysis of Cache Perfor-
mance of Multimedia Aplications,” IEEE Transactions on Computers,
vol. 53, no. 1, pp. 20-38, Jan 2004.

M. Horowitz, A. Joch, and F. Kossentini, “H.264/AVC Baseline Profile
Decoder Complexity Analyis,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 704-716, July 2003.
V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of
Optimized H.26L Video Decoder Implementation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 717-
725, July 2003.

X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of H.264 Decoder
on General-Purpose processors with Media Instructions,” in Proceedings
of SPIE Conference on Image and Video Communications and Process-
ing 2003, 2003.

T. T. Shih, C. L. Yang, and Y. S. Tung, “Workload Characterization of the
H.264/AVC Decoder,” in Proceeding of the 5th Pacific Rim Conference
on Multimedia, December 2004.

M. Holliman and Y.-K. Chen, “Mpeg Decoding Workload Characteriza-
tion,” in Proceedings of Workshop on Computer Architecture Evaluation
Using Commercial Workloads, Feb 2003.

F. E. Levine and C. P. Roth, “A Programmer’s View of Performance
Monitoring in the PowerPC Microprocessor,” IBM Journal of Research
and Development, vol. 41, no. 3, p. 345, 1997.
“H.264/AVC Software Coordination,”
http://iphome.hhi.de/suehring/tml/.

“Ffmpeg multimedia system. a solution to record, convert and stream
audio and video,” 2005, http://ffmpeg.sourceforge.net.

2005,

“Xvid. An ISO MPEG-4 Compliant Video Codec,” 2005,
http://www.xvid.org.
“Libmpeg2 - a Free MPEG-2 Video Stream Decoder,” 2005,

http://libmpeg2.sourceforge.net/.

“Mpeg-test sequences.” 2005, http://www.ldv.ei.tum.de/liquid.php?page=70.

K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scales, “Altivec
Extension to PowerPC Accelerates Media Processing,” IEEE Micro,
vol. 20, no. 2, pp. 85-95, April 2000.

I. Richardson, H.264 and MPEG-4. Video Compression for Next-
generation Multimedia. Chichester, England: Wiley, 2004.

H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-
complexity Transform and Quantization in H.264/AVC,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 13, no. 7,
pp. 598-603, July 2003.

