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ABSTRACT

Due to many factors that can be degraded an
image quality from the desired version. Image re-
construction application is the method that aims to
recover those degradations based on mathematical
and statistical models. Partition-based weighted sum
(PWS) filtering is one of the most effective techniques
for application of an image restoration and recon-
struction. In this paper, we compare two PWS filters
in both frequency and spatial domain under several
image types. Two PWS filters include hard partition-
based weighted sum (HPWS) filter and subspace hard
partition-based weighted sum (S-HPWS) filter. Five
image types are considered including aerial images,
human images, miscellaneous images, object images
and text images. The simulation results show that
the spatial domain HPWS filter offers the best per-
formance when we apply to restore object image, but
this filter not successful in term of memory usage
and complexity of computation. Frequency domain
S-HPWS filter, which required less memory and com-
putation time using PCA technique to reduce size of
data, offers good performance when we attempt to
restore miscellaneous image. On the other hand, text
image gets poor performance from all types of filters.

Keywords: WS filter, HPWS, LMS, Wiener filter,
S-HPWS, VQ, PCA

1. INTRODUCTION

During the past decade, image restoration and re-
construction have become more important in the field
of image processing because there are increased uti-
lized imagery in many application couple with im-
provement in quality of the image, speed and com-
plexity of the algorithm. Purpose of the image
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restoration and reconstruction is to reconstruct the
desired image from image recorded in the presence of
one or more sources of degradation. The degradation
can be during acquisition the image because of the
imperfection of the process and/or during transmis-
sion process. Degradation forms consist of natural
loss of spatial resolution caused by optical distortion,
motion blur due to limited shutter speed, aliasing ef-
fect caused by imperfection of sampling process, noise
that occurs within the sensor or during transmission
[1]. For the most widely used techniques in an image
restoration and reconstruction application is filtering.

Non-linear filters are often utilized to treat im-
pulsive noise. In contrast, non-linear filters, such as
the median filters [2] which neighbouring pixels are
ranked according to intensity and the median value
becomes the new value for centre pixel and the rank
conditioned rank selection (RCRS) filters [3] which
use the rank of selected input samples as the basis
for the output rank selection, preserve edge, in case of
image corrupted by Gaussian noise, these filters have
no improvement over linear filter. On the other hand,
linear filters, such as weighted sum (WS) linear filters
are normally utilized to treat widely encountered ad-
ditive white Gaussian noise (AWGN). Nonetheless,
the non-stationary nature of natural images yields
poor performance. For instance, the application of
Wiener filters for image denoising typically utilizes a
single linear kernel to estimate a non-stationary pro-
cess. The Wiener filter can implement in both fre-
quency domain and spatial domain. These are com-
monly derived in the sense to minimize the mean
square error (MSE) between the desired image and
the degraded image. However, Wiener filters success-
fully smooth flat region, but fail to handle edges. Spa-
tially adaptive filter, such as partition-based weighted

Spatially adaptive filter, such as partition-based
weighted sum (PWS) filter proposed by Barner et al.
[4] which combines linear filtering theory with data
adaptive observation space partitioning, approach to
dealing with a non-stationary signal. The PWS
filter is an effective algorithm for processing non-
stationary signals, especially those with regularly oc-
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curring structure, such as images. PWS filter was
originally introduced for utilizing hard partitioning,
which partition the observation space into mutually
exclusive region [4-7] using vector quantization (VQ)
[7-9], known as hard partition-based weighted sum
(HPWS) filter. In addition, the general framework of
the HPWS filter is to partition the observation space
through hard threshold of VQ. The unique filtering
operation is defined by each partition the observation
space. This operation can include any type of lin-
ear or non-linear filter. Alternatively, the least mean
square (LMS) algorithm can be applied to each par-
tition independently if suitable training data is avail-
able. VQ is an effective technique of data classifi-
cation and compression based on block coding. VQ
identify an input vector with member in codebook
based on error measure criteria. However, VQ has
some difficulties such as efficiency of codebook de-
sign. The most famous technique that used to gen-
erate the codebook is Linde-Buzo-Gray (LBG) algo-
rithm [8-9]. LBG algorithm is an iterative technique
to modify the codebook for better than the starting
initial codebook.

Later, Lin et al. was improved the HPWS filter
by used dimension reduction application of principal
component analysis (PCA) to reduced large size of
HPWS window known as subspace hard partition-
based weighted sum (S-HPWS) filter [10-11]. PCA
also known as Karhunen-Love (KL) transform that
is become one of the most successful approach in
pattern recognition, such as face and vehicle license
plate. The framework of S-HPWS filter is to separate
the observed image using VQ with subsequent filtra-
tion of the partitioned image and then apply to appro-
priate weight coefficient of filter. Due to this smaller
size of window, the S-HPWS filter implemented with
less burden of computation and requires less mem-
ory. By the subspace projection technique, which is
dimension reduction technique of PCA, the S-HPWS
filter improves the HPWS filter performance in some
cases.

In this paper, we focus on the performance be-
tween the HPWS filter and S-HPWS filter in both
frequency and spatial domain under different image
types that degraded by Gaussian blur together with
additive white Gaussian noise. Our experiments show
different performance of five image types: aerial im-
ages, human images, miscellaneous images, object im-
ages and text images. The remainder of this paper is
organized as follows. Section II gives the theoretical
basis of vector quantization, least mean square algo-
rithm, Wiener filter and principal component anal-
ysis. The concepts of both types of PWS filter are
presented in Section III. The simulation results and
performance comparisons are shown in Section IV.
Finally, conclusions are presented in Section V.

2. RELATED KNOWLEDGE

The details of related knowledge to both of PWS
filters will describe in this section that consist of vec-
tor quantization, least mean square algorithm and
principal component analysis.

2.1 Vector Quantization

In the image vector quantization [8-9], firstly, the
training images is partition into sub-block and con-
vert them into training vectors (yj(k)) in the lexi-
cographic process. The input image can be closely
represented by applied a transfer function to a spe-
cific region of the training image and replaced by
codebook that generated from set of training images
themselves. The codebook should be generated from
statistically representative training images.

To generate the codebook (Ω), the LBG algorithm
is implemented. LBG algorithm starts with define
the initial value of codeword (zi|zi, i = 1, 2, . . . ,M),
where codewords are member of codebook. The good
choice for the initial codewords, required by the LBG
algorithm, is the observation vectors selected from the
desired signal. Secondly, grouping training vectors
into the codebook using minimum distortion between
codebook (Ω) and training vector (yj(k)). After that
the codebook will update by average members in the
group. This update will iterate until the distortion is
under the limit. The distortion is expressed by

distortion(xj , zi) =
1

n

∑n

k=1
[yj(k)− zi(k)]

2
. (1)

To average the distortion can be obtain from

Dm+1 =
1

N

∑N

j=1
min d(yj , Zi,m+1). (2)

To find the condition in order to stop update is given
by

Dm −Dm+1

Dm+1
≤ ε (3)

where ε is the LBG limit, k is number of member
in training vector, N is size of partition of training
vector, M is size of codebook, j is number of training
vector and m is the iteration number.

For more understanding of the algorithm the
flowchart is shown in “Fig. 1”

2.2 Least Mean Square algorithm

The LMS algorithm [12-13] is an adaptive algo-
rithm that uses a gradient-cased method of steepest
descent. The purpose of the algorithm is to adapt the
weight coefficient (w(n)) of the filter to match closely
as possible the response of an unknown system. LMS
algorithm uses the estimation of the gradient vector
from the available data. LMS incorporates an iter-
ative procedure that makes successive corrections to
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Fig.1: Flowchart of LBG algorithm.

weight vector in direction of the negative of the gra-
dient vector which eventually leads to the minimum
MSE. The block diagram of LMS algorithm is shown
in “Fig. 2”

Fig.2: Block diagram of LMS algorithm.

From steepest descent technique, the weight coef-
ficient vector can be expressed by

w(n+ 1) = w(n) +
1

2
β
[

−∇J(E[e2(n)])
]

. (4)

where J is the cost function of MSE, β is the step size
which controls the rate of convergence, steady state
error and stability of filter and E[e2(n)] is MSE where
e2(n) is the error signal between desired signal (d(n))
and estimated signal (f(n)) that given by

e(n) = d(n)− f(n) (5)

where

f(n) = wTx(n). (6)

The goal of the algorithm is to obtain the optimum
weight such that the cost function is minimized. The
gradient of the cost function can be given as

∇J(E[e2(n)]) =
∂J

∂(w)
= −2E[e(n)× (n)]. (7)

By substituting Eq. (7) into Eq. (5), the weight
coefficient vector of LMS algorithm can be expressed
as

w(n+ 1) = w(n) + βe(n)× (n). (8)

To initiate weight coefficient vector, we can set to
zero. The value of the step size (β) should be between
the zero to proportion of max value of eigenvalue of
autocorrelation matrix(R) of observed signal x(n).

0 < β ≤
1

λmax

(9)

where λmax is max value of eigenvalue of (R).

2.3 Wiener Filter

There are two types of Wiener filter [14-16] that
can be implemented: one is the spatial or space do-
main Wiener filter and the frequency domain Wiener
filter.

Fig.3: Degradation model.

The degradation model as shown in “Fig.3” con-
sists of the degradation function together with ad-
ditive noise which operates on the original image to
produce the degraded image.

1) Frequency domain
In frequency domain, the performance of the filter
depends on the estimation process of the desired im-
age and noise power spectra from the observed image.
The degradation process can be expressed by

X(nx, ny) = D(nx, ny)H(nx, ny) + η(nx, ny). (10)

where X(nx, ny) is degraded image in frequency do-
main, D(nx, ny) is desired image in frequency do-
main, H(nx, ny) is degradation function in frequency
domain and η(nx, ny) is additive noise.

The solution of the filter in frequency domain is
similar to spatial domain. By minimizing the cost
function (J) that given by
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J = E
[

|D(nx, ny)−W (nx, ny)X(nx, ny)|
2
]

(11)

where W (nx, ny) is coefficient of Wiener filter in fre-
quency domain. The first solution of the filter is given
by

W (nx, ny) =
E[X(nx, ny)D

′

(nx, ny)]

E[|X(nx, ny)|2]
(12)

E[X(nx, ny)D
∗(nx, ny)] = E[(D(nx, ny)+

η(nx, ny))D
′

(nx, ny)]

= E[|D
′

(nx, ny)|
2]

= PD (13)

E[|X(nx, ny)|
2] = PD(nx, ny) + PN (nx, ny) (14)

where ’ denotes complex conjugate, PD is the
power spectra of desired image and PN is the power
spectra of additive noise. Then, the coefficient of
Wiener filter in frequency domain is given by

W (nx, ny) =
PD(nx, ny)

PD(nx, ny) + PN (nx, ny)

=
H

′

(nx, ny)

|H(nx, ny)2|+
PN (nx,ny)
PD(nx,ny)

. (15)

The output of the filter is

F (nx, ny) = W (nx, ny)X(nx, ny) (16)

and

f(nx, ny) = IDFT (F (nx, ny)) (17)

when IDFT means the inverse discrete Fourier trans-
form.

2) Spatial domain
In spatial domain, the degradation process can be
expressed by

x(nx, ny) = d(nx, ny) ∗ h(nx, ny) + η(nx, ny) (18)

where ∗ is the convolution operator, x(nx, ny) is de-
graded image in spatial domain, d(nx, ny) is desired
image in spatial domain, h(nx, ny) is degradation
function in spatial domain and η(nx, ny) is additive
noise.

The output vector of the filter is given by

f(n) = wTx(n) (19)

This form of convolution can be written as

f(n) = Xw (20)

where

X =











x(1) 0 0
x(2) x(1) · · · 0
...

. . .
...

x(n) · · · x(1)











So the output of the filter can be expressed as











f(1)
f(2)
...

f(n)











=











x(1) 0 0
x(2) x(1) · · · 0
...

. . .
...

x(n) · · · x(1)





















w(1)
w(2)
...

w(n)











. (21)

As the coefficients of the Wiener filter are obtained
by minimizing an average square error function, as
shown in Eq.16, with respect to coefficient vector.

∂E[e(n)2]

∂w
=

∂

∂w
E
[

(d(n)− wTx(n))2
]

=
∂

∂w
(E[d2]− 2wTE[dx] + wTE[xxT ]w)

= 0− 2wTP + wTR (22)

where R = E[x(n)xT (n)|x(n) ∈ Ωi] is the auto corre-
lation matrix, and P = E[d(n)x(n)|x(n) ∈ Ωi] is the
cross correlation vector from auto correlation matrix
and cross correlation vector can be expressed as

R = E[x(n)xT (n)] = XTX (23)

P = E[d(n)x(n)] = XT d. (24)

The coefficient of Wiener filter in spatial domain
is given by

w = R−1P. (25)

2.4 Principal Component Analysis

PCA [17-18] is a classical feature extraction and
data compression method that commonly used in the
field of pattern recognition, such as face recognition
and vehicle license plate recognition. The purpose of
PCA is to reduce data dimensionality by performing
a covariance analysis between factors and eliminating
the later principal components. It is a linear trans-
formation that chooses a new coordinate system for
the data set comes to lie on the axis. Mathematical
concept that used in PCA covers standard deviation,
covariance, eigenvectors and eigenvalues.

The PCA algorithm can be summarized as follow.
• Obtain images U1, U2, . . . , UN

• Represent every image Ui as vector Ii
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• Compute the average of image vector (µ):

µ =
1

N

N
∑

i=1

Ii (26)

• Subtract the mean image (γi):

γi = Ii − µ (27)

• Compute the covariance matrix (C):

C =
1

N

∑N

i=1
γiγ

T
i (28)

• Compute the eigenvectors (V = [v1, v2, . . . , vK ])
and eigenvalues (u) of C. Where eigenvectors (V )
known as eigenfaces or eigenspace.

• Keep onlyK best eigenvectors corresponding to the
K largest eigenvalues.

• Each image (subtract the mean image: γi) in the
training set can be represented as a linear combi-
nation of the K best eigenvectors:

γi − µ =
∑K

j=1
x̃jvi (29)

or

x̃j = vTi γi (30)

• Represent γi as x̃ =











x̃i
1

x̃i
2
...

x̃i
K











For given an unknown image (Itest) follows these
procedure
• Normalize I: γtest = Itest − µ

• Project on the eigenspace:

γtest − µ =
∑K

j=1
x̃jvi

• Represent γtest as x̃test =











x̃1,test

x̃2,test

...
x̃K,test











3. PARTITION BASED WEIGHTED SUM

FILTER

In the general framework, the PWS filter uses a
moving window operation (window size N). The ob-
servation vector at each position in the image is clas-
sified into one of the M partitions with a hard thresh-
old. After an observation vector is classified, the cor-
responding Wiener filter is applied.

3.1 Hard Partition Based Weighted Sum Fil-

ter

In [4], let {d(n)} and {x(n)} be the k dimensional
discrete data sequences representing vector of desired
signal data and observed signal data, respectively.

Note that n = [n1, n2, . . . , nk]
T is a k dimensional

positional index. The HPWS filter uses a moving
window operation. At each location n, the N sam-
ples are spanned by an observation window. These
samples form an observation vector. The observation
space is defined by x ∈ RN .

where

x(n) = [x1(n), x2(n), . . . , xN (n)]T (31)

and observation vectors can be expressed as

x = d+ η (32)

where η is the additive noise term and d is the desired
image.

In HPWS filter, the observation space is di-
vided into a set of M mutually exclusive partitions,
Ω1,Ω2, . . . ,ΩM , which form Voroni regions defined by

Ωi = {x ∈ RN : ∥x− zi∥
2 ≤ ∥x− zj∥

2}, (33)

for j = 1, . . . ,M and j ̸= i. This is a vector quan-
tization partitioning scheme and the centroid of each
partition zi can be taken as the mean of the observa-
tion vectors in that particular partition. The output
of a HPWS filter can be expressed as

FHPWS(x(n)) = wT
p(x(n))x(n)I(x ∈ Ωi) (34)

where

I(event) =

{

0 if even is false.

1 if event is true.
(35)

The partition function p(.) : RN → 1, 2, . . . ,M
generates the partition index and is given by

p(x(n)) = min ∥x(n)− zi∥
2. (36)

The weight vectors for each corresponding parti-
tion are also generally estimated with the aid of train-
ing data. It was shown in [3] that, once the partition-
ing is fixed, the optimum weights, in a mean square
error (MSE) sense, are found by using the Wiener
weights for each partition. This is

w∗

i = R−1
i pi (37)

where i = 1, 2, . . . ,M,Ri = E[x(n)xT (n)|x(n) ∈
Ωi] is the auto correlation matrix, and pi =
E[d(n)x(n)|x(n) ∈ Ωi]is the cross correlation vector
for the i th partition Ωi from auto correlation matrix
and cross correlation vector can be expressed as

Ri = E[x(n)xT (n)] (38)

pi = E[d(n)x(n)]. (39)
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The filter weights in each of the M partitions
are given by wi = [wi,1, wi,2, . . . , wi,N ]T for i =
1, 2, . . . ,M .

The procedure of the HPWS filter is shown as in
“Fig. 4” and following details
• The observed image will be partitioned into sub-
blocks consisting of 5 by 5 pixels.

• Each block will convert into vector in lexicographic
process called observed vector.

• Each observed vector through VQ process to deter-
mine the best texture similarity from LBG code-
book with hard threshold.

• After determining codebook, the process will select
the most appropriate filter for that observed vector.

• After the filter process, All of filter estimated vec-
tors will combine together to reconstruct an image.

Fig.4: Imaging system or observation model of
HPWS filter [7].

3.2 Subspace Hard Partition Based Weighted

Sum Filter

To reduce the computational complexity of par-
titioning the RN observation space, they proposed
projecting the observation vectors into Rk subspace
(K < N) through a linear transformation.

x̃(n) = Ax(n) (40)

where A is a K × N matrix, thus the output of S-
HPWS filter can be written

FS−HPWS(x(n)) = wT
p̃(x̃(n))x(n). (41)

where p̃(.):Rk → {1, 2, . . . ,M}.They considered and
described three cases for A.

Firstly, A is based on PCA. In this case, the rows
of A are made up of the K eigenvectors with the
largest values of the covariance matrix for x(n). Sec-
ond, a simpler method selects K observation sam-
ple locations to form the subspace. In this situa-
tion, A contains “1” in each row located in a unique
column (the other entries are zero). This serves as
a simple selection function. Finally, they combine
the PCA and center selection method to form the
S-HPWS (Center-PCA) method. In the formula,
A = APCAAS , where AS is a L × N matrix, and

APCA = K×L PCA subspace transformation matrix,
where K < L < N . Note that, with the Center-PCA
method, they reduce the dimensionality from N to L
through center selection method, and then reduce the
dimensionality from L to K using PCA.

Note that, we consider on the third case, where A
is combine the PCA using the KL transform and cen-
ter selection method to form the S-HPWS (Center-
PCA) method. The procedure of the S-HPWS filter
is shown as follow and in “Fig. 5”
• The observed image will be partitioned into sub-
blocks and through lexicographic process to covert
sub-blocks into observed vector consisting of 51
pixels.

• Each observed vector will reduce its size in PCA
process from 51 pixels to 5 pixels.

• Each observed vector through VQ process to deter-
mine the best texture similarity from LBG code-
book with hard threshold.

• After determining codebook, the process will select
the most appropriate filter for that observed vector.

• After the filter process, all of filter estimated vec-
tors will combine together to reconstruct an image.

Fig.5: Imaging system or observation model of S-
HPWS filter [7].

4. SIMULATION RESULTS

To evaluate the performance of the HPWS filter
and S-HPWS filter in domain of frequency and spa-
tial, these types of filter are tested and compared us-
ing the same set of test images, such as aerial images,
human images, miscellaneous images, object images
and text images. All the experiments are performed
under Windows 7 and MATLAB running on a PC
equipped with an Intel Dual-Core CPU at 2.93 GHz
and 4 GB RAM memory. The degraded image in
restoration application is set as a Gaussian blur to-
gether with additive white Gaussian noise (AWGN)
with signal to noise ratio (SNR) between 2 to 20 dB
encountered versions of the desired image. The sets
of training images are used to generate VQ codebook
and the training data, which are not one of the sets
of training images, are used to determine the weights
of HPWS filter and S-HPWS filter of spatial domain.
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For frequency domain, we used codebook to deter-
mine weight coefficient for each partition.

In practice, we generate codebook of size M from
the sets of training images using the LBG algorithm
and the codebook for each type of image should be
generated once. The HPWS filter and S-HPWS filter
in spatial domain have been generated from training
data that degraded by Gaussian blur together with
additive white Gaussian noise (SNR 20 dB). In fre-
quency domain, the HPWS filter and S-HPWS filter
have been generated from codebook that degraded by
Gaussian blur together with additive white Gaussian
noise (SNR 20 dB). In this simulation, we set code-
book size (M) and window moving size (N) of HPWS
filter equal to 30 and 25 respectively. For S-HPWS
filter, we set N = 25 and K = 5. In addition, we av-
erage the neighborhood pixel of the filter estimated
smooth the image.

The codebook of aerial image, which is similar to
codebook of human image, object image and miscel-
laneous image, and the codebook of text image are
shown in “Fig.6” and “Fig.7”. The partitions of the
codebook for aerial image consist of edges and corners
at various uniform regions. On the other hand, the
codebook for text image does not show the unique
feature of text, which offers poor performance when
implemented on VQ process.

Fig.6: Codebook for aerial image.

Table 1: Comparison of simulation time.

Table 1 shows total computation time of all types
of filters which show that both types of PWS filter

Fig.7: Codebook for text image.

in frequency domain use less time to restore the de-
graded version of image.

From Table2 shows that frequency domain S-
HPWS filter is the most successful that required less
memory and computation time by used PCA tech-
nique to reduce size of data. Due to this size, the com-
plexity of computation is also reduced. Frequency do-
main PWS filter determine weight coefficient for each
partition of codebook. For spatial domain HPWS fil-
ter offer good performance to restore image, but not
successful in term of memory usage and computation
time. Spatial domain PWS filter determine weight
coefficient used training data.

Table 2: Comparison of memory usage.

The simulation results show that spatial domain
HPWS filter offers the best performance when we
apply to restore object image, but this filter offers
poor performance when we apply to restore miscella-
neous image. On the other hand, frequency domain
HPWS filter offers good performance when we apply
to restore both object image and miscellaneous im-
age. The frequency domain S-HPWS filter offer best
performance when we apply to restore miscellaneous
image. Nevertheless, all types of filters are failed to
reconstruct text image.

For example to illustrate the performance of filters,
the observed images are degraded by Gaussian blur
together with additive white Gaussian noise with 8
dB of SNR and the filters trained with Gaussian blur
together with additive white Gaussian noise with 20
dB of SNR. The desired version, degraded version
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Table 3: PSNR comparison of spatial domain
HPWS filter.

Table 4: PSNR comparison of spatial domain S-
HPWS filter.

Table 5: PSNR comparison of frequency domain
HPWS filter.

Table 6: PSNR comparison of frequency domain
S-HPWS filter.

and restored version of images such as aerial image,
human image, miscellaneous image, object image and
text image are shown in “Fig.8”, “Fig.9”, “Fig.10”,
“Fig.11” and “Fig.12” respectively.

5. CONCLUSION

In this paper we have presented a framework of
HPWS and S-HPWS filter, both spatial and fre-
quency domain, and evaluated their performance.
Spatial domain HPWS filter can be effectively applied
on the images, such as object, human and aerial im-
age. For frequency domain of S-HPWS filter, using
PCA in order to reduce the computational burden is
appropriate in image denoising and debluring appli-
cation for an image, such as miscellaneous. Neverthe-
less, all types of filters offer poor performance when
we attempt to restore text image.
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