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ABSTRACT 
We propose a performance-driven cell placement method based 
on a modified force-directed approach. A pseudo net is added to 
link the source and sink flip-flops of every critical path to enforce 
their closeness. Given user-specified I/O pad locations at the chip 
boundaries and starting with all core cells in the chip center, we 
iteratively move a cell to its force-balanced location assuming all 
other cells are fixed. The process stops when no cell can be 
moved farther than a threshold distance. Next, cell rows are 
adjusted one at a time starting from the top and bottom. After 
forming these two rows (top/bottom), all movable core cells’ 
force-balanced locations are updated. The row-formation-and-
update process continues until all rows are adjusted and, hence, a 
legal placement is obtained. We have integrated the proposed 
approach into an industrial APR flow. Experimental results on 
benchmark circuits up to 191K-cell (500K-gate) show that the 
critical path delay can be improved by as much as 11.5%. We also 
study the effect on both layout quality and CPU time consumption 
due to the amount of pseudo net added. We found that the 
introduction of pseudo net indeed significantly improves the 
layout quality. 
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1. INTRODUCTION 
Placement is one of the most important steps in physical design of 
integrated circuits. It significantly affects layout area, routability 
and performance, among others. Standard-cell-based layout style 
is very popular for semi-custom layout design because it enables 
the success of both synthesis methodology and automatic 
placement and route (APR) flow. In the past, many approaches 
have been proposed for the problem. Notable approaches include 
partitioning-based, quadratic programming, iterative refinement 
by simulated annealing or force-directed analogy. In the very deep 
submicron era, large chip complexity, multiple metal layer, and 
wire delay dominance together call for re-investigation of the 
current placement solutions. 

Iterative refinement is a popular approach to placement 
quality improvement. Given an initial placement obtained by any 
constructive methods, it repetitively modifies the locations of a 
small set of cells. A force-directed cost function is natural for the 
choice of the set. It is intuitive that a cell should be moved to 
where the sum of all attractive forces between it and all its 
adjacent cells (fan-in and fan-out) is minimized. Although many 
force-directed placement algorithms [1][2][3] have been proposed 
for iterative refinement, they have some drawbacks. First, the 
quality of the initial placement may affect the quality of the final 
placement result. Second, if the zero-force location of a cell is 
occupied by another cell, one needs to displace one or more cells 
and may get a worse timing result [4][5]. Third, path delay cannot 
be dealt with directly [6][7][8]. Instead, nets are weighted  based 
on some distributed timing slack. 

We propose to reduce a path’s delay by pulling its starting 
and ending points closer. This is achieved by adding a pseudo net 
with path-length-dependent force between the source and sink 
flip-flops (or PI or PO). We also propose to obtain globally force-
balanced cell positions by resolving cell overlapping later. Our 
algorithm consists of three steps: (1) graph construction (2) force-
equilibrium cell positioning, and (3) cell row formation. First, we 
construct a graph to represent the circuit netlist to be placed. The 
second step finds a force-equilibrium position for every core cell. 
All core cells are initially placed at the chip center while all I/O 
pad cells are fixed around the chip boundary. We iteratively move 
one core cell at a time to its force-equilibrium position assuming 
all other cells are fixed. Overlapping in the horizontal direction is 
allowed during this step. In the third step, we form cell rows one 
at a time. When a row is formed, no overlapping is allowed 
among its constituent cells. The positions of the remaining cells 
are updated using the same algorithm of Step II. We repeat the 
row-formation-and-update process until all rows are formed and, 
hence, a legal placement is obtained. 

Experimental results on large benchmark circuits 
implemented in a TSMC 0.18µm CMOS process have 
demonstrated the effectiveness and efficiency of the proposed 
approach. We achieve about 11.5% improvement over a state-of-
art commercial tool in the critical path delay at the expense of 
about 21% more CPU time. 

The rest of this paper is organized as following. In Section 
2, we define some terminologies and formulate the problem. In 
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Section 3, we propose our approach. Our experimental setup and 
results are presented in Section 4. Finally, in Section 5 we draw 
conclusions and point to possible directions for future research. 

2. PROBLEM FORMULATION 
A circuit netlist consists of a set of m core cells C = 
{ mccc ,,, 21 K } and a set of n I/O pad cells P = { nppp ,,, 21 K }. 

Each cell ∈ic  C has variable width iw  and constant height H. 
The I/O pad locations are fixed around the chip boundary 
according to user specification while the positions of core cells 
are to be determined. All core cells and I/O pad cells are 
interconnected by a set of k nets N = { knnn ,,, 21 K }. The layout 
plane is depicted in Figure 1. The I/O pad cells are fixed around 
the boundary according to user specification. The core area 
bounded within I/O pad cells is divided into cell rows of equal 
height H by a floorplanner. Unlike traditional 2 or 3-metal 
technology, modern process technology requires no routing 
channel between cell rows. A placement is the assignment of core 
cells to cell rows and location within the row such that no cell 
overlaps with one another. A timing-driven placement is a 
placement in which the critical path delay meets a user-specified 
target. 

I/O cells Cell Row

                       
Figure 1: A typical layout plane 

 
We define a force pulling a pair of cells towards each other if 

there is a link between their corresponding nodes in the 
representative graph [9]. Let the cells be ic  at location ( ii yx , ) 

and jc  at ( jj yx , ). We define the force as 
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where α is a user-specified parameter, a normal link exists 

between a driver and a load cell, and a pseudo link exists between 
the source flip-flop (or primary input) and the sink flip-flop (or 
primary output) of a signal path. The length represents for the cell 
count of the signal path from ic  to jc . Since we want to explore 

the relationship between the normal link and the pseudo link, we 
add a polynomial weight factor α))(( jipathlength →  on the 

pseudo link and test different α values to find the best form. Our 
experimental result shows that the best α value is between 2 and 
2.5. Because the force associated with a pseudo link is much 
stronger than that with a normal link, the path length is properly 
taken into account during cell movement. In this model, a long 
path will have closer end points. Therefore, its constituent wires 
need not to stretch too much. 

Let’s illustrate the graph model with an example. Figure 2(a) 
shows a sample circuit netlist. In Figure 2(b), we model the circuit 
connectivity as a graph where cells are modeled as nodes and nets 
are modeled as edges (normal links). In addition to these edges, 
we introduce new edges (pseudo links) for all signal paths. That is, 
if there exists a path between a flip-flop (or primary input), 

fromc ( fromp ), and another flip-flop (or primary output), toc ( top ), 

we add a pseudo link connecting 
fromc ( fromp ) and toc ( top ). For 

example, in Figure 2(c), edge (c3, c4) is the pseudo link between 
flip-flops c3 and c4. 
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(a) a sample netlist

(b) the graph model without path information

(c) the full graph model
               

Figure 2: Graph representation of a netlist 
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3. PROPOSED APPROACH 
Our proposed method consists of three phases: (1) graph 
construction (2) force-equilibrium cell positioning, and (3) cell 
row formation. In the first phase, we construct a graph to 
represent the circuit netlist to be placed. The graph is denoted as 

},{ FECPG ∪∪= , where P is the set of I/O pad cells, C 
is the set of core cells, E is the set of edges each represents a wire 
connection between a driver and a load cell, and F is the set of 
pseudo edges each links the source flip-flop (or primary input) 
and the sink flip-flop (or primary output) of a signal path. We call 
an edge in E a normal link and an edge in F a pseudo link. 

In second phase, we gradually move core cells to their force-
equilibrium positions. The vertical location of a core cell must 
align with cell rows while its horizontal location within a row is 
unrestricted and overlapping with other cells is allowed during 
this phase. 

At the beginning, all I/O pad cells are fixed and all core cells 
are located at the chip center. We iteratively move one core cell at 
a time to its force-equilibrium location until no more cells can be 
moved. 

The pseudo code of our algorithm is given in Figure 3. We 
use a queue data structure to aid this process. Initially, all core 
cells adjacent to any I/O pad cells are queued. As long as the 
queue is not empty, we take one core cell from the queue and 
calculate its force-equilibrium position assuming that all of its 
adjacent cells are fixed at their present locations. If the distance 
between its current and calculated positions is greater than a 
threshold value (here we use the cell height H), we move the cell 
to the calculated position and queue all of its movable adjacent 
core cells if they are not already there. 

On the other hand, if the distance is smaller than the 
threshold, we just keep the cell location unchanged. A cell may be 
moved again after one or more of its adjacent cells are moved. 
This process continues itself until the queue becomes empty. That 
is, all cells are in a force-equilibrium position. 

In the third phase, we form cell rows one at a time. After the 
second phase, cells are positioned onto rows. Because we allow 
cell overlapping in the horizontal direction, some rows may have 
more cells than their capacity allows while some other rows may 
have a lot of empty space. Starting with the top-most and bottom-
most rows, we fill cell row with appropriate amount of cells one 
row at a time. For ECO operation, layout area is usually not 100% 
utilized. User-specified empty space should be uniformly 
distributed among all cell rows. For the row currently under 
formation, if it is under-utilized, we take some cells from its 
adjacent unformatted row. On the other hand, if it is over-utilized, 
we move some cells to its adjacent row. The selection of cells is 
again force-directed. After that, the selected cells are fixed within 
the row such that empty space is uniformly distributed and aligned 
to the pitch. After a row is formed, all cells in the remaining 
unformatted rows are adjusted to their force-equilibrium locations 
using the same procedure as Phase II. This process continues itself 
until all rows are formed. By now, we obtain a feasible placement. 

Figure 4 depicts some snapshots by applying the procedure 
on the example circuit of Figure 2. Figure 4(a) is the initial 
placement where four I/O pad cells are fixed at four boundaries 
respectively while six core cells, c1, c2, … c6, are located at  

Algorithm FDP 
 

begin 
for each path chosen according to parameter β 

add a pseudo link between source and sink I/O or flip-flop; 
end for 
for each I/O pad cell p 

fix p’s location according to user specification; 
end for 
force_balance; 
repeat 

place the topmost unplaced row; 
place the bottommost unplaced row; 
force_balance; 

until all rows are placed 
end 
 
procedure force_balance 
begin 

initialize a queue Q; 
for each movable core cell c adjacent to either an I/O pad cell 
or a fixed core cell 

enqueue(Q, c); 
end for 
while (Q≠φ ) 

c = dequeue(Q); 
δ = distance from c’s current location to its force-balanced 

location; 
if (δ > H) then /* H is the cell height */ 

move c to its force-balanced location; 
for each movable and unqueued core cell c’ adjacent to c 

enqueue(Q, c’); 
end for 

end if 
end while 

end procedure 
 
 

Figure 3: The proposed force-directed placement (FDP) 
algorithm 

the chip center. Figure 4(b) shows the result after the first core cell 
c2 is moved. Figure 4(c) shows the force-equilibrium placement 
where some overlapping exists as shown in gray. In Figure 4(d), 
we form the outermost cell rows R0 and R2. Because R0 is too 
sparse, a cell c2 is taken from row R1. Then we update the 
remaining cells to new force-equilibrium as depicted in Figure 
4(e). Finally, in Figure 4(f), the last cell row R1 is formed and the 
placement is completed. 

4. EXPERIMENTS 
We have implemented the proposed algorithm in a C++ 

program running on a SUN UltraSparc 80 workstation. The 
experiment setup is illustrated in Figure 5. First, we read the RTL 
benchmark and synthesize it using Synopsys’s Design Analyzer. 
Second, we import the synthesized netlist to Cadence’s Silicon 
Ensemble Ultra (SEU 5.2) for floorplanning that defines I/O pad 
locations and the number of cell rows. Then we export a DEF [12] 
file as the input to our program. Output of our program is also in 
DEF format. It contains our placement result for Silicon Ensemble  
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Figure 4: Some snapshots of the proposed placement process 

Ultra to perform its routing step. Finally, we extract parasitic RC 
values using Cadence’s HyperExtract and back-annotate the 
cell/net delay information calculated by Cadence’s SEU in the 
SDF [10] format to Design Analyzer for critical path timing 
analysis using Synopsys’s DesignTime within Design Analyzer. 

We also run the placement step using a commercial tool (CT) 
as well as its placement-based optimization flow (CT+PBO) for 
comparison. 

We use seven benchmark circuits to evaluate the proposed 
approach. Their characteristics are summarized in Table 1. The 
cell counts range from 3K to 191K in a TSMC 0.18µm CMOS 
cell library from Artisan [11]. The benchmark set is available to 
the public at http://www.cs.nthu.edu.tw/~ylin/placement. 

We study the effect of two parameters on the placement 
quality. Recall that we model the force between two flip-flops as 

α))()()()((),( 22
jijiji pathlengthyyxxjif →−+−= . We 

evaluate five values of α: 1, 1.5, 2, 2.5 and 3. The second 
parameter is the threshold value on the length of a path for which 
a pseudo net should be added between its starting and ending flip-
flops or primary I/O. We try four cases: β = 0%, 10%, 50% and 
100 %. With β = 0%, we add no pseudo link; on the other hand, 
with β = 100%, we add pseudo link for every path. For β = 
10%(50%), we add pseudo link for those paths whose length is 
larger than 90%(50%) of the critical path. We obtain the length of 
the critical path by the synthesis tools (Synopsys). 

Table 1. Benchmark Characteristics 

 

Table 2 compares our results with that of the commercial tool 
(CT) and that of CT with Placement-Based Optimization 
(CT+PBO). Here we let α = 2 and β = 100%. Compared with CT, 
our result is 11.5% better in terms of critical path delay at the 
expense of about 21% more CPU time. When CT’s result is 
further optimized (buffer insertion, sizing etc) with its PBO 
option, our approach is still 4% better even without those 
optimizations. The experimental also unveils that the timing 
improvement is more significant as the circuit size gets larger. 

 

Table 2. Comparison between FDP, CT and CT+PBO 
CT CT+PBO FDP 

Benchmark 
Delay(ns) CPU(s) Delay CPU Delay CPU 

matrix 8.42 6 0.935 1.66 0.938 1.51 

sdram_rdr 2.81 35 0.966 3.31 0.949 1.73 

32bMAC 4.85 154 0.907 3.75 0.863 1.11 

VP2 13.66 276 0.942 2.40 0.895 1.06 

64bMAC 4.97 509 0.915 3.54 0.870 1.15 

a259k 12.35 13196 0.887 2.51 0.836 1.01 

a518k 14.26 46313 0.913 2.39 0.843 0.93 

average   0.924 2.79 0.885 1.21 

* α = 2, β = 100%; FDP’s and CT+PBO’s numbers are relative to 
CT’s 

 

Table 3 shows the impact on placement quality due to 
parameter α. The large the α value is, the more emphasis we place 
on the relative weight of pseudo link. Empirically, α = 2 is a good 
choice. 

Table 4 shows the impact on both placement quality and run 
time due to parameter β. We expect that a high β value will lead to 
high placement quality at the expense of more CPU time 
consumption. The experimental results confirm our expectation. 
In fact, without the addition of pseudo links (i.e., β = 0%), our 
approach will not be able to compete with the commercial tool.

Benchmark # cells # nets # I/O Area( 2mµ ) 

matrix 3375 3603 119 227405 

sdram_rdr 4125 4559 95 365698 

32bMAC 8655 8941 213 562695 

VP2 10063 10542 323 657251 

64bMAC 27043 27458 417 1210814 

a259K 95765 104683 153 4392336 

a518K 191592 209354 153 8230874 
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Figure 5: Experiment flow 

 

5. CONCLUSIONS AND FUTURE WORK 
We have proposed a performance-driven standard-cell placement 
method based on a modified force-directed approach. In this 
approach, we take the path delay into consideration by 
introducing a new type of edge in our graph model. Our 

experimental results confirm that the pseudo link indeed 
significantly contribute to the timing improvement. Experimental 
results also demonstrate the efficiency and effectiveness of our 
algorithm. It took about 12 hours to place a half-million-gate 
design. 

In the future, we would like to extend this work by 
incorporating ECO capability such as buffer insertion. We would 
also extend it to handle large macros or preplaced blocks. Another 
interested point is the relationship between initial placement and 
the layout quality and time consumption. 
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Table 3. α’s impact on placement quality 

α = 1 α = 1.5 α = 2 α = 2.5 α = 3 
Benchmark 

Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s) 

matrix 7.80 8 7.79 9 7.86 9 7.83 9 7.90 11 

sdram_rdr 2.61 60 2.69 58 2.67 61 2.71 56 2.92 63 

32bMAC 4.29 176 4.21 183 4.19 171 4.30 175 4.35 191 

VP2 12.50 319 12.39 325 12.23 293 12.10 299 12.56 358 

64bMAC 4.53 609 4.38 627 4.32 585 4.29 607 4.69 761 

a259k 11.27 13408 11.08 14019 10.32 13328 10.36 13906 11.89 15123 

a518k 12.51 43941 12.50 45032 12.02 43071 12.16 44613 13.07 46930 

* β = 100% 

Table 4. β’s impact on placement quality 

β = 100 % β = 50% β = 10% β = 0% 
Benchmark 

Delay(ns) CPU(s) Delay CPU Delay CPU Delay CPU 

matrix 7.86 9 1.05 0.86   1.10 0.81 1.09 0.79 

sdram_rdr 2.67 61 1.06 0.82 1.13 0.85 1.16 0.82 

32bMAC 4.19 171 1.04 0.81 1.09 0.63 1.19 0.58 

VP2 12.23 293 1.01 0.90 1.06 0.75 1.08 0.71 

64bMAC 4.32 585 1.04 0.80 1.11 0.65 1.18 0.56 

a259k 10.32 13328 1.03 0.83 1.12 0.58 1.16 0.49 

a518k 12.02 43071 1.03 0.79 1.11 0.56 1.21 0.41 

average   1.04 0.83 1.10 0.69 1.15 0.62 

*α = 2; the numbers for β = 50%, 10% and 0% are relative to that of β = 100% 
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