
A Performance-Driven Standard-Cell Placer Based on a
Modified Force-Directed Algorithm*

Yih-Chih Chou
Department of Computer Science

National Tsing Hua University
Hsin-Chu 30043, Taiwan, R.O.C.

dr834329@cs.nthu.edu.tw

Youn-Long Lin
Department of Computer Science

National Tsing Hua University
Hsin-Chu 30043, Taiwan, R.O.C.

ylin@cs.nthu.edu.tw

ABSTRACT
We propose a performance-driven cell placement method based
on a modified force-directed approach. A pseudo net is added to
link the source and sink flip-flops of every critical path to enforce
their closeness. Given user-specified I/O pad locations at the chip
boundaries and starting with all core cells in the chip center, we
iteratively move a cell to its force-balanced location assuming all
other cells are fixed. The process stops when no cell can be
moved farther than a threshold distance. Next, cell rows are
adjusted one at a time starting from the top and bottom. After
forming these two rows (top/bottom), all movable core cells’
force-balanced locations are updated. The row-formation-and-
update process continues until all rows are adjusted and, hence, a
legal placement is obtained. We have integrated the proposed
approach into an industrial APR flow. Experimental results on
benchmark circuits up to 191K-cell (500K-gate) show that the
critical path delay can be improved by as much as 11.5%. We also
study the effect on both layout quality and CPU time consumption
due to the amount of pseudo net added. We found that the
introduction of pseudo net indeed significantly improves the
layout quality.

Keywords
Placement, Force-directed, Timing Closure.

1. INTRODUCTION
Placement is one of the most important steps in physical design of
integrated circuits. It significantly affects layout area, routability
and performance, among others. Standard-cell-based layout style
is very popular for semi-custom layout design because it enables
the success of both synthesis methodology and automatic
placement and route (APR) flow. In the past, many approaches
have been proposed for the problem. Notable approaches include
partitioning-based, quadratic programming, iterative refinement
by simulated annealing or force-directed analogy. In the very deep
submicron era, large chip complexity, multiple metal layer, and
wire delay dominance together call for re-investigation of the
current placement solutions.

Iterative refinement is a popular approach to placement
quality improvement. Given an initial placement obtained by any
constructive methods, it repetitively modifies the locations of a
small set of cells. A force-directed cost function is natural for the
choice of the set. It is intuitive that a cell should be moved to
where the sum of all attractive forces between it and all its
adjacent cells (fan-in and fan-out) is minimized. Although many
force-directed placement algorithms [1][2][3] have been proposed
for iterative refinement, they have some drawbacks. First, the
quality of the initial placement may affect the quality of the final
placement result. Second, if the zero-force location of a cell is
occupied by another cell, one needs to displace one or more cells
and may get a worse timing result [4][5]. Third, path delay cannot
be dealt with directly [6][7][8]. Instead, nets are weighted based
on some distributed timing slack.

We propose to reduce a path’s delay by pulling its starting
and ending points closer. This is achieved by adding a pseudo net
with path-length-dependent force between the source and sink
flip-flops (or PI or PO). We also propose to obtain globally force-
balanced cell positions by resolving cell overlapping later. Our
algorithm consists of three steps: (1) graph construction (2) force-
equilibrium cell positioning, and (3) cell row formation. First, we
construct a graph to represent the circuit netlist to be placed. The
second step finds a force-equilibrium position for every core cell.
All core cells are initially placed at the chip center while all I/O
pad cells are fixed around the chip boundary. We iteratively move
one core cell at a time to its force-equilibrium position assuming
all other cells are fixed. Overlapping in the horizontal direction is
allowed during this step. In the third step, we form cell rows one
at a time. When a row is formed, no overlapping is allowed
among its constituent cells. The positions of the remaining cells
are updated using the same algorithm of Step II. We repeat the
row-formation-and-update process until all rows are formed and,
hence, a legal placement is obtained.

Experimental results on large benchmark circuits
implemented in a TSMC 0.18µm CMOS process have
demonstrated the effectiveness and efficiency of the proposed
approach. We achieve about 11.5% improvement over a state-of-
art commercial tool in the critical path delay at the expense of
about 21% more CPU time.

The rest of this paper is organized as following. In Section
2, we define some terminologies and formulate the problem. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004…$5.00.

* Supported in part by a grant from the National Science Council of
R.O.C. under contract no. 89-2218-E-007-069.

24

Section 3, we propose our approach. Our experimental setup and
results are presented in Section 4. Finally, in Section 5 we draw
conclusions and point to possible directions for future research.

2. PROBLEM FORMULATION
A circuit netlist consists of a set of m core cells C =
{ mccc ,,, 21 K } and a set of n I/O pad cells P = { nppp ,,, 21 K }.

Each cell ∈ic C has variable width iw and constant height H.
The I/O pad locations are fixed around the chip boundary
according to user specification while the positions of core cells
are to be determined. All core cells and I/O pad cells are
interconnected by a set of k nets N = { knnn ,,, 21 K }. The layout
plane is depicted in Figure 1. The I/O pad cells are fixed around
the boundary according to user specification. The core area
bounded within I/O pad cells is divided into cell rows of equal
height H by a floorplanner. Unlike traditional 2 or 3-metal
technology, modern process technology requires no routing
channel between cell rows. A placement is the assignment of core
cells to cell rows and location within the row such that no cell
overlaps with one another. A timing-driven placement is a
placement in which the critical path delay meets a user-specified
target.

I/O cells Cell Row

Figure 1: A typical layout plane

We define a force pulling a pair of cells towards each other if

there is a link between their corresponding nodes in the
representative graph [9]. Let the cells be ic at location (ii yx ,)

and jc at (jj yx ,). We define the force as







−+−

−+−
=

→
α))()()()((

)()(
),(

22

22

jijiji

jiji
ji pathlengthyyxx

yyxx
ccf

where α is a user-specified parameter, a normal link exists

between a driver and a load cell, and a pseudo link exists between
the source flip-flop (or primary input) and the sink flip-flop (or
primary output) of a signal path. The length represents for the cell
count of the signal path from ic to jc . Since we want to explore

the relationship between the normal link and the pseudo link, we
add a polynomial weight factor α))((jipathlength → on the

pseudo link and test different α values to find the best form. Our
experimental result shows that the best α value is between 2 and
2.5. Because the force associated with a pseudo link is much
stronger than that with a normal link, the path length is properly
taken into account during cell movement. In this model, a long
path will have closer end points. Therefore, its constituent wires
need not to stretch too much.

Let’s illustrate the graph model with an example. Figure 2(a)
shows a sample circuit netlist. In Figure 2(b), we model the circuit
connectivity as a graph where cells are modeled as nodes and nets
are modeled as edges (normal links). In addition to these edges,
we introduce new edges (pseudo links) for all signal paths. That is,
if there exists a path between a flip-flop (or primary input),

fromc (fromp), and another flip-flop (or primary output), toc (top),

we add a pseudo link connecting
fromc (fromp) and toc (top). For

example, in Figure 2(c), edge (c3, c4) is the pseudo link between
flip-flops c3 and c4.

c1
D

Q

QSET

CLR

c3

c2

c5

D

Q

Q
SET

CLR

c4 c6p1

p2 p4

p3

p1 c2 c4 c6 p3

p4c5c3c1p2
normal link

p1 c2 c4 c6 p3

p4c5c3c1p2
pseudo link

(a) a sample netlist

(b) the graph model without path information

(c) the full graph model

Figure 2: Graph representation of a netlist

normal link
pseudo link

25

3. PROPOSED APPROACH
Our proposed method consists of three phases: (1) graph
construction (2) force-equilibrium cell positioning, and (3) cell
row formation. In the first phase, we construct a graph to
represent the circuit netlist to be placed. The graph is denoted as

},{ FECPG ∪∪= , where P is the set of I/O pad cells, C
is the set of core cells, E is the set of edges each represents a wire
connection between a driver and a load cell, and F is the set of
pseudo edges each links the source flip-flop (or primary input)
and the sink flip-flop (or primary output) of a signal path. We call
an edge in E a normal link and an edge in F a pseudo link.

In second phase, we gradually move core cells to their force-
equilibrium positions. The vertical location of a core cell must
align with cell rows while its horizontal location within a row is
unrestricted and overlapping with other cells is allowed during
this phase.

At the beginning, all I/O pad cells are fixed and all core cells
are located at the chip center. We iteratively move one core cell at
a time to its force-equilibrium location until no more cells can be
moved.

The pseudo code of our algorithm is given in Figure 3. We
use a queue data structure to aid this process. Initially, all core
cells adjacent to any I/O pad cells are queued. As long as the
queue is not empty, we take one core cell from the queue and
calculate its force-equilibrium position assuming that all of its
adjacent cells are fixed at their present locations. If the distance
between its current and calculated positions is greater than a
threshold value (here we use the cell height H), we move the cell
to the calculated position and queue all of its movable adjacent
core cells if they are not already there.

On the other hand, if the distance is smaller than the
threshold, we just keep the cell location unchanged. A cell may be
moved again after one or more of its adjacent cells are moved.
This process continues itself until the queue becomes empty. That
is, all cells are in a force-equilibrium position.

In the third phase, we form cell rows one at a time. After the
second phase, cells are positioned onto rows. Because we allow
cell overlapping in the horizontal direction, some rows may have
more cells than their capacity allows while some other rows may
have a lot of empty space. Starting with the top-most and bottom-
most rows, we fill cell row with appropriate amount of cells one
row at a time. For ECO operation, layout area is usually not 100%
utilized. User-specified empty space should be uniformly
distributed among all cell rows. For the row currently under
formation, if it is under-utilized, we take some cells from its
adjacent unformatted row. On the other hand, if it is over-utilized,
we move some cells to its adjacent row. The selection of cells is
again force-directed. After that, the selected cells are fixed within
the row such that empty space is uniformly distributed and aligned
to the pitch. After a row is formed, all cells in the remaining
unformatted rows are adjusted to their force-equilibrium locations
using the same procedure as Phase II. This process continues itself
until all rows are formed. By now, we obtain a feasible placement.

Figure 4 depicts some snapshots by applying the procedure
on the example circuit of Figure 2. Figure 4(a) is the initial
placement where four I/O pad cells are fixed at four boundaries
respectively while six core cells, c1, c2, … c6, are located at

Algorithm FDP

begin
for each path chosen according to parameter β

add a pseudo link between source and sink I/O or flip-flop;
end for
for each I/O pad cell p

fix p’s location according to user specification;
end for
force_balance;
repeat

place the topmost unplaced row;
place the bottommost unplaced row;
force_balance;

until all rows are placed
end

procedure force_balance
begin

initialize a queue Q;
for each movable core cell c adjacent to either an I/O pad cell
or a fixed core cell

enqueue(Q, c);
end for
while (Q≠φ)

c = dequeue(Q);
δ = distance from c’s current location to its force-balanced

location;
if (δ > H) then /* H is the cell height */

move c to its force-balanced location;
for each movable and unqueued core cell c’ adjacent to c

enqueue(Q, c’);
end for

end if
end while

end procedure

Figure 3: The proposed force-directed placement (FDP)
algorithm

the chip center. Figure 4(b) shows the result after the first core cell
c2 is moved. Figure 4(c) shows the force-equilibrium placement
where some overlapping exists as shown in gray. In Figure 4(d),
we form the outermost cell rows R0 and R2. Because R0 is too
sparse, a cell c2 is taken from row R1. Then we update the
remaining cells to new force-equilibrium as depicted in Figure
4(e). Finally, in Figure 4(f), the last cell row R1 is formed and the
placement is completed.

4. EXPERIMENTS
We have implemented the proposed algorithm in a C++

program running on a SUN UltraSparc 80 workstation. The
experiment setup is illustrated in Figure 5. First, we read the RTL
benchmark and synthesize it using Synopsys’s Design Analyzer.
Second, we import the synthesized netlist to Cadence’s Silicon
Ensemble Ultra (SEU 5.2) for floorplanning that defines I/O pad
locations and the number of cell rows. Then we export a DEF [12]
file as the input to our program. Output of our program is also in
DEF format. It contains our placement result for Silicon Ensemble

26

2

p1

p2

p4

p3 p1

p2

p4

p3

p1

p2

p4

p3

c2

c1

c3c4

c2

c5 c6

p1

p2

p4

p3
c1

c3c4

c2

c5 c6

p1

p2

p4

p3c1

c3c4c2

c5 c6

p1

p2

p4

p3
c1

c3c4

c2

c5 c6

(a) all core cells initially placed at
 chip center

(b) first move by a core cell (c2)

(c) all core cells have been placed in
 a force-equilibrium state with over-
 lapping shown in gray

(d) formation of rows R0 and R2 with
 empty slot reserved

(e) apply force-balancing process on
 c3 & c4 again while keeping other
 placed cells fixed

(f) final placement result

R2

R1

R0

normal link
pseudo link

overlap area

Figure 4: Some snapshots of the proposed placement process

Ultra to perform its routing step. Finally, we extract parasitic RC
values using Cadence’s HyperExtract and back-annotate the
cell/net delay information calculated by Cadence’s SEU in the
SDF [10] format to Design Analyzer for critical path timing
analysis using Synopsys’s DesignTime within Design Analyzer.

We also run the placement step using a commercial tool (CT)
as well as its placement-based optimization flow (CT+PBO) for
comparison.

We use seven benchmark circuits to evaluate the proposed
approach. Their characteristics are summarized in Table 1. The
cell counts range from 3K to 191K in a TSMC 0.18µm CMOS
cell library from Artisan [11]. The benchmark set is available to
the public at http://www.cs.nthu.edu.tw/~ylin/placement.

We study the effect of two parameters on the placement
quality. Recall that we model the force between two flip-flops as

α))()()()((),(22
jijiji pathlengthyyxxjif →−+−= . We

evaluate five values of α: 1, 1.5, 2, 2.5 and 3. The second
parameter is the threshold value on the length of a path for which
a pseudo net should be added between its starting and ending flip-
flops or primary I/O. We try four cases: β = 0%, 10%, 50% and
100 %. With β = 0%, we add no pseudo link; on the other hand,
with β = 100%, we add pseudo link for every path. For β =
10%(50%), we add pseudo link for those paths whose length is
larger than 90%(50%) of the critical path. We obtain the length of
the critical path by the synthesis tools (Synopsys).

Table 1. Benchmark Characteristics

Table 2 compares our results with that of the commercial tool
(CT) and that of CT with Placement-Based Optimization
(CT+PBO). Here we let α = 2 and β = 100%. Compared with CT,
our result is 11.5% better in terms of critical path delay at the
expense of about 21% more CPU time. When CT’s result is
further optimized (buffer insertion, sizing etc) with its PBO
option, our approach is still 4% better even without those
optimizations. The experimental also unveils that the timing
improvement is more significant as the circuit size gets larger.

Table 2. Comparison between FDP, CT and CT+PBO
CT CT+PBO FDP

Benchmark
Delay(ns) CPU(s) Delay CPU Delay CPU

matrix 8.42 6 0.935 1.66 0.938 1.51

sdram_rdr 2.81 35 0.966 3.31 0.949 1.73

32bMAC 4.85 154 0.907 3.75 0.863 1.11

VP2 13.66 276 0.942 2.40 0.895 1.06

64bMAC 4.97 509 0.915 3.54 0.870 1.15

a259k 12.35 13196 0.887 2.51 0.836 1.01

a518k 14.26 46313 0.913 2.39 0.843 0.93

average 0.924 2.79 0.885 1.21

* α = 2, β = 100%; FDP’s and CT+PBO’s numbers are relative to
CT’s

Table 3 shows the impact on placement quality due to
parameter α. The large the α value is, the more emphasis we place
on the relative weight of pseudo link. Empirically, α = 2 is a good
choice.

Table 4 shows the impact on both placement quality and run
time due to parameter β. We expect that a high β value will lead to
high placement quality at the expense of more CPU time
consumption. The experimental results confirm our expectation.
In fact, without the addition of pseudo links (i.e., β = 0%), our
approach will not be able to compete with the commercial tool.

Benchmark # cells # nets # I/O Area(2mµ)

matrix 3375 3603 119 227405

sdram_rdr 4125 4559 95 365698

32bMAC 8655 8941 213 562695

VP2 10063 10542 323 657251

64bMAC 27043 27458 417 1210814

a259K 95765 104683 153 4392336

a518K 191592 209354 153 8230874

27

Start Start

Read RTL
Benchmark

Technology
Mapping

(Synopsys DA)

Floorplan
(Cadence SEU)

Wrap Route
(Cadence SEU)

FDP

RC Extraction
(HyperExtract)

Ce ll/Ne t De lay
Calculation

(Cadence SEU)

Path Analysis
(DesignTime)

FDP Results

Read RTL
Benchmark

Technology
Mapping

(Synopsys DA)

Floorplan
(Cadence SEU)

Wrap Route
(Cadence SEU)

Placement
(Comme rcial Tool)

RC Extraction
(HyperExtract)

Ce ll/Ne t De lay
Calculation

(Cadence SEU)

Path Analysis
(DesignTime)

CT or CT+PBO
Results

.18um
library

(TSMC)

PBO

(CT+PBO)(CT)

Figure 5: Experiment flow

5. CONCLUSIONS AND FUTURE WORK
We have proposed a performance-driven standard-cell placement
method based on a modified force-directed approach. In this
approach, we take the path delay into consideration by
introducing a new type of edge in our graph model. Our

experimental results confirm that the pseudo link indeed
significantly contribute to the timing improvement. Experimental
results also demonstrate the efficiency and effectiveness of our
algorithm. It took about 12 hours to place a half-million-gate
design.

In the future, we would like to extend this work by
incorporating ECO capability such as buffer insertion. We would
also extend it to handle large macros or preplaced blocks. Another
interested point is the relationship between initial placement and
the layout quality and time consumption.

6. REFERENCES
[1] N. R. Quinn, ‘‘The placement problem as viewed from the

physics of classical mechanics,’’ in Proc. of the12th Design
Automation Conference, pp. 173-178, 1975.

[2] K. J. Antreich, F. M. Johannes, and F. H. Kirsch, ‘‘A new
approach for solving the placement problem using force
models,’’ in Proc. of the IEEE International Symposium on
Circuits and Systems, pp. 481-486, 1982.

[3] Shahookar, K. and P. Mazumder, ‘‘VLSI cell placement
techniques,’’ in ACM Computing Surveys, 23(2), pp. 143-
220, June 1991.

[4] Sadiq M. Sait and Habib Youssef, ‘‘VLSI Physical Design
Automation – Theory and Practice,’’ IEEE PRESS, pp. 176-
181, 1995.

[5] Naveed A. Sherwani, ‘‘Algorithms for VLSI Physical Design
Automation,’’ 3rd Edition, Kluwer Academic Publishers, pp.
232-233, 1999.

[6] Too-Seng Tia and C. L. Liu, ‘‘A New Performance Driven
Macro-Cell Placement Algorithm,’’ in Proc. of EURO-
DAC’93, pp. 66-71, 1993

[7] Maogang Wang, Xiaojian Yang and Majid Sarrafzadeh,
‘‘Dragon2000: Fast Standard-Cell Placement for Large
Circuits,’’ in Proc. Int. Conf. Computer-Aided Design, 6A.2,
2000.

[8] Fan Mo, Abdallah Tabbara, and Robert K. Brayton, ‘‘A
Force-Directed Macro-Cell Placer,’’ in Proc. Int. Conf.
Computer-Aided Design, 4A.3, 2000.

[9] Hans Eisenmann and Frank M. Johannes, ‘‘Generic Global
Placement and Floorplanning,’’ in Proc. of the 35th Design
Automation Conference, pp. 269-274, 1998.

[10] Pran Kurup and Taher Abbasi, ‘‘Logic Synthesis Using
Synopsys,’’ Second Edition, Kluwer Academic Publishers,
1998.

[11] Artisan Components Inc., http://artisan.com.

[12] Cadence Design Systems, Inc., ‘‘LEF/DEF Language
Reference,’’ Product Version 5.0, February 1997.

28

Table 3. α’s impact on placement quality

α = 1 α = 1.5 α = 2 α = 2.5 α = 3
Benchmark

Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s) Delay(ns) CPU(s)

matrix 7.80 8 7.79 9 7.86 9 7.83 9 7.90 11

sdram_rdr 2.61 60 2.69 58 2.67 61 2.71 56 2.92 63

32bMAC 4.29 176 4.21 183 4.19 171 4.30 175 4.35 191

VP2 12.50 319 12.39 325 12.23 293 12.10 299 12.56 358

64bMAC 4.53 609 4.38 627 4.32 585 4.29 607 4.69 761

a259k 11.27 13408 11.08 14019 10.32 13328 10.36 13906 11.89 15123

a518k 12.51 43941 12.50 45032 12.02 43071 12.16 44613 13.07 46930

* β = 100%

Table 4. β’s impact on placement quality

β = 100 % β = 50% β = 10% β = 0%
Benchmark

Delay(ns) CPU(s) Delay CPU Delay CPU Delay CPU

matrix 7.86 9 1.05 0.86 1.10 0.81 1.09 0.79

sdram_rdr 2.67 61 1.06 0.82 1.13 0.85 1.16 0.82

32bMAC 4.19 171 1.04 0.81 1.09 0.63 1.19 0.58

VP2 12.23 293 1.01 0.90 1.06 0.75 1.08 0.71

64bMAC 4.32 585 1.04 0.80 1.11 0.65 1.18 0.56

a259k 10.32 13328 1.03 0.83 1.12 0.58 1.16 0.49

a518k 12.02 43071 1.03 0.79 1.11 0.56 1.21 0.41

average 1.04 0.83 1.10 0.69 1.15 0.62

*α = 2; the numbers for β = 50%, 10% and 0% are relative to that of β = 100%

29

