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Abstract—Intense research activity on 3D data analysis tasks,
such as object recognition and shape retrieval, has recently
fostered the proposal of many techniques to perform detection
of repeatable and distinctive keypoints in 3D surfaces. This
high number of proposals has not been accompanied yet by a
comprehensive comparative evaluation of the methods. Moti-
vated by this, our work proposes a performance evaluation of
the state-of-the-art in 3D keypoint detection, mainly addressing
the task of 3D object recognition. The evaluation is carried out
by analyzing the performance of several prominent methods
in terms of robustness to noise (real and synthetic), presence
of clutter, occlusions and point-of-view variations.

Keywords-3D detectors; performance evaluation; 3D object
recognition

I. INTRODUCTION

Automatic recognition of shapes in 3D data is an ex-
tremely active research field, due to the significant number
of applications for which it represents a key stage, such
as object manipulation and grasping, robot localization and
navigation, scene understanding. Usually this task is tackled
by either a global or a local approach. According to the
former, a surface is described entirely by means of global
features whereas the latter relies on local keypoints and
regional feature descriptions to determine point-to-point cor-
respondences between surfaces. Borrowing a denomination
typical of the face recognition community [1] we refer
here to these two approaches as, respectively, holistic and
feature-based. While the holistic approach is popular in the
context of 3D object retrieval [2]–[4], feature-based methods
are inherently more effective for 3D object recognition in
presence of cluttered backgrounds and occlusions [5]–[12].

As aforementioned, feature-based methods rely on 3D
keypoints that are extracted from a 3D surface. This task
is accomplished by 3D detectors, whose aim is to determine
points which are distinctive, to allow for effective description
and matching, and repeatable with respect to point-of-view
variations and noise [5]–[7]. Sometimes, a characteristic
scale is also associated to each keypoint, so as to provide
a local neighborhood to the following description stage [5],
[8], [13]–[15]. Then, a description of the local neighborhood
of each keypoint is computed by means of a 3D descriptor
[5]–[12], [15]. Descriptors are finally matched across differ-
ent views to attain point-to-point correspondences.

This work is motivated by the belief that, given the wealth
of recent literature proposals concerning 3D detectors, there

is now the need to sum up the state-of-the-art and compare
quantitatively the different approaches within a common and
well defined experimental framework. Hence, inspired by
the work concerning 2D features [16], [17], we propose
a comparison of state-of-the-art 3D detectors. We mainly
address the object recognition scenario, characterized by
occlusion and clutter. In such a framework, we evaluate
robustness to noise (real and synthetic) and point-of-view
variations as well as computational efficiency.

A recent work, similar in motivation and spirit to ours,
proposed an experimental evaluation of 3D detectors and
descriptors focused on a shape retrieval scenario [18].
However, unlike object recognition, shape retrieval does
not require to deal with occlusion, clutter and changes of
viewpoint, the large intraclass shape variations being instead
the main issue to be dealt with. In comparison presented in
this work, we focus on object recognition and, in addition,
propose some basic retrieval experiments to highlight how,
interestingly, the absolute performance of the detectors as
well as the ranking of their performance are influenced
by the application scenario. Therefore, this paper and [18]
provide complementary perspectives within the topic of
quantitative evaluation of 3D local features.

II. 3D DETECTORS

This section briefly reviews state-of-the-art methods for
detection of 3D keypoints. They are divided into two cate-
gories: fixed-scale detectors and scale-invariant detectors.

A. Fixed-scale Detectors

Fixed-scale detectors find distinctive keypoints at a spe-
cific, constant scale which is preset as a parameter of the
algorithm. These approaches compute a distinctiveness, or
quality, measurement associated with each point, that can
be either point-wise (i.e. a property of a vertex of the mesh)
or region-wise (i.e. a property of a region around each
vertex, hereinafter referred to as support). Then, keypoints
are selected by maximizing the quality measurement in a
spatial neighborhood defined by the scale.

One example of the approaches relying on point-wise
quality measurements is Local Surface Patches (LSP) [6].
It defines the quality of a vertex as its Shape Index (SI)
[19], which in turn is based on the maximum and minimum
principal curvatures at the vertex. A vertex is considered a



keypoint if it is a global extremum of the SIs in the con-
sidered neighborhood and is significantly greater or smaller
than the mean SI in the neighborhood, i.e. SIi ≥ (1+α)μSI

or SIi ≤ (1 − β)μSI .
As for the methods relying on region-wise quality mea-

surements, both Intrinsic Shape Signatures (ISS) [7] and the
proposal in [5], referred to hereinafter as KeyPoint Quality
(KPQ), compute the Eigen Value Decomposition (EVD) of
the scatter matrix of the points belonging to the support. ISS
uses as distinctiveness the magnitude of the smallest eigen-
value (to include only points with large variations along each
principal direction) and the ratio between two successive
eigenvalues (to exclude points having similar spread along
principal directions). In KPQ, instead, the support is aligned
with its principal axes and a first pruning of non-distinctive
points is performed by thresholding the ratio between the
maximum lengths along the first two principal axes. The
quality measurement is then determined by means of an
empirical combination of the curvatures computed over a
smoothed and re-sampled surface fitted to the aligned data.

B. Scale-invariant Detectors

Scale-invariant detectors perform a search for distinctive
keypoints in a scale-space of the mesh, that extends the well-
known concept defined for images [20]. This allows for
detecting keypoints at different scales and for associating
to them a characteristic scale used to define the support
for the subsequent description stage. Similarly to fixed-scale
methods, these approaches compute a quality measurement,
which is however associated with each spatial position
and scale. Then, keypoints are selected by maximizing the
quality measurement spatially and across scales.

The proposals in [14], [21], [8] lay somewhere in the
middle between 2D and 3D scale-spaces. They require a
parametrization that maps the 3D mesh to a 2D plane,
so as to exploit the lattice structure of the 2D image and
apply conventional scale-spaces techniques. In [21], the
parametrization is computed by mapping the border of the
mesh (that must be already present or manually created by
cutting a watertight mesh) to the border of a 2D image
and then using the parametrization algorithm proposed in
[22]. In [8] and [14] the parametrization is already available
in the input data, since these methods work on range
images. Given the parametrization, [21] and [8] create a
scale-spaces representation of the normal map of the mesh,
i.e. a color image where color channels represent normal
components. The quality measure is the cornerness defined
by the eigenvalues of the Gram matrix of the support. The
algorithm flow is similar in [14] but the quality measure is
represented by the mean (H) and Gaussian (K) curvatures
(HK maps) and, instead of corners, connected regions of
similar curvature are sought for.

The proposals in [13], [23] and MeshDoG [15] build
scale-spaces directly out of the 3D mesh. The method in

[23] uses as quality measure the displacement of each
vertex from its original position after the application of the
Difference-of-Gaussians (DoG) filter [24]. MeshDoG and
[13], instead, explicitly avoid to modify the mesh geometry
while creating the scale-space, by smoothing the value of an
operator defined at each vertex instead of smoothing directly
the 3D coordinates of the vertices. These operators are: an
invariant computed on the Laplace-Beltrami operator, which
corresponds to the displacement of a point along its normal
of a quantity proportional to the mean curvature (H), in [13]
(therefore this method is hereinafter referred to as Laplace-
Beltrami Scale-Space (LBSS)); the approximation of the
Laplacian operator as DoG applied to the mean curvature,
the Gaussian curvature or the photometric appearance of
a vertex, in MeshDoG. In MeshDoG additional filtering
steps are introduced after detection: a maximum number of
keypoints is detected, corresponding to a percentage value
of the number of vertices of the mesh; as done in [24], non-
corner responses are eliminated.

Heat Kernel Signature [25] employs as quality measure-
ment the heat kernel [25] computed over the mesh: solving
the heat equation over space and time allows for building
an equivalent of the scale-space. The maxima of the kernel
are then chosen as keypoints.

Differently from previous proposals, 3D SURF [26] builds
a scale-spaces out of a voxelized version of the original
mesh. The quality measurement, computed for each grid bin
and at different octaves, is the Hessian of Gaussian second-
order derivatives, that, given the nature of the data, can be
computed efficiently by means of box-filtering.

Finally, in [5], scale-invariant keypoints are obtained from
sets of fixed-scale keypoints extracted at different scales by
the fixed-scale detector introduced in the previous paragraph
as KPQ. The characteristic scale of a point is defined as that
corresponding to the global maximum along the scale axis of
the ratio between the maximum lengths along the principal
directions (which, conversely to the fixed-scale case, is no
longer thresholded). We denote the scale-invariant flavor of
KPQ as KPQ-SI.

III. METHODOLOGY

A. Datasets

In our experiments we use four datasets. Two of them
are synthetic, in the sense that they have been created
applying known artificial deformation to 3D meshes in order
to simulate two different application scenarios. The syn-
thetic datasets have been created using models taken from
the Stanford Repository1. The other two datasets are: the
dataset2 used in the experimental validation in [5], acquired
with a laser scanner; the dataset3 used in the experimental

1www.graphics.stanford.edu/data/3Dscanrep
2www.csse.uwa.edu.au/∼ajmal
3vision.deis.unibo.it/SHOT



Figure 1. One model and three scenes from the datasets. From top to
bottom row: Random Views, Laser Scanner, Space Time

validation in [12], obtained with the SpaceTime Stereo
acquisition technique. In the following we will refer to the
synthetic datasets as Retrieval and Random Views, to the
dataset of [5] as Laser Scanner and to that of [12] as Space
Time.

Each dataset comprises a set of models, M = {Mh}N
h=1

and a set of scenes, S = {Sl}M
l=1. Each scene contains a

subset of the models. Only in the Space Time dataset objects
not present in the model library has been additionally used to
create the scenes. The ground-truth rotations and translations
to align each model with its instance in the scene are known.
In the case of the synthetic datasets, ground-truth is known
by construction. For details on the way it was estimated in
the other datasets the reader is referred to [12] and [5]. Fig.
1 shows examples of models and scenes taken from three of
the datasets.

Datasets can also be categorized according to the appli-
cation scenario they address. In one of the synthetic dataset,
Random Views, as well as in Laser Scanner, each scene is
a 2.5D mesh, i.e. a view of the spatial arrangement of the
models from a specific vantage point, whereas the models
are full 3D meshes. Therefore, these datasets are suitable
for comparing the performance of the detectors in an object
recognition scenario wherein a full 3D model is matched
against a 2.5D view of the scene to detect its presence.
The Space Time dataset represents a simpler scenario. In
this dataset 2.5D models are retrieved in cluttered 2.5D
views. Although simpler and not fully representative of all
the challenges of an object recognition scenario, we have
included it to test the performance of the detectors on a
dataset acquired with a less accurate technique than laser
scanning, that produces smoother, significantly less detailed
meshes.

The second synthetic dataset, ’Retrieval’, deal with a
shape retrieval context, and is similar in spirit to the dataset
used in [18]: only one full 3D model is used to create each

scene and there are no occlusions and clutter. On the other
hand, this dataset is much simpler than that used in [18],
since the only difficulties represented in the scenes are rigid
transformations and synthetic noise. Then main purpose of
this dataset is to address a retrieval scenario using the same
data as the Random Views dataset to highlight the impact of
the application context on the performance of the detectors.

The synthetic 2.5D views were created by using from a
random point of view the algorithm described in [27] on
the 3D scene built by randomly rotating and translating the
selected 3D models. Both synthetic datasets will be made
publicly available.

B. Repeatability measures

The most important characteristic of a keypoint detector is
its repeatability. This characteristic accounts for the ability
of the detector to find the same set of keypoints on different
instances of a given model, where the differences may be
due to noise corruption, view point change, occlusion by
other models or a combination of the previous nuisances.

Similarly to what was done in [16] for 2D keypoints,
a keypoint extracted from the model Mh, ki

h and trans-
formed according to the ground-truth rotation and transla-
tion, (Rhl, thl), is said to be repeatable if the distance from
its nearest neighbor, kj

l , in the set of keypoints extracted
from the scene Sl is less than a threshold ε:

∣∣∣
∣∣∣Rhlk

i
h + thl − kj

l

∣∣∣
∣∣∣ < ε . (1)

We evaluate the overall repeatability of a detector both in
relative and absolute terms. Given the set RKhl of repeatable
keypoints for an experiment involving the model-scene pair
(Mh,Sl), the absolute repeatability is defined as

rabs = |RKhl| (2)

whereas the relative repeatability is given by

r =
|RKhl|
|Khl| . (3)

The set Khl is the set of all the keypoints extracted
on the model Mh that are not occluded in the scene Sl.
This set is estimated by aligning the keypoints extracted on
Mh according to the ground-truth rotation and translation
and then checking for the presence of vertices in Sl in a
small neighborhood (1 ring in our implementation) of the
transformed keypoints. If at least a vertex is present in the
scene in such a neighborhood, the keypoint is added to Khl.

We consider the absolute repeatability, as in [17], because
another important characteristic of a detector is the amount
of repeatable keypoints it can provide to the subsequent
modules of an applications. Too few keypoints can not be
enough to apply geometrical verification or outlier removal
schemes, whereas too many waste computational resources



and make the task of pruning spurious higher-level hypothe-
sis, such as object presence, considerably more challenging.

The various detectors generate different numbers of key-
points. This differences are due to intrinsic factors, such
as the design of the algorithm, the filtering steps applied
after the detection of salient structure, a predefined limit
on the number of keypoints, etc... as well as extrinsic
factors, such as the abundance of the regions considered
salient by a detector in the test data. As discussed in [17],
these differences may have an undesired impact on the
repeatability scores: if the number of keypoints is large,
many of them may be considered repeatable by accident
and not because of the design of the detector. As done in
[17], we choose to use the default parameter supplied by
the authors rather than tuning them to make the detectors
output the same number of keypoints, mainly because this
is not possible for all the considered detectors and, in any
case, the influence of the data can not be eliminated.

As discussed in the previous section, two classes of
detectors are considered. In case of scale-invariant detectors,
an additional repeatability score is introduced, the scale
repeatability. Given the scales σi

h, σj
l of a pair of repeatable

keypoints, (ki
h, kj

l ), the scale repeatability for one pair is
defined as:

rij
scale =

V
(
Sphere(σi

h) ∩ Sphere(σj
l )

)

V
(
Sphere(σi

h) ∪ Sphere(σj
l )

) (4)

with Sphere(σ) indicating the sphere of radius σ and
V(Sp) the volume of the 3D region Sp. The overall scale
repeatability for one model versus one scene is given by

rscale =

∑
(ki

h
,kj

l
)∈RKhl

rij
scale

|RKhl| . (5)

As noted in [13], the difference in dimensionality with 2D
images makes this overlapping measure drop faster than for
2D detectors. Hence, care should be taken when interpreting
results of this measure.

Finally, to give aggregates results we plot the average of
the repeatability measures on the number of model-scene
pairs of each dataset.

C. Selected Methods

The set of 3D detectors evaluated in our experiments
includes: all the fixed-scale proposals introduced in Sec.
II, namely LSP, ISS and KPQ; the MeshDoG, Laplace-
Beltrami Scale-Space and KPQ-SI methods among scale-
invariant detectors. As for MeshDoG, we used the publicly
available original C++ implementation4. All other methods
have been implemented in C++, as well. For the KPQs de-
tector, however, it was necessary to use a surface smoothing

4svn://scm.gforge.inria.fr/svn/mvviewer

and fitting routine available as a MATLAB script [28], that
has been interfaced with the C++ implementation of the rest
of the detector. It is important to keep in mind this difference
when analyzing the performance reported in Tab. I.

Some of the methods presented in Sec. II have specific
requirements on the input data that made their inclusion in
this comparison unfeasible. Specifically, [21] requires that
one and exactly one border is present in the input mesh.
While this may be reasonable for a partial views registration,
it is not in the case of retrieval of full 3D meshes nor of an
object recognition scenario.

As for [14] and [8], these methods have been designed
to work with range images. They both exploit the lattice
structure that the range image provides in order to build a
scale-space representation of the input. Although the meshes
of the scenes we use are obtained from range images (laser
scans or disparity maps), and in principle the transformation
is invertible, there is no way to obtain a single range image
for the 3D models. Because of this, they are not suitable for
an object recognition scenario in which full 3D models are
sought for in 2.5 views, as defined in this comparison.5

D. Parameters

All parameters have been fixed for the experiments on all
datasets. Metric parameters, such as radius, distances, noise
standard deviation, etc.. are expressed throughout the paper
in units of mesh resolution (mr) [9], i.e. the mean length
of the edges in the mesh. Default parameters proposed in
the original publications have been used. The only tuned
parameter is the Non Maxima Suppression radius in ISS
and in the two variants of KPQ, because it was specified in
metric units by the authors. It has been fixed as 4mr after
running the detectors on a tuning scene with different values.
MeshDoG results are reported using the mean curvature as
quality measure, for we found that it yields better results
than the Gaussian curvature.

Scale-invariant detectors have been run on the set of
scales Σ = {2mr, 6mr, 10mr, 14mr, 18mr, 22mr}. This
allows the detector to look for discriminative and repeatable
structures ranging from point-wise scales to local and object
sub-part scales. Since the first and last scale are used only to
assess the presence of a local extremum in the immediately
subsequent or antecedent scale, detections can happen only
at scales Σ̃ = {6mr, 10mr, 14mr, 18mr}. To compare
results on the same set of structure sizes, we ran the fixed-
scale detectors for each scale in Σ̃. The distance threshold ε
is 2mr. To simulate sensor noise, on synthetic datasets we

5Recently, the detector proposed in [8] has been used [29] for object
recognition on the Laser Scanner dataset, by synthesizing range images
from a number of uniformly distributed overlapping views of the 3D model
of the object. This technique is not suitable for our experimental comparison
because the performance of detectors working on range images will be
influenced by external factors such as the synthetic views position and
distribution.



added three levels of Gaussian noise with standard deviation
equal to 0.1mr,0.2mr and 0.3mr, respectively.

IV. RESULTS AND DISCUSSION

A. Retrieval and Random Views datasets

Comparing the performance yielded by fixed-scale detec-
tors, it is clear that on the Retrieval dataset the best results in
terms of relative repeatability (Fig. 2a,2b,2c) are yielded by
ISS, although KPQ shows to be overall more robust to noise.
LSP, instead, performs poorly in presence of noise. This
is probably due to the quality measure it employs, which
is based on second-order derivatives. Also, the choice of
selecting the maximum SI within the local support appears
to be particularly error-prone since spurious peaks in the
distribution of SI can easily occur because of noise. Since
in terms of absolute repeatability (Fig. 2e,2e,2f) ISS yields a
good number of points (≈ 100) and it is dramatically more
efficient than LSP and KPQ (respectively 1 and 2 orders of
magnitude, see Table I), this approach appears as the best
choice for the object retrieval scenario.

By comparing these results with those obtained on the
Random Views dataset (Fig. 3) we can see that algo-
rithms performances change significantly. Overall, EVD-
based fixed-scale detectors (i.e. ISS and KPQ) perform
worse than in the retrieval scenario in presence of partially
occluded shapes, since the absence of parts of the geometric
structure modifies the scatter matrix, thus reducing the
repeatability of the detector. Furthermore, and conversely
to the case of retrieval, due to the presence of clutter it
is not anymore beneficial to use large supports to increase
repeatability (Fig. 3a,3b, 3c). On this dataset KPQ clearly
outperforms ISS both in terms of relative and absolute
repeatability, although it is still notably less efficient. LSP
still performs poorly compared to both approaches, mainly
due to the same reasons outlined for the Retrieval dataset.

For what concerns scale-invariant detectors, on the Re-
trieval dataset KPQ-SI reports overall the best repeatabil-
ity results (Fig. 2g, 2h). Although with low noise-levels
MeshDoG yields a similar relative repeatability and a higher
number of repeatable keypoints, KPQ-SI shows superior
robustness towards noise in terms of both absolute and
relative repeatability, and a better scale invariance. This
superior robustness can be motivated by the fact that the
quality measure of KPQ averages curvatures computed at all
the vertices in the support, while MeshDoG relies on DoGs
of point-wise curvatures. Its efficiency is also comparable
to that of MehsDoG (it runs 1.5 times slower partially
using MATLAB code). As for LBSS, the local maxima
of its invariant are extremely effective in determining the
characteristic scale of the 3D structures even in presence of
noise (Fig. 2i), which proves experimentally its theoretical
characteristics. On the other hand, though, its performance
are unsatisfactory in terms of spatial localization. Another

Retrieval Random Views Laser Scanner Space Time
LSP 56 ∼ 65 31 ∼ 100 65 ∼ 76 74 ∼ 92
ISS 2 ∼ 10 2 ∼ 7 5 ∼ 13 6 ∼ 18
KPQ* 266 ∼ 493 413 ∼ 662 799 ∼ 1109 544 ∼ 1222
LBSS 1585 461 1148 1397
MeshDoG 198 185 425 469
KPQ-SI* 303 364 634 767

Table I
MEAN DETECTION TIMES ON SCENES FOR EACH DATASET (IN
SECONDS). FOR FIXED-SCALE DETECTORS THE MINIMUM AND

MAXIMUM DETECTION TIME, THAT VARIES WITH THE SCALE, ARE

REPORTED. THE ASTERISK INDICATES THAT PART OF THE DETECTOR
RUNS IN MATLAB, HENCE THE RESULTS INDICATE ONLY THE ORDER

OF MAGNITUDE OF THE METHOD EFFICIENCY.

important drawback of this technique is that it runs 1 order
of magnitude slower than KPQ-SI and MeshDoG.

Analogously to case of fixed-scale detectors, the object
recognition scenario appears notably more challenging than
the retrieval one also for the scale-invariant detectors, with
reduced performance reported by all algorithms on the
Random Views dataset. More specifically, both MeshDoG
and KPQ-SI report lower relative and absolute repeatabilities
due to missing parts of the mesh (Fig. 3g, 3h). Still, KPQ-
SI demonstrates being significantly more robust to noise,
thus resulting as the best technique also on this dataset. It is
interesting to note that, conversely to the previous scenario,
MeshDoG performs better than KPQ-SI in terms of scale in-
variance (Fig. 3i), due to the fact that the characteristic scale
in KPQ-SI in determined only by principal directions and,
as aforementioned, EVD-based methods have problems in
dealing with partial shapes. As for LBSS, its scale invariance
is still the best one, and its efficiency is notably improved:
nevertheless, the relative and absolute repeatability are yet
not comparable to those of the other approaches.

Finally, by comparing the best approaches between both
fixed-scale and scale-invariant detectors, ISS obtains a higher
relative repeatability compared to MeshDoG and KPQ-SI
on the Retrieval dataset, while KPQ and KPQ-SI have
equivalent performances on the RandomViews dataset. ISS
is notably the most efficient detector among all.

B. Laser Scanner and Space Time datasets

The main differences between the Laser Scanner and
Space Time datasets are the point density variation between
models and scenes and the dimensionality of the models.
In the Space Time dataset, models and scenes have the
same dimensionality (2.5D) and the same point density. In
the Laser Scanner dataset models are full 3D meshes and
their point density is one order of magnitude higher than in
scenes.

The results obtained on real datasets are mainly consis-
tent with the observations done for the ’Stanford Views’
dataset. In particular, among fixed-scale detectors, KPQ is
the top performer, given that it obtains higher or compa-
rable relative repeatability than ISS while yielding an one
order of magnitude greater absolute repeatability. The LSP
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Figure 2. Results on the Retrieval dataset. Fixed-scale detectors: relative (a, b, c) and absolute repeatability (d,e,f) at different noise levels; scale-invariant
detectors: relative (g) and absolute (h) repeatability, scale repeatability (i).

detector is not robust to the sensor noise present in these
datasets. The detection times are as well consistent with
the observations in the previous section, with ISS providing
the most efficient solution. Even as far as scale-invariant
detectors are concerned, many findings are consistent: LBSS
provides outstanding scale overlaps between detections bat
lacks spatial repeatability; the scale repeatability of both
MeshDoG and KPQ are satisfactory, with KPQ suffering the
difference in model and scene dimensionality, as the drop of
performance between the Space Time and the Laser Scanner
indicates.

A main difference is that, contrary to the synthetic dataset,
MeshDoG has higher repeatability than KPQ-SI, both in
absolute and relative terms, and it is the top performer
among scale-invariant detectors. By comparing Fig. 4a with
Fig. 5a we can also notice that, while MeshDoG is also
the overall best detector on the Space Time dataset, its
performance deteriorates on the Laser Scanner dataset. This
fact combined with the good results MeshDoG yields on
the ’Stanford Views’ dataset (Fig. 3a), where a nuisance
is the difference between model and scene dimensionality,

indicates that MeshDoG suffers point density variations.
An interesting observation steams from the comparison

of Fig. 3a, 3b, 3c with Fig. 5a. In both tests there is no
difference in point density between the model and the scene.
The only difference is the model dimensionality, that makes
a part of the mesh included in the support be present only at
detection time on the model in the ’Stanford Views’ dataset.
The fact that the performance of ISS deteriorates at greater
scales on this dataset whereas they are constant on the Space
Time dataset confirms that the alteration of the scatter matrix
induced by the occlusion of part of the support is a severe
challenge for this detector.

V. CONCLUSIONS

The experimental comparison proposed in this work has
outlined many interesting aspects of state-of-the-art methods
for 3D detection. First of all, it allowed assessing the best
performing fixed-scale and scale-invariant methods over dif-
ferent datasets. Overall, KPQ-SI, MeshDoG and ISS yielded
the best scores in terms of repeatability and ISS demon-
strated to be the most efficient. Furthermore, it highlighted



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6  8  10  12  14  16  18

R
ep

ea
ta

bi
lit

y

Scale

ISS
LSP

KPQ

(a) σ noise = 0.1 mr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6  8  10  12  14  16  18

R
ep

ea
ta

bi
lit

y

Scale

ISS
LSP

KPQ

(b) σ noise = 0.2 mr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6  8  10  12  14  16  18

R
ep

ea
ta

bi
lit

y

Scale

ISS
LSP

KPQ

(c) σ noise = 0.3 mr

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

 6  8  10  12  14  16  18

A
bs

ol
ut

e 
R

ep
ea

ta
bi

lit
y

Scale

ISS
LSP

KPQ

(d) σ noise = 0.1 mr

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

 6  8  10  12  14  16  18

A
bs

ol
ut

e 
R

ep
ea

ta
bi

lit
y

Scale

ISS
LSP

KPQ

(e) σ noise = 0.2mr

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

 6  8  10  12  14  16  18

A
bs

ol
ut

e 
R

ep
ea

ta
bi

lit
y

Scale

ISS
LSP

KPQ

(f) σ noise = 0.3 mr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3

R
ep

ea
ta

bi
lit

y

Noise

LBSS
MeshDoG

KPQ-SI

(g)

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

0.1 0.2 0.3

A
bs

ol
ut

e 
R

ep
ea

ta
bi

lit
y

Noise

LBSS
MeshDoG

KPQ-SI

(h)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3

Sc
al

e 
O

ve
rl

ap

Noise

(i)

Figure 3. Results on the Random Views dataset. Fixed-scale detectors: relative (a, b, c) and absolute (d,e,f) repeatability at different noise levels;
scale-invariant detectors: relative (g) and absolute (h) repeatability, scale repeatability (i).

different behaviors of the detectors on the tested datasets,
which have been justified in light of the design of each
method. Future work includes testing recent proposals [25],
[26] and extending the proposed methodology to detectors
working only with range maps [8], [14].
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