
A PERFORMANCE MODEL FOR GPU ARCHITECTURES: ANALYSIS AND DESIGN

OF FUNDAMENTAL ALGORITHMS

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

MAY 2018

By

Ben Karsin

Thesis Committee:

Nodari Sitchinava, Chairperson

Henri Casanova

Lipyeow Lim

Jason Leigh

Philip von Doetinchem

Keywords: parallel, algorithms, many-core, GPU, sorting, model

Copyright c© 2018 by

Ben Karsin

ii

ACKNOWLEDGMENTS

First, I would like to thank my wife, Kelsey, for being patient and supportive during my long

journey into Academia. I would also like to thank my advisor, Nodari Sitchinava, for guiding me in

this work and encouraging me to dedicate myself to the field. I would like to thank Henri Casanova

for starting me down this path and for constantly lending his vast knowledge. I would also like to

thank my dissertation committee members, Lipyeow Lim, Jason Leigh, and Philip von Doetinchem.

Finally, I would like to thank Kyle Berney for the helpful discussions related to this work.

iii

ABSTRACT

Over the past decade, “many-core” architectures have become a crucial resources for solving com-

putationally challenging problems. These systems rely on hundreds or thousands of simple compute

cores to achieve high computational throughput. However, their divergence from traditional CPUs

makes existing algorithms and models inapplicable. Thus, developers rely on a set of heuristics and

hardware-dependent rules of thumb to develop algorithms for many-core systems, such as GPUs.

This dissertation attempts to remedy this by presenting the Synchronous Parallel Throughput

(SPT) model, a general performance model that aims to capture the factors that most impact

algorithm performance on many-core architectures. The model focuses on two factors that often

create performance bottlenecks: memory latency and synchronization overhead. We instantiate

the SPT model on three separate modern GPU platforms using a series of microbenchmarks that

measure hardware parameters such as memory access latency and peak bandwidth. We further

show how multiplicity affects performance by hiding latencies and increasing overall throughput.

We consider three fundamental problems as case studies in this dissertation: general matrix-matrix

multiplication, searching, and sorting. Using our SPT model, we analyze a state-of-the-art library

implementation of a matrix multiplication algorithm and show that our model can generate run-

time estimates with an average error of 5% across our GPU platforms. We then consider the

problem of batched predecessor search in the context of two levels of the GPU memory hierarchy.

In slow, global memory, we demonstrate the accuracy of the SPT model, while in fast, shared

memory, we determine that the memory access patterns create a performance bottleneck that de-

grades performance. We develop a new searching algorithm that improves the access pattern and

increases performance by up to 293% on our GPUs. Finally, we look at comparison-based sort-

ing on GPUs by analyzing two state-of-the-art algorithms and, using our SPT model, determine

that they each suffer from bottlenecks that stifle performance. With these bottlenecks in mind,

we develop GPU-MMS, our GPU-efficient multiway mergesort algorithm, and demonstrate that it

outperforms highly optimized library implementations of existing algorithms by an average of 21%

when sorting random inputs and up to 67% on worst-case input permutations. These case studies

demonstrate both the accuracy and applicability of the SPT model for analyzing and developing

GPU-efficient algorithms.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Abstract . iv

List of Tables . x

List of Figures . xi

1 Introduction . 1

1.1 Many-core Architectures . 1

1.1.1 Latency and Bandwidth . 3

1.1.2 Synchronization . 3

1.2 Overview of GPU Architectures . 3

1.2.1 Execution organization . 4

1.2.2 Memory hierarchy . 4

1.3 Performance Models . 6

1.4 Case studies . 6

1.4.1 General matrix-matrix multiplication . 7

1.4.2 Searching . 7

1.4.3 Sorting . 7

1.5 Dissertation Organization . 8

2 Background and Related Work . 9

2.1 Performance Models . 9

2.1.1 Parallel External Memory Model . 9

2.1.2 Bulk Synchronous Parallel Model . 10

v

2.1.3 Existing GPU Models . 11

2.2 Related Work . 11

2.2.1 Matrix Multiplication . 11

2.2.2 Searching . 12

2.2.3 Sorting . 13

3 The Synchronous Parallel Throughput Model . 14

3.1 Model Definition . 14

3.1.1 Assumptions and Limitations . 15

3.1.2 Total Runtime . 16

3.1.3 Time per operation, tφ . 18

3.1.4 Multiplicity . 19

3.1.5 Model Simplifications . 20

3.2 Comparison with existing models . 20

3.2.1 The PRAM Model . 21

3.2.2 The PEM Model . 21

3.2.3 The BSP Model . 21

3.2.4 Prior GPU Performance Models . 22

4 Instantiating the Model . 27

4.1 Methodology . 27

4.2 Global memory accesses . 28

4.2.1 Measuring Lg and Bg . 28

4.3 Shared memory accesses . 30

4.3.1 Measuring Ls and Bs . 30

vi

4.4 Register operations . 31

4.4.1 Measuring Lr and Br . 31

4.5 Thread-block synchronization . 32

4.5.1 Measuring Ly and By . 33

4.6 Barrier synchronization . 33

4.7 Computing multiplicity . 34

4.8 Estimating GPU Execution Time . 36

5 Case Study: Matrix Multiplication . 38

5.1 State-of-the-art GPU Matrix Multiply . 38

5.1.1 Algorithm details . 38

5.2 Algorithm analysis . 39

5.2.1 Global memory accesses . 40

5.2.2 Shared memory accesses . 41

5.2.3 Register operations . 41

5.2.4 Thread-block synchronizations . 42

5.2.5 Multiplicity, M . 42

5.3 Verifying Model Estimate . 44

5.3.1 Accuracy of runtime estimate . 45

5.3.2 Modeling algorithm parameters . 46

5.4 Conclusion . 46

6 Case Study: Searching . 48

6.1 Searching in Global Memory . 48

6.1.1 Naive Sorted List . 48

vii

6.1.2 Level-order Binary Search Tree . 49

6.1.3 B-tree Layout . 50

6.1.4 Empirical Performance Results . 51

6.2 Searching in Shared Memory . 53

6.2.1 Naive Binary Search . 54

6.2.2 Conflict-Free PBS . 57

6.2.3 Conflict-Limited PBS . 58

6.2.4 Empirical Performance Comparison . 59

6.3 Conclusion . 59

7 Case Study: Sorting . 61

7.1 Pairwise Mergesort . 61

7.1.1 MGPU algorithm overview . 61

7.1.2 Algorithm Analysis . 62

7.1.3 Estimating runtime . 65

7.1.4 Experimental Performance . 65

7.2 Koike and Sadakane’s multiway mergesort . 67

7.2.1 Algorithm Overview . 68

7.2.2 Algorithm Analysis . 69

7.2.3 Estimating runtime . 70

7.3 Improved multiway mergesort: GPU-MMS . 71

7.3.1 Algorithm overview . 72

7.3.2 Performance Analysis . 74

7.3.3 Estimating runtime . 76

viii

7.4 Comparison of Empirical Performance . 78

7.5 Conclusion . 80

8 Conclusions . 81

8.1 Many-core Architectures . 81

8.2 Developing Efficient Algorithms . 82

8.3 Future Work . 83

8.3.1 Linear Algebra . 83

8.3.2 Searching . 83

8.3.3 Sorting . 84

Bibliography . 85

ix

LIST OF TABLES

3.1 Parameters defined by the hardware system. 26

3.2 Parameters defined by the algorithm. 26

4.1 Details of our three GPU hardware platforms. 28

4.2 Hardware details and measured parameters for our three GPU platforms. Parameters
marked with * are empirically measured. 37

x

LIST OF FIGURES

1.1 High-level view of the Intel Xeon Phi processor architecture. Each core has a vector
processor that can operate on many elements per cycle. 2

1.2 High-level view of the architecture of NVIDIA GPUs. GPUs have a series of stream-
ing multiprocessors (SMs), each of which has many cores. 2

1.3 Illustration of shared memory access patterns that result in no bank conflicts. 5

1.4 When multiple threads access the same shared memory bank, a conflict occurs and
accesses are serialized. 5

2.1 Illustration of the Parallel External Memory (PEM) model [9]. 10

3.1 Illustration of how we model the runtime, T , of an algorithm with |K| kernels, on
an architecture with a the set of Φ operation types. 18

3.2 Illustration of the BSP model [78] and how our SPT model differs. In the SPT
model, we estimate the runtime of each kernel by the time needed to access each
type of memory (memories a, b, c, and d in this example). 22

3.3 Illustration of the DMM and UMM models developed by Nakano [61]. The inter-
connection of the address line between the memory management unit (MMU) and
memory banks (MBs) results in different optimal memory access patterns. 23

3.4 Illustration of the HMM model that combines several DMMs (shared memory) with
a UMM (global memory) into a hierarchy. 24

4.1 Impact of oversubscription (Mo) and ILP (MI) on global memory access time.
Results on Algoparc with N = 216 integers per thread. Once M = 8, peak global
memory bandwidth is reached. 29

4.2 Impact of oversubscription (Mo) and ILP (MI) on shared memory access time on
Algoparc with N = 215 elements per thread and X = 100. 31

4.3 Impact of oversubscription (Mo) and ILP (MI) on time to perform register oper-
ations on Algoparc with N = 215 · MI elements per thread and X = 500. Since
memory accesses increase with M, multiplicity continues to hide latency as long as
runtime remains flat. 32

xi

4.4 Average time per syncthreads operation, when performing a fixedN = 105 register
additions per block, for different values of Mo, on Algoparc. 33

4.5 Average runtime to perform N additions and a varying number of deviceSync
operations, for different values of Mo and MI , on Algoparc. Each deviceSync
has a fixed cost, regardless of other parameters. 34

4.6 Average time spent per deviceSync, for varying total number of deviceSync
operations, and for different values ofMo, onAlgoparc. As we increase the number
of deviceSync operations, the time per sync converges to a constant, which we
estimate to be Lsync. 35

5.1 Illustration of the work done by a single TB in the magma-gemm algorithm. 39

5.2 Measured runtime, compared with our model estimate, for n = m = 104 and varying
k on Algoparc. 44

5.3 Measured runtime and our model estimate, for n = m = k = 104 and varying NTB

on Algoparc. The dotted line shows our model if take into account the impact of
using local memory when each thread requires too many registers. 45

5.4 Measured runtime and our model estimate, for n = m = k = 104 and varying NTB

on Algoparc. The dotted line shows our model if take into account the impact of
using local memory when each thread requires too many registers. 45

6.1 Measured and estimated runtime when querying different search tree layouts on
Gibson with N = 228 and varying number of queries (Q). 52

6.2 Measured and estimated runtime when querying different search tree layouts on
Uhhpc with N = 228 and varying number of queries (Q). 52

6.3 Measured and estimated runtime when querying different search tree layouts on
Algoparc with N = 228 and varying number of queries (Q). 53

6.4 Worst-case example for the first logN − logw iterations of the PBS algorithm, when
N is a multiple of w2 (Corollary 6.2.1). 56

6.5 Illustration of the shared memory access pattern for stage 1 of the PBS-CF algorithm
(δ ≥ w). 57

6.6 Illustration of the shared memory access pattern for stage 2 of the PBS-CL algorithm
(δ < w), for a worst-case example. 58

xii

6.7 Execution time results of our three batched predecessor search implementations for
varying numbers of search keys and Q = 500M on Gibson. 60

7.1 Estimated and measured MGPU mergesort throughput when varying E (elements
per thread) on Algoparc, for N = 100M . 66

7.2 Estimated percentage of MGPU mergesort runtime due to each type of operation on
Algoparc, for varying N and E = 31. 66

7.3 Estimated and measured MGPU mergesort throughput when varying N on Algo-
parc, for both E = 15 and E = 31. 67

7.4 High-level illustration of the multiway mergesort algorithm used by Koike and Sadakane [47].
Example depicts multiway mergesort process if K = 3. 68

7.5 Estimated percentage of Koike and Sadakane’s multiway mergesort is due to global
memory and shared memory accesses, on Algoparc with N = 229 for varying K
values. 70

7.6 Example a minBlockHeap structure with w = 4. We perform a fillEmptyNode
operation on node v by merging its children, leaving x empty. 73

7.7 Estimated throughput of GPU-MMS, compared with the measured performance on
Algoparc with N = 228 for a range of K values. Estimated throughput also shown
for Koike and Sadakane’ multiway mergesort [47]. 77

7.8 Estimated percentage of GPU-MMS execution time that is due each aspect of the
algorithm, on Algoparc with K = 16, for varying input sizes N 77

7.9 Comparison of average throughput for each sorting algorithm on inputs of random
integers on Algoparc (middle), Gibson (left), and Uhhpc (right). 78

7.10 Average throughput vs. input size of conflict-heavy inputs on the Gibson platform. 79

xiii

CHAPTER 1

INTRODUCTION

In recent years, massively parallel, “many-core” architectures have become increasingly popular for

solving computationally challenging problems [76, 65, 44, 64]. These architectures, which include

modern Graphics Processing Units (GPUs) [44] and Intel Xeon Phi processors [38], are composed

of thousands of simple compute cores and are designed to deliver high computational throughput,

enabling them to outperform traditional CPUs for many applications [11, 58, 68]. For some applica-

tions, these architectures can achieve an order-of-magnitude performance speedup over comparable

CPU systems. However, no general model is available to accurately analyze the performance of

algorithms on these types of systems. In fact, many details, such as the memory hierarchy and

execution pipeline, are not well understood, forcing algorithm designers to rely on heuristics and

trial-and-error methods.

This dissertation aims to remedy these shortcomings by proposing a general model that incorpo-

rates the factors that most impact the performance of these high-throughput, parallel architectures.

Using a series of microbenchmarks, we instantiate our model on three modern GPU platforms,

allowing us to accurately estimate the runtime of an algorithm on a given platform. As case stud-

ies, we consider three fundamental problems: matrix multiplication, searching, and sorting; and

we show that our model can both accurately predict runtime and provide insight into designing and

optimizing algorithms for GPUs.

This introduction provides an overview of many-core architectures, with an emphasis on GPUs,

outlines features of many-core systems that are most relevant to our model, discusses related per-

formance models, and motivates the work.

1.1 Many-core Architectures

Until recent years, single-core processing units saw consistent performance improvements following

Moore’s law. However, as power consumption and heat dissipation became more problematic,

designers turned to parallelism as another way to improve performance. Today, processing units

in nearly all commercially-available desktop computers are multicore, with many having dozens

of compute cores. However, each of the processor cores available in these systems is complex,

with its own internal logic and cache systems, limiting the number of cores that can fit on a

single chip. Additionally, maintaining cache coherence across many such processor cores is difficult.

Many-core architectures, on the other hand, offer hundreds or thousands of very simple compute

cores. While these highly parallel systems provide a great deal of computational power, efficiently

utilizing it can prove difficult. Groups of compute cores share resources such as memory caches and

instruction units. These architectures differ greatly from traditional CPUs, for which most existing

1

T
o
M
em

o
ry

Control Logic

Vector Processing Unit

L1 Cache

Core Core Core Core

L2 Cache L2 Cache L2 Cache L2 Cache
· · ·

Core Core Core Core

L2 Cache L2 Cache L2 Cache L2 Cache
· · ·

Xeon Phi Processor

Figure 1.1: High-level view of the Intel Xeon
Phi processor architecture. Each core has a
vector processor that can operate on many
elements per cycle.

Control Logic Shared Memory

SM · · ·

NVIDIA GPU

SM SM SM

SM · · ·SM SM SM

Global Memory

p
ro
c
e
ss
o
r
c
o
re
s

Figure 1.2: High-level view of the architec-
ture of NVIDIA GPUs. GPUs have a series
of streaming multiprocessors (SMs), each of
which has many cores.

algorithms were developed. As such, many algorithms and performance optimizing techniques are

not well-suited for many-core architectures. Furthermore, the details of currently available many-

core systems vary greatly, making it difficult to develop general, platform-independent algorithms.

Despite this, today many-core systems are an important resource for high-performance computing.

Commercially available many-core systems, such as Graphics Processing Units (GPUs) and Intel

Xeon Phi coprocessors, provide a cheap resource that can be used to solve computationally intensive

problems. Additionally, many of the fastest supercomputers today employ many-core processing

units in their compute nodes (e.g., the Sunway TaihuLight supercomputer [26], the Zettascaler

supercomputer [6], etc.).

Figures 1.1 and 1.2 provide a high-level architectural overview of Intel Xeon Phi processors [38]

and NVIDIA GPUs [65], respectively. We see that, while details of these architectures differ, they

are both made up of a series of computational units, called cores on Xeon Phi and streaming

multiprocessors (SMs) on NVIDIA GPUs. In each case, each computational unit has a dedicated

cache and a large number of compute cores (a vector processor on Xeon Phi and many compute cores

on GPUs). This illustrates that, while different many-core systems can vary greatly in architectural

details, they have similar overall structures. There are several common features that most many-

core systems have in order to efficiently use the large number of compute cores and maximize

computational throughput:

2

• a multi-level memory hierarchy with varying access scope,

• a mult-level compute hierarchy with different levels of synchronization available, and

• fast context-switching, enabling the use of multiple threads (i.e., oversubscription) to hide

memory access latency.

In this dissertation, we present the Synchronous Parallel Throughput (SPT) model, a general

performance model that is designed to model the performance of parallel systems that rely on

thousands of execution threads to mitigate the cost of high-latency operations. Our model focuses

on three factors that most impact the performance of many-core architectures: memory access

latency, bandwidth limitations, and synchronization overhead.

1.1.1 Latency and Bandwidth

The latency associated with a memory access on many-core systems is frequently orders of magni-

tude larger than that of performing a computation. Thus, memory-bound applications can cause

cores to sit idle while data is being retrieved, resulting in wasted computational throughput and

performance loss. Many high-throughput architectures combat this with techniques such as oversub-

scription [65] (spawning multiple threads per core) and instruction-level parallelism [65] (executing

a series of independent instructions) that, effectively, reduce memory latency. However, these tech-

niques provide limited benefits, as every memory system has a peak bandwidth that cannot be

surpassed. The SPT model incorporates these concepts when evaluating algorithm performance

and, as we see in our case studies, these factors must be considered when designing GPU-efficient

algorithms.

1.1.2 Synchronization

The high degree of parallelism afforded by many-core architectures makes synchronization a nec-

essary and potentially costly operation. The SPT model incorporates the cost of system-wide

barrier synchronization. However, some many-core architectures allow for fine-grain synchroniza-

tion between subsets of cores or threads. We incorporate the cost of fine-grain synchronization by

considering such synchronizations as any other type of operation. Through experimentation, we

show that it accurately models the cost of such synchronization on our GPU platforms.

1.2 Overview of GPU Architectures

While the SPT model, presented in this dissertation, is a general performance model for many-

core architectures, we demonstrate its applicability by using it to analyze the performance of a

series of algorithms on three modern NVIDIA GPU platforms. Thus, in this section we provide an

3

overview of modern GPU architectures, highlighting key features that we look at in more detailed

when we instantiate our model in Chapter 4. For more information about GPU architectures or

any features we discuss, see standard references [65, 44]. As illustrated in Figure 1.2, modern

GPUs comprise thousands of physical processing cores, organized hierarchically into streaming

multiprocessors (SMs). Each SM contains a small, fast shared memory that is private to each SM,

and a large, slower global memory that is shared among all SMs.

1.2.1 Execution organization

To achieve optimal utilization of all of its thousands of processor cores, as well as hide memory

and instruction latency, GPUs support the execution of many more threads than physical processor

cores. To manage the execution of so many threads, the programmer groups threads into thread-

blocks (TBs), also called cooperative thread arrays. The GPU schedules all threads of a TB on a

single SM, allowing them to access and communicate via the same shared memory partition. The

GPU further partitions TBs into warps, each containing w threads1. All threads within a warp

execute in SIMT fashion, requiring they execute the same operations at each step. Since threads

within a warp execute in lock-step, they implicitly synchronize after each operation. For more

detailed information on the SIMT execution paradigm and branch divergence, we direct interested

readers to [53]. Synchronization can also be performed between warps within the same thread-

block through the use of the syncthreads command. syncthreads is a blocking2 operation that

forces all threads within the thread-block to wait until they all call it. Finally, GPUs allow for

synchronization across all threads through the use of the cudaDeviceSynchronize command.

1.2.2 Memory hierarchy

The modern GPU architecture includes a memory hierarchy with each level a having different

latency, throughput, access scope, and optimal access pattern. In Chapter 4 discuss the details and

measure performance impact of each type of memory.

Global memory

Global memory is the primary way to communicate between threads of different TBs, but previous

works suggest that it is at least an order of magnitude slower than other memory types [65, 24], such

as shared memory. Consequently, global memory use must be limited to achieve peak performance.

To achieve high memory throughput, all threads within a warp must, together, access consecutive

elements in global memory. This is called a coalesced memory access, allowing a warp to reference

w elements in a single access. If we consider a warp to be a single unit of execution, we say that

global memory accesses are performed in blocks [65], where B = w elements are accessed from a

1
w = 32 for most modern GPUs

2An operation is blocking if it must complete before the calling thread is able to continue execution.

4

M
e

m
o

ry
 B

a
n
k
s

w

Thread1 Thread2 Thread3 Thread4

Bank 1

Bank 2

Bank 3

Bank 4

a[0]

a[1]

a[2]

a[3]

a[w]

...

Figure 1.3: Illustration of shared mem-
ory access patterns that result in no
bank conflicts.

M
e

m
o

ry
 B

a
n
k
s

w

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6

 Bank 1

Bank 2

Bank 3

Bank 4

Figure 1.4: When multiple threads access the
same shared memory bank, a conflict occurs and
accesses are serialized.

single transfer, as in the PEM model [9], discussed in Section 2.1.1. See [61, 24] for a more in-depth

discussion of the global memory access pattern.

Shared memory

Shared memory is a smaller, faster memory that is private to each SM. Each TB designates its

required usage and that much shared memory is assigned to that TB while it is resident on the SM.

Consequently, if a TB requires a large amount of shared memory, it may prevent additional TBs

from being scheduled on the same SM, potentially reducing performance. The shared memory of

each SM is implemented as a series ofmemory banks, each of which can be accessed independently in

parallel (Figure 1.3). However, if threads within the same warp attempt to access the same memory

bank, as illustrated in Figure 1.4, a conflict occurs and accesses are serialized. Shared memory is

also capable of multicasting, allowing the same address to be accessed by multiple threads at once,

thus only concurrent accesses to distinct cells of a memory bank cause conflicts. Note that for most

modern GPUs, the number of memory banks and threads per warp is equal. Thus, we assume both

the number of memory banks and threads per warp is w.

Registers

Registers are available as limited number of fast, thread-private memory locations. On most modern

GPUs, each thread is limited to a small number of registers (e.g., 255), and each SM also has a

limited number of total registers. Any registers that a thread uses beyond 255 will be placed in

local memory, which is a portion of dedicated memory that is cached in shared memory. While

a thread can access any of its registers in unit time, the access pattern must be know at compile

time, which can limit the applicability of registers. We look at the impact of register usage on

performance in Chapter 4.

5

Cache mechanisms

The L3 cache available on most NVIDIA GPUs is a mechanism to mitigate the cost of uncoalesced

accesses. My caching single elements that are frequently read, it can reduce the requirement for

repeated uncoalesced accesses to single elements. The L2 cache is a dedicated portion of shared

memory that the GPU uses to automatically cache elements that are accessed from global memory.

While the performance implications of cache hits are similar to manually loading data into shared

memory, we do not explicitly consider the impact of the cache in this work and instead simply view

cache hits as accesses to the faster shared memory, rather than to global memory.

1.3 Performance Models

At a high level, the SPT model views an algorithm as a series of kernels, separated barrier syn-

chronization. This is similar to the Bulk Synchronous Parallel (BSP) model [78] (an overview is

provided in Section 2.1) if we equate kernels to supersteps. Unlike the BSP, however, we model the

performance of each kernel by identifying a set of operations and computing the achieved through-

put of each. The operations we consider depend on the particular many-core architecture we are

considering, though we define the model generally, without considering a specific system. Nev-

ertheless, there are certain commonalities among operations that impact performance, including

accessing memory or performing operations in registers. To model the frequency of these operations

for a given algorithm, we use some well-known models of computation.

The Random Access Machine (RAM) [17] model, one of the most well-known computational

models, considers the complexity of an algorithm to be the number of memory accesses, where any

memory cell can be accessed in unit time. The Parallel Random Access Machine (PRAM) [37] model

extends this by considering an architecture with multiple processors. This dissertation uses the

Concurrent Read Exclusive Write (CREW) PRAM model, since the relevant memory systems that

we consider allow for multiple threads to concurrently read from the same memory location. The

Parallel External Memory (PEM) model [9], which measures algorithmic performance in accesses

to a particular memory system that allows for blocked memory access (i.e., B elements are accessed

in a single memory operation) is also relevant to this work, as many slow memory systems exhibit

blocked access patterns to increase overall throughput. We provide a more thorough overview of

these models, as well as other related performance models in Section 2.1.

1.4 Case studies

As case studies, this work looks at three fundamental problems: matrix-matrix multiplication,

searching, and sorting. The algorithms we consider in each of these areas has different characteristics

(e.g., computational complexity, memory access patterns, etc.), allowing us to evaluate the accuracy

6

of our performance model on a wide range of applications.

1.4.1 General matrix-matrix multiplication

As a first case study, we look at a simple yet compute-bound problem that is well-suited to many-

core architectures: matrix multiplication. General matrix-matrix multiplication (gemm) is one of

the most fundamental dense linear algebra operations with a wide range of applications. Algorithms

that solve gemm are known to be compute, with the naive solution requiring O(n3) work on O(n2)

data. The current state-of-the-art library implementations use this naive algorithm, though they

use optimizations that reduce the number of global and shared memory accesses. In Chapter 5, we

model the algorithm used by a state-of-the-art library implementation that avoids all system-wide

synchronization and utilizes levels of the GPU memory hierarchy.

1.4.2 Searching

As a second case study, we consider the fundamental problem of searching, with a specific focus

on performing batches of predecessor search queries. The performance of these operations are fre-

quently memory-bound and exhibit non-deterministic memory access patterns that depend on the

queries themselves. On the GPU, this leads to sub-optimal access patterns to two levels of the

memory hierarchy, degrading performance. Thus, we consider each type of memory individually,

analyzing the access pattern for worst-case sets of queries as well as estimating performance degra-

dation for random queries. In shared memory, we develop a novel binary search algorithm that

achieves up to 293% speedup on our platforms, compared to a naive approach. In global memory,

we look at implicit search layouts and show that our model correctly predicts that performance

gains of using B-tree and BST memory layouts.

1.4.3 Sorting

Finally, we consider the general problem of comparison-based sorting. Sorting algorithms have

more of a balance of computation and memory accesses, while requiring more synchronization

between threads. We use the SPT model to analyze several state-of-the-art sorting algorithms for

the GPU and identify bottlenecks that degrade performance on our hardware platforms. Using the

results of our analysis, we present a new multiway mergesort algorithm that incorporates several

novel optimizations that mitigate these bottlenecks and improve performance. We show that our

algorithm achieves an asymptotically optimal number of global memory accesses while performing

well in practice. Empirically, our multiway mergesort outperforms current state-of-the-art GPU

sorting implementations by up to 32.7%. Furthermore, we identify input permutations that cause

these library implementations to access memory in a way that further degrades performance. On

these inputs, our algorithm achieves up to a 67.2% speedup on our three platforms.

7

1.5 Dissertation Organization

This dissertation is organized as follows: Chapter 2 provides background information on relevant

performance models, as well as an overview of related work. In Chapter 3 we present the general

Synchronous Parallel Throughput model (SPT model). We instantiate our model in Chapter 4 by

introducing a series of microbenchmarks that we run on our three GPU hardware platforms. In

Chapter 5 we look at general matrix-matrix multiplication as a case study. In Chapter 6 we apply

our model to the analysis of searching in each level of the GPU memory hierarchy. In Chapter 7

we analyze a series of GPU sorting algorithms and present our new multiway mergesort algorithm.

Finally, in Chapter 8 we present conclusions and discuss interesting areas of future work.

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present a survey of related work. We first provide an overview relevant and

well-known models that we can use to analyze memory access patterns. We then discuss models

that are related to (or are applicable to) many-core and GPU architectures, with an emphasis on

their memory hierarchies. Finally we provide a broad survey of relevant related work. For our case

studies, we also include a more detailed discussion of related work in each corresponding chapter.

2.1 Performance Models

As discussed in Section 1.3, the Random Access Machine (RAM) [17] model is one of the simplest

models that can be used to determine the complexity of an algorithm as the number of unit-time

memory accesses it performs. The Parallel Random Access Machine (PRAM) [37] model provides

a parallel extension of this model, where we model perform by parallel accesses to memory. In

PRAM we measure complexity as work (total work done by all processors) and depth (maximum

work done by a single processor, if we have unlimited processors). Brent’s scheduling principle [17]

allows us to further model the time complexity of an algorithm for a given number of processors,

P . In this work we only consider the Concurrent Read Exclusive Write (CREW) PRAM model,

which allows only one processor to write to a memory location at a time. While PRAM is useful

in modeling simple memory systems, many types of memory do not have random unit-time access.

2.1.1 Parallel External Memory Model

The external memory model [4] is a well-known model analyzing the performance of algorithms

that run on a computer with both a fast internal memory and a slow external memory, and whose

performance is bound by the latency for slow memory access, or I/O. The Parallel External Memory

(PEM) model [9] extends this model by allowing multiple processors to accesses external memory

in parallel. The PEM model relies on the following problem/hardware-specific parameters

• N : problem input size,

• P : number of processors,

• M : internal memory size, and

• B: block size (the number of elements accessed during one blocked memory transfer).

Figure 2.1 illustrates how each of these parameters is incorporated into the model. In the

PEM model, the I/O complexity of an algorithm is determined by the number of parallel blocked

9

· · ·

Memory

M

P

B

Figure 2.1: Illustration of the Parallel External Memory (PEM) model [9].

memory transfers (I/Os) that it performs. For example, scanning an input list in parallel has an

I/O complexity of Θ(N
PB). In the PEM model, sorting an input has a lower bound of

sortPEM (N) = Ω

(

N

PB
logM

B

N

B
+ logN

)

,

while predecessor search (given query q, find the largest element in a list with value v ≤ q) has a

lower bound of

searchPEM (N) = Ω(logB N).

2.1.2 Bulk Synchronous Parallel Model

Rather than modeling only memory accesses, the Bulk Synchronous Parallel (BSP) model [78]

models the performance of an algorithm by considering it as a series of supersteps. Each superstep

consists of a three phases: local computation, communication, and barrier synchronization. Thus,

the cost of each superstep is computed as the sum of each phase. The cost of the computation

phase is computed by the longest running local computation process,
p

max
i=1

(wi), where there are a

total of p processors and wi is the cost of computation for processor i. The communication cost is

computed as
p

max
i=1

(hi · g), where hi is the number of messages that processor i sends or receives and

each message takes g time. Finally, the cost of barrier synchronization is simply l. Thus, the BSP

model computes the total runtime of an algorithm of S supersteps as

S
∑

s=1

(ws + g · hs + l) =
S
∑

s=1

ws + g
S
∑

s=1

hs + Sl,

where ws and hs are the maximum computation and communication cost at step s, respectively.

10

2.1.3 Existing GPU Models

Performance models for GPU architectures fall into two broad categories: quantitative models

and asymptotic analysis. Many quantitative GPU models have been proposed that focus on fine

grain modeling and the use of benchmarks. Hong and Kim [35] provide one of the first such

models for modern GPUs by using microbenchmarks to determine memory bottlenecks on GPUs

available at the time. As GPUs evolved, more models [83, 71] and microbenchmarks [82, 13]

have been proposed for specific GPU architectures. The use of such fine-grain analysis, however,

results in microbenchmarks and models that are hardware-specific and/or overly complicated. By

contrast, analytical models that focus on asymptotic performance are generally applicable to a

range of architectures that share the same features, as most modern GPUs do. Several such

works have been presented over the years, focusing on modeling the memory hierarchy [61, 62],

adapting existing models [45, 47], or modeling overall GPU performance [48]. In [61, 62], the

authors provide accurate asymptotic estimates for numbers of shared and global memory accesses

for given algorithms. Although in this work we could reuse these estimates, instead we derive

asymptotic estimates directly from the PRAM [37] and PEM models [9]. Of the models designed

to estimate overall GPU performance, the Threaded Many-core Memory (TMM) model [54], AGPU

mode [47], and the model presented by Kothapalli et al. [48] provide the most complete view of

GPU performance to date. We discuss these models in more detail and compare them to our work

in Section 3.2.

2.2 Related Work

Over the past decade, many works have focused on designing efficient algorithms to solve classical

problems on GPUs and other many-core architectures [21, 58, 70, 39, 69, 73, 28, 31]. These works

have introduced several optimization techniques, such as coalesced memory accesses [24, 68, 23],

branch reduction [50, 41], and bank conflict avoidance [41, 14]. While these techniques provide

performance improvements for GPU algorithms, the works focus on specific aspects of GPUs rather

than modeling the overall performance to determine performance bottlenecks. In this dissertation,

we present a general performance model that can be used to determine these bottlenecks. As

case studies, we consider three primary applications, so we discuss prior work for each of these

applications/problems.

2.2.1 Matrix Multiplication

General matrix-matrix multiplication (gemm) is one of the most fundamental dense linear algebra

operations. A wide range of application domains rely on gemm operations, including fluid dynamics,

computational statistics, signal processing, and computational geometry. As such, a lot of research

11

has looked at improving both the theoretical complexity [75, 16, 81] and practical performance [79,

63, 30, 51] of algorithms that perform gemm.

For two n×n matrices, the naive gemm solution requires O(n3) operations. This was considered

optimal until Strassen [75] introduced a method that requires O(n2.81) operations. Since then,

advances have been made to reduce the exponent (e.g., Coppersmith and Winograd [16] propose an

algorithm that requires only O(n2.376) operations1). While these algorithms reduce the asymptotic

complexity of the gemm operation, they have higher associated constant factors, making it difficult

to achieve peak performance in practice. Furthermore, it is not known how to optimize these “fast

matrix-multiply” algorithms to reduce memory accesses (i.e., in the I/O and PEM models). Thus,

many state-of-the-art library implementations use the naive O(n3) algorithm.

Many linear algebra library implementations are available that target specific architectures to

achieve peak performance [5, 77, 67, 31, 30]. The well-known LAPACK library [5] provides a

wide range of linear algebra algorithms optimized for CPU architectures. The cuBLAS [67] and

clBLAS [1] libraries are available for GPU architectures in CUDA and openCL, respectively. The

magma library, which we focus on in this work, provides implementations optimized for various

architectures including GPUs [77, 63], Xeon Phi processors [31], and mixed heterogeneous sys-

tems [30].

The algorithms implemented by these libraries have improved over the years to better suit the

underlying architectures. Early GPUs were not able to efficiently perform matrix-matrix multi-

plications. In 2007, however, GPUs with memory hierarchies became available, enabling them to

realize compute-bound implementations of gemm [79]. Since then, practical advances have been

made through GPU-efficient algorithm design [63, 2, 51], new autotuning techniques [52, 49], and

optimizations available through library implementations [67, 77, 20]. In Chapter 5, we analyze the

gemm algorithm available in the magma library as a case study.

2.2.2 Searching

Searching encompasses a broad class of problems, so we focus primarily on predecessor search.

While, over the years, many approaches have been proposed as alternatives to naive binary search [15,

25, 17], in this work we focus on two well-known approaches, level-order binary search trees [17]

and B-trees [15]. B-trees are data structures that allow for I/O-efficient searching by storing B

sorted elements at each node. Each node has (B+1) children, thereby enabling predecessor search

to be performed by accessing only logB+1 n nodes. Since there are many results on searching, we

only focus on recent work relevant to the problem of searching on GPUs [39, 40, 70, 43, 73]. These

previous works all focus on dynamic structures that make efficient use of the slow memory accesses

like global memory or CPU-GPU data transfers. Kaczmarski [39, 40] studies the construction of the

B+-tree data structure to index data in GPU global memory (B+-trees are a variation of B-trees

1More recently Williams [81] proposed an algorithm that requires only O(n2.373) operations

12

where keys in internal nodes are duplicates, so all values are contained in the leaf nodes [17]). By

focusing on the B+-tree, the author takes advantage of coalesced global memory accesses. Sim-

ilarly, Shekhar [70] proposes GPU-efficient global memory data structures designed to improve

performance of the IP lookup operation. Kim et al. [43] create a hybrid CPU/GPU data structure

to achieve high peak query throughput. Soman et al. [73] address the limited memory on the GPU

by looking at compressing search tree data structures. We note that none of these works consider

efficient searching in shared memory, despite many applications using it as a subroutine [28, 50, 19].

Even current state-of-the-art algorithms such as GPU mergesort [11, 34] require searching in shared

memory.

2.2.3 Sorting

Comparison-based sorting is the next case study that we consider. According to a recent survey

of several GPU libraries [59], the fastest currently-available sorting implementations include the

CUB [57], modernGPU (MGPU) [11], and Thrust [34] libraries. CUB employs a GPU-optimized

radix sort, and thus can only be applied to primitive datatypes that can be represented as small in-

tegers. MGPU and Thrust use variations of mergesort (based on Green et al. [28]) along with many

hardware-specific optimizations to achieve peak performance. While highly optimized, these merge-

sort implementations require sub-optimal numbers of global memory accesses and incur shared

memory bank conflicts. Leischner et al. [50] introduced GPU samplesort, a randomized distribu-

tion sort aimed at reducing the number of global memory accesses. Their work was continued by

Dehne et al. [19] with a deterministic version of the samplesort algorithm. The work of Afshani and

Sitchinava [3] focuses on shared memory only and presents an algorithm that sorts small inputs

in shared memory without bank conflicts. Koike and Sadakane [47] present a multiway mergesort

algorithm for the GPU that also aims at reducing global memory accesses. Despite these efforts,

no unified, provably efficient, and practical sorting algorithm has been presented. Thus, mergesort

remains the algorithm of choice in top-performing GPU libraries [34, 11]. In this dissertation we

evaluate the techniques presented in by Afshani and Sitchinava [3], and Koike and Sadakane [47],

and identify, via analysis, several improvements that allow our GPU-efficient sorting algorithm to

out-perform state-of-the-art implementations in practice.

13

CHAPTER 3

THE SYNCHRONOUS PARALLEL THROUGHPUT MODEL

Massively parallel architectures, such as modern GPUs and Intel Xeon Phi processors, can, at

peak performance, significantly out-perform comparable CPU architectures for many applications.

One key feature that sets these architectures apart is that they are designed for high throughput,

meaning that they focus on a large amount of parallelism and high peak memory bandwidth, rather

than fast sequential computation and low latency memory. As as result, these types of processors

require a large amount of parallelism to perform well, making many existing algorithms unsuitable.

Existing performance models are also not easily applied, as attempting to model so many individual

threads of execution becomes unmanageable. In this chapter, we present the Synchronous Parallel

Throughput model (SPT model), a general performance model to analyze the performance of

algorithms on massively parallel architectures designed to achieve high-throughput using a memory

hierarchy and requiring periodic synchronization. In Chapter 4, we apply the SPT model to our

three GPU hardware platforms, and in Chapters 5, 6, and 7 we use case studies to evaluate the

accuracy and usefulness of our instantiated model. For reference see Tables 3.1 and 3.2 (available at

the end of this chapter) for a brief definition of the hardware-dependent and algorithm-dependent

parameters used by our model, respectively.

3.1 Model Definition

The Synchronous Parallel Throughput model (SPT model) is a general performance model that

focuses on memory access and synchronization to estimate parallel throughput. The SPT model

aims to capture the performance characteristics of massively parallel architectures that are designed

to maximize throughput and employ a memory hierarchy, such as modern NVIDIA and AMD GPUs

and Intel Xeon Phi [38] coprocessors. In this section we present a general description of the SPT

model that can be applied to architectures with varying types of memory and synchronization

mechanisms.

Definition 3.1.1 A processing unit is a hardware system that has P processor cores and a finite

set, Φ, of distinct operations that each processor can perform. All processors run concurrently and

can execute any number of operations in Φ in any order.

This general definition of a processing unit lets us identify, for each particular hardware ar-

chitecture, the operations that are most relevant. Since we are concerned with high-throughput

architectures, we want Φ to only include operations that most impact throughput (e.g., accessing

memory or performing costly synchronizations) and we ignore fine-grain operations such as different

14

hardware computation operations. In Chapter 4, we identify which operations to include in our

model for GPU architectures.

Definition 3.1.2 An algorithm is a set of operations in Φ, performed by each processor core,

divided into a series of |K| different kernels, K = {K1, K2, · · · , K|K|}. Each kernel is separated

by a barrier synchronization, so it runs independently and all operations complete between kernel

executions.

Note that the number of kernels |K| and the work done by each kernel Ki depends on the input

size, N . However, for simplicity of notation, we denote kernel i and Ki and not Ki(N). For each

processor, kernel, and operation, we define:

Definition 3.1.3 count(p, φ,Ki) is the number of times processor p performs operation φ during

kernel Ki.

Since each kernel Ki depends on the input size N , count(p, φ,Ki) also depends on N , though we

omit it to simplify the notation.

To avoid having to analyze each processor individually, we define

Definition 3.1.4 Ai,φ is the maximum number of times a single processor performs operation φ

during kernel Ki. Formally:

Ai,φ =
P

max
p=1

(count(p, φ,Ki)),

3.1.1 Assumptions and Limitations

Since many-core architectures rely on massive parallelism to achieve peak performance, we assume

that the scheduler used by our system and the algorithm being analyzed are able to achieve a

balanced workload (i.e., for each operation φ ∈ Φ, the number of times each processor performs φ

is load-balanced). Formally, for every pair of processors p and q, φ ∈ Φ and kernel Ki, we assume

that count(p, φ,Ki) = count(q, φ,Ki) + O(1). While this assumption may limit the accuracy of

our model when analyzing certain algorithms, it is a fair assumption for the architectures we are

considering for three main reasons.

• Many-core architectures rely on a high degree of parallelism to achieve peak performance and

an unbalanced workload can, in the worst case, result in sequential execution, which, for these

systems, would result in a performance loss of several orders of magnitude. Thus, to have a

remotely competitive algorithm, it must achieve a reasonably balanced workload.

• Massively parallel systems often have groups of processors that make up a unit that performs

SIMT operations (described in Section 1.2). Without modeling each individual thread of ex-

ecution and how it is assigned to each processing unit, we cannot predict how an unbalanced

15

workload may interplay with this mechanism. Two processor cores performing different op-

erations may result in either concurrent or sequential execution, depending on weather they

are part of the same SIMT processing unit or not.

• We are not attempting to accurately model the scheduling and execution of individual threads,

rather, we are concerned with the overall throughput achieved by the system.

Following from the assumption that we have a balanced workload,

Theorem 3.1.5 For any operation φ ∈ Φ, processor p, and kernel Ki, it is true that

count(p, φ,Ki) +O(1) = Ai,φ.

Proof By Definition 3.1.4, for some processor x, Ai,φ = count(x, φ,Ki). We assume that, for any

processors p and q, count(p, φ,Ki) + O(1) = count(q, φ,Ki). Thus, count(p, φ,Ki) + O(1) =

count(x, φ,Ki) = Ai,φ.

3.1.2 Total Runtime

We analyze each kernel individually to determine overall algorithm runtime. We define tφ to be

the time to perform a single operation φ, we then estimate the time spent by kernel Ki performing

operation φ.

Definition 3.1.6 Ti,φ is the time spent by kernel Ki performing operation φ, i.e.,

Ti,φ = Ai,φ · tφ

We can then define the total runtime of kernel Ki (as a function of N) as:

Theorem 3.1.7 Let Ti be the total runtime of kernel Ki. Since Ai,φ is the maximum number of

times a single processor calls φ,

Ti =
∑

φ∈Φ

(Ti,φ +O(tφ)) =
∑

φ∈Φ

(Ai,φ +O(1)) · tφ

Proof There exists some set of processors (p1, p2, · · ·), such that the operations they perform

forms the critical path of the algorithm, i.e.,

Ti = count(p1, φ1,Ki) · tφ1
+ count(p2, φ2,Ki) · tφ2

+ · · · .

Since, by Theorem 3.1.5, we assume that the distribution of each operation is balanced among all

processors, count(p, φ,Ki) and count(q, φ,Ki) differ by at most O(1), for any processors p and q

16

and operation φ. Thus, for some processor p,

Ti =
∑

φ∈Φ

(Ti,φ +O(tφ)) =
∑

φ∈Φ

(count(p, φ,Ki) +O(1)) · tφ

≈
∑

φ∈Φ

(Ai,φ +O(1)) · tφ

Each kernel operates independently, with barrier synchronizations between each kernel, so we

define the runtime of the overall algorithm as

T =

|K|
∑

i=1

(Ti + Lsync)

= (|K| · Lsync) +

|K|
∑

i=1

∑

φ∈Φ

(Ti,φ +O(tφ))

= (|K| · Lsync) +

|K|
∑

i=1

∑

φ∈Φ

(Ai,φ +O(1)) · tφ,

where Lsync is the time to perform a single barrier synchronization. Since Ai,φ is a function of N ,

we drop the extra O(1) more operations and approximate the runtime as

T = (|K| · Lsync) +

|K|
∑

i=1

∑

φ∈Φ

(Ai,φ · tφ).

Intuitively, we view our performance estimate of a given algorithm as a |K| × |Φ| matrix, with

rows corresponding to kernels and columns to types of operations, as illustrated in Figure 3.1.

Cell i, j (row i, column j) contains Ti,j , the time spent by kernel Ki performing operation j. The

sum of row i is Ti, the total time to run kernel Ki. Viewing this matrix, the sum of each column

corresponds to the total time spent performing a specific operation.

Definition 3.1.8 Tφ is the total time spent performing operation φ, across the entire algorithm,

i.e.,

Tφ =

|K|
∑

i=1

Ti,φ.

Thus, we estimate the total runtime as

17

T1,a

T2,a

T|K|,a

Ta

T1,b

T2,b

Tb

T1,c

T2,c

Tc · · ·

· · ·

· · ·

· · ·

· · · T1,z

T2,z

T

T1

T|K|,b T|K|,c T|K|,z

T2

T|K|

· · ·· · · · · · · · · · · ·

Tz

K1

K2

K|K|

· · ·

|Φ|

Kernels

Operation types

+

+

synchronize

synchronize

synchronize

Tsync

Tsync

Tsync

|K|

Figure 3.1: Illustration of how we model the runtime, T , of an algorithm with |K| kernels, on an
architecture with a the set of Φ operation types.

T = (|K| · Lsync)
∑

φ∈Φ

Tφ

= (|K| · Lsync)
∑

φ∈Φ

|K|
∑

i=1

Ti,φ

Since this is equivalent to our previous approximation for total runtime, the performance estimate

can be computed as either the sum of all kernel runtimes (rows in Figure 3.1) or as the sum of time

spent performing each operation (columns in Figure 3.1).

3.1.3 Time per operation, tφ

While the model described thus far is general in the sense that any set of operations can be used

to define Φ. However, since the SPT model is designed to model high-throughput architectures, we

focus on operations that have high latencies, such as accessing slow memory systems or performing

expensive synchronizations. The time to perform each of these operations depends on several fac-

tors, which we incorporate into our model to get a better estimate of overall performance. Many

different architectures mitigate the cost of high latency operations by interleaving operations (e.g.,

memory accesses) [65, 33], preventing cores from becoming idle while waiting for the operation to

18

complete (e.g., memory to be accessed). We focus on two common methods that parallel archi-

tectures use to mitigate the cost of high-latency operations: oversubscription and instruction-level

parallelism (ILP).

Oversubscription

Oversubscription (defined by Iancu et al. [36]) refers to scheduling multiple threads per physical

core. Formally, we say that the oversubscription of a executing program is the number of threads

running per core (i.e., threads running
P). With fast context switching, threads can be switched out

while they are waiting for operations to complete, allowing other threads to be scheduled and

preventing cores from sitting idle. Since many-core architectures often use oversubscription to

achieve peak performance, we incorporate the impact of this into our performance estimation. We

define Mi,o as the oversubscription achieved by kernel Ki, i.e., the number of threads running per

physical core, during Ki. For example, on a system with P processors, kernel Ki runs Mi,o · P

threads). The limiting factor of Mi,o is frequently resource utilization (e.g., memory usage per

thread). In Chapter 4, we discuss how to compute Mi,o on our GPU hardware platforms. When

analyzing the performance of a single kernel, we simplify our notation by omitting the kernel index

subscript, so kernel K has oversubscription of Mo (i.e., on a system with P processors, kernel K

runes Mo · P threads.

Instruction-level parallelism

Instruction-level parallelism (ILP) allows a single thread to hide latency by interleaving independent

operations. For example, a thread can issue a memory request and continue performing meaningful

computation while the memory is being fetched. We define Mi,I to be the average instruction-level

parallelism (ILP) of kernel Ki, i.e., the average number of consecutive independent operations that

a single thread executes during Ki.

3.1.4 Multiplicity

Both oversubscription and ILP provide the benefit of hiding latency of performing certain operations

(e.g., memory accesses), thus increasing the number of instructions being executed on a core and

increasing overall throughput. For simplicity of our model, we combine these terms and refer to

their product as multiplicity1, Mi, where M = Mi,o · Mi,I .

Recall that we compute the time spent in kernel Ki performing operation φ as

Ti,φ = Ai,φ · tφ

1Koike and Sadakane [47] use the term multiplicity to refer to what we call oversubscription. However, since we
observe that oversubscription and ILP have very similar practical implications, we refer to their combined product
as multiplicity.

19

Where tφ is the time to perform one operation of type φ. We incorporate the impact of multiplicity

into this parameter by defining the hardware-specific maximum latency and peak bandwidth of

performing each operation, φ ∈ Φ:

Definition 3.1.9 Lφ is the hardware-specific maximum latency of performing one operation φ, i.e.,

when M = 1, tφ = Lφ is the time to perform one operation φ.

Definition 3.1.10 Bφ is the hardware-specific peak bandwidth of performing the operation φ, mea-

sured as the peak number of times that operation φ can be performed per unit time, per processor.

By increasing M, we can effectively decrease the time needed to perform each operation. How-

ever, once peak bandwidth is reached, we cannot further increase the throughput, so the time to

perform one operation φ is

tφ = max

(

1

Bφ
,

⌈

Lφ

Mi

⌉)

.

Therefore, we measure the time spent by kernel Ki performing operation φ as

Ti,φ = Ai,φ · tφ

= Ai,φ ·max

(

1

Bφ
,

⌈

Lφ

Mi

⌉)

We include the ceiling to measure time in integer units (e.g., clock cycles).

3.1.5 Model Simplifications

If, for a given algorithm, the multiplicity achieved remains the same across all kernel calls (i.e.,

Mi = Mj for all 1 ≤ i ≤ j ≤ |K|), or if the algorithm is comprised of a single kernel, we can

simplify our calculation by using a single multiplicity value, M, and defining the total operations

across the entire algorithm as

Aφ =

|K|
∑

i=1

Ai,φ

This allows us to ignore individual kernels and estimate the total runtime of the algorithm as

T = |K| · Lsync +
∑

φ∈Φ(Tφ), where Tφ = Aφ ·max
(

1
Bφ

,
⌈

Lφ

M

⌉)

.

3.2 Comparison with existing models

In this section, we discuss how the SPT model compares to other, well-known existing models.

We first discuss well-known general models and highlight similarities and ways that analysis using

20

the SPT model can use previous work. We then compare the SPT model with existing models

designed for many-core architectures such as GPUs. A broad overview of these models is provided

in Section 2.1, though we provide more detail here, as needed.

3.2.1 The PRAM Model

A central feature of the SPT model is that we estimate overall performance by considering the

throughput of each type of operation, such as accesses to different levels of the memory hierarchy.

Thus, if we consider operation φ to be accessing a memory system that allows random access (i.e.,

any location can be accessed in unit time), we can use the PRAM model to compute Ai,op, the

number of accesses performed during kernel Ki. This lets us use the extensive prior work with the

PRAM model, such as proven lower bounds and optimality. In Chapter 4, we use PRAM when

modeling the fast shared memory and register operations of our GPU platforms.

3.2.2 The PEM Model

The External Memory [4] (EM) and Parallel External Memory [9] (PEM) models, discussed in

Section 2.1, model the complexity of an algorithm as the number of sequential and parallel block

accesses to memory, respectively. This type of block memory access is common in slow, high-

latency memory systems, so it a useful model when modeling algorithms that are bound by slow

memory accesses. The parallel architectures that we focus on for the SPT model often rely on such

memory systems, so the we can use PEM to analyze algorithms that utilize these types of memory.

For example, recall from Section 1.2 that global memory requires that consecutive elements be

read by all threads of a warp to achieve peak performance (i.e., for an access to be coalesced). If

threads within a warp read distant elements, multiple global memory accesses are required, reducing

memory throughput. This is equivalent to the ”blocked“ access pattern of the PEM model, where

w consecutive elements must be read in a block to achieve peak performance. Thus, in Chapter 4,

we use the PEM model to count global memory accesses when analyzing algorithm performance

on our GPU platforms.

3.2.3 The BSP Model

The SPT model is similar to the well BSP model, presented by Valiant [78] and discussed in

Section 2.1, if we equate kernels to supersteps. Recall from Section 2.1 that the BSP model considers

an algorithm as a series of supersteps, each of which is composed of computation, communication,

and synchronization steps. Similarly, the SPT model views an algorithm as a series of kernels, with

each kernel performing a series of operations that facilitate computation and communication (i.e.,

memory accesses), and with a barrier synchronization between kernels. Figure 3.2 illustrates how

these two models consider algorithms as a series of steps (supersteps or kernels) with synchronization

21

· · ·

BSP model

communication

synchronization

SPT model

K1 T1,a

T1,b

T1,c

T1,d

T1

communication

Tsync

K2 T2,a

T2,b

T2,c

T2,d

T2

· · ·

synchronization

superstep

Figure 3.2: Illustration of the BSP model [78] and how our SPT model differs. In the SPT model,
we estimate the runtime of each kernel by the time needed to access each type of memory (memories
a, b, c, and d in this example).

between each step. There are, however, several key differences that make the SPT model more

suitable to parallel architectures such as GPUs. The first difference relies on our assumption of

load-balancing (Theorem 3.1.5), which lets us avoid computing the critical path and ignore the

complexities associated with thread scheduling. This also lets the SPT model estimate throughput

by simply counting operations and the cost per operation, while, for the BSP model, we must

calculate the critical path of each superstep by considering the execution time of each processor.

Our simple assumption lets us completely avoid analyzing individual processors, which is essential

for the massively parallel architectures that we focus on. Finally, the SPT model incorporates the

details of any type of operation that we wish to model. This is especially useful when modeling

access patterns of memory systems, such as those of GPU platforms, as we see in Chapter 4.

3.2.4 Prior GPU Performance Models

Section 2.1.3, presents an overview existing performance models for modern GPU architectures.

We now discuss the details of several of these models and compare them with the SPT model.

We focus our discussion on general performance models rather than works that use benchmarks

or autotuning techniques to design specific algorithms. We note that, while the SPT model is not

specific to GPU architectures, it is designed with these types of systems in mind, and, as we show

throughout this dissertation, it is well-suited to model GPUs.

22

PE PE PE PE

MMU

MB MB MB MB

PE PE PE PE

MMU

MB MB MB MB

address line data line

DMM UMM

Figure 3.3: Illustration of the DMM and UMM models developed by Nakano [61]. The interconnec-
tion of the address line between the memory management unit (MMU) and memory banks (MBs)
results in different optimal memory access patterns.

Discrete Memory Model, Universal Memory Model, and Hierarchical Memory Model

The Discrete Memory Model [61] (DMM) is a simple model designed to capture the essential

features of GPU shared memory while the Universal Memory Model [61] (UMM) focuses on the

GPU global memory system. Each of these models considers a series of Processing Elements (PEs),

a set of Memory Banks (MBs), and a single Memory Management Unit (MMU) that connects them.

Figure 3.3 illustrates how the DMM and UMM models view the interconnection between MBs and

PEs. The address and data lines between MBs, MMU, and PEs dictate the elements that can be

accessed in parallel by the PEs. In the DMM, each MB has its own address and data lines to the

MMU, so a single access can be performed on each MB at a time, or else accesses are serialized

(i.e., shared memory bank conflicts occur). In the UMM, however, all MBs share an address line

to the MMU, so the same address must be accessed from each MB at once (i.e., a coalesced global

memory access). The authors present algorithms that perform 2-d array transposition efficiently

for the DMM and UMM model [61]. The Hierarchical Memory Model [62] (HMM), illustrated

in Figure 3.4, combines the DMM and UMM into a single model of parallel computation that

captures the features of both shared and global memory systems of modern GPUs. It models GPU

architectures as a single instance of UMM and a series of DMMs, corresponding to the different

streaming multiprocessors on modern GPUs.

The SPT model is applied to architectures by selecting a series of operations and estimating

overall performance based on the throughput of each operation. However, we do not specify the

mechanism used to count the number of each type of operation performed. On modern GPUs,

accessing global memory or shared memory are operations that frequently cause performance bot-

tlenecks and should therefore by included in the SPT model when applied to GPUs. Thus, existing

models of architectures with specific memory systems or optimal access patterns, such as DMM,

23

DMM

MB MB MB

PE PE

MB

MMU

PE PE

DMM

MB MB MB

PE PE

MB

MMU

PE PE

DMM

MB MB MB

PE PE

MB

MMU

PE PE

MMU

MB MB MB MB

UMM

address line data line

Figure 3.4: Illustration of the HMM model that combines several DMMs (shared memory) with a
UMM (global memory) into a hierarchy.

UMM, and HMM, are a useful resource that the SPT model can use when analyzing algorithms.

We note that, while the DMM, UMM, and HMM models focus on GPU memory systems, in this

work we opt to analyze memory accesses using the simpler PRAM and PEM models. In addition

to the relative simplicity of the PRAM and PEM models, they allow us to more easily count shared

memory and global memory accesses across the entire system, while the DMM, UMM, and HMM

only consider accesses performed by a single warp on the GPU, and extending it to the entire

system adds complexity.

Model by Kothapalli et al.

The model presented by Kothapalli et al. [48] was one of the first GPU models to attempt to predict

overall performance. Similar to our SPT model, they model GPU architectures using a variation of

the BSP model [78] by equating individual kernels as supersteps. Within each kernel, they analyze

performance by considering only accesses to global memory and shared memory. They provide

their own method of analyzing global memory access patterns and use the Queue-Read, Queue-

Write (QRQW) PRAM [27] model to incorporate the impacts of shared memory bank conflicts.

There are, however, several performance factors that they do not consider and that, in this work,

we show can have a significant impact on GPU performance: 1) time spent performing register

operations, 2) the peak bandwidth of each operation, and 3) instruction-level parallelism (ILP).

Thus, the model presented by Kothapalli et al. [48] is a specific instantiation of the SPT model:

24

the SPT model instantiated on a GPU architecture with Φ = {φ1 = access global memory, φ2 =

access shared memory}, with Mi,I = 1 for all kernels and Bφ1
= Bφ2

= 0. Using the memory

models used by Kothapalli et al. [48] to determine Ai,φ1
and Ai,φ2

for each kernel Ki of a given

algorithm then results in their overall model. Note that this corresponds to the sum variation of

their model, as the SPT model computes T as the sum of each Tφ.

Threaded Many-core Model

The Threaded Many-core Model [54] (TMM) considers global memory latency and the impact of

multiplicity, along with computation. The TMM has been used to analyze a range of fundamental

algorithms [55, 56]: string matching, fast Fourier transform, merge sort, list ranking, and all pairs

shortest path. The TMM has been shown to be useful in determining the asymptotic complexity

of algorithms on GPUs. As with our SPT model, the TMM incorporates the impact of multiplicity

(they refer to as T) on memory access time. However, they ignore the impact of bandwidth, implying

that one can continue to reduce the cost of memory access time until you reach the hardware limited

number of threads. In Chapter 4, we show that this is not the case and, in fact, one can quickly

be limited by bandwidth, even with a relatively small multiplicity. Furthermore, the TMM does

not include the cost of synchronization. Rather, they measure algorithm performance by looking

at the critical path of execution through the program.

The AGPU Model

The AGPU model, presented by Koike and Sadakane [47] is a thorough GPU-specific performance

model that looks at several details of the GPU compute and memory hierarchies. They consider

the GPU divided into a series of multiprocessors, each with b cores and having M shared memory.

They assume a simplification from the GPU hardware, in that they divide the resources of the

GPU into warp-size multiprocessors and do not consider multi-warp thread-blocks. Nevertheless,

they present a detailed model that takes into account global and shared memory access patterns

and, for a given algorithm, present two asymptotic complexity metrics: the time spent accessing

global memory and the time spent accessing shared memory. They also provide a discussion of

multiplicity, which we refer to as oversubscription, though they do not relate it directly to the

asymptotic performance of the algorithm. As with the model presented by Kothapalli et al. [48],

AGPU can be seen as a specific instantiation of the SPT model that only considers global memory

and shared memory as operations. Additionally, the AGPU model only considers the asymptotic

performance of algorithms, so, unlike the SPT model, it cannot be used to estimate runtime.

While the AGPU model provides a clear and detailed method of analyzing the asymptotic

performance of algorithms on GPUs, it neglects to consider several key factors that we show to have

a significant impact on practical performance: 1) time spent performing operations on registers,

2) the interplay between latency, bandwidth, and multiplicity, and 3) synchronization cost. In

25

particular, without sufficient multiplicity, practical performance quickly degrades, as we show in

Chapter 4. Furthermore, in Chapter 7 we consider the sorting algorithm designed with AGPU [47]

and show that insufficient multiplicity causes performance loss. We present a series of improvements

to their algorithm and demonstrate a significant performance increase.

Table 3.1: Parameters defined by the hardware system.
Parameter Definition Defined In

U A hardware processing unit Definition 3.1.1

P # of cores in U Definition 3.1.1

Φ Set of operations the system can performs Definition 3.1.1

Lφ Time to perform a single call to operation φ Section 3.1.2

lφ Max. latency of φ (i.e., when M = 1) Definition 3.1.9

Bφ Peak bandwidth of φ (i.e., max. number of φ per cycle) Definition 3.1.10

Table 3.2: Parameters defined by the algorithm.
Parameter Definition Defined In

|K| # of kernels in the algorithm Definition 3.1.2

count(p, φ,Ki) # of times processor p performs operation φ in kernel Ki Definition 3.1.3

Ai,φ Ai,φ =
P

max
p=1

(count(p, φ,Ki)) Definition 3.1.4

Mi,o Oversubscription of kernel Ki Section 3.1.3

Mi,I Instruction-level parallelism (ILP) of kernel Ki Section 3.1.3

Mi Multiplicity of kernel Ki (i.e., Mi,o · Mi,I) Section 3.1.4

Ti,φ Time spent in kernel Ki performing φ Definition 3.1.6

Ti Total runtime of kernel Ki Theorem 3.1.7

T Total runtime of the algorithm Section 3.1.2

26

CHAPTER 4

INSTANTIATING THE MODEL

In this chapter, we consider the features specific to modern GPU architectures to instantiate

the SPT model. We first identify operations that we consider the most significant when modeling

overall GPU performance. As discussed in Section 1.2, GPU architecture are many-core parallel

architectures designed to achieve high computational throughput. Thus, we focus on high latency

operations such as accessing slow memory systems or performing synchronization. In particular,

for our GPU platforms, we define the set of operations as Φ = {g, s, r, y}, where

• g is accessing global memory,

• s is accessing shared memory,

• r is performing an operation in registers, and

• y is performing intra-thread-block synchronization (i.e., syncthreads).

Each of these operations has a different corresponding latency (L) and bandwidth (B), as well

as other performance considerations such as optimal memory access patterns. Thus, we consider

each operation individually, identifying the best way to model it and developing microbenchmarks

to measure the associated hardware parameters (L and B). We measure these parameters for each

of our hardware platforms, with the results included in Table 4.2, at the end of this Chapter. For

simplicity, in this Chapter we discuss the model in terms of only a single kernel of execution, and so

omit the kernel index from parameter subscripts (e.g., Ag is the number of global memory accesses

and M is the multiplicity).

4.1 Methodology

We perform all experiments using three hardware platforms, each with a different modern graphics

card. All computations are performed on the graphics cards and no attempt is made to use CPU

compute resources. Furthermore, execution times are measured as time spent computing on the

GPU, while time to transfer data between the CPU and GPU is not included, as is customary in

these types of experiments. The specifications of each of our GPUs, along with the versions of GCC

and CUDA used are listed in Table 4.1. All experiments are compiled with the -O3 optimization

flag. Performance metrics such as bank conflicts are obtained via the nvprof profiling tool [66],

included in the CUDA toolkit. Since running the nvprof tool impacts performance, execution

time is measured on separate runs using the cudaEvent timer that is available with CUDA. Each

experiment is repeated ten times, and we report on mean values, showing min-max error bars when

non-negligible, unless otherwise mentioned.

27

Table 4.1: Details of our three GPU hardware platforms.
Platform name Algoparc Gibson Uhhpc

GPU Model Quadro M4000 GeForce GTX 770 Tesla K40m

Generation Maxwell GM204 Kepler GK104 Kepler GK110B

Global Memory 8GB 4 GB 12 GB

Total Cores 1664 1536 2880

Clock Rate 780 MHz 1046 MHz 745 MHz

Total shared memory 1248 KiB 512 KiB 960 KiB

Total 32-bit registers 832K 512K 960K

“Peak” Global memory bandwidth 192 GB/s 224.3 GB/s 288 GB/s

“Peak” Shared memory bandwidth 1.29 TB/s 1.07 TB/s 1.35 TB/s

GCC version 5.4 5.4 4.4

CUDA version 9.1 7.5 7.5

4.2 Global memory accesses

Recall from Section 3.2.2 that we view global memory access patterns as blocked access, where w

consecutive elements are read per memory access. Therefore, to determine the asymptotic number

of global memory accesses, Ag, performed by a kernel, we use the parallel external memory model

(PEM), discussed in Section 2.1. We obtain an asymptotic estimate of Ag using the PEM model

with block size B = w. Using the PEM model lets us use existing analytical techniques to determine

the asymptotic number of global memory accesses performed by a given kernel. Additionally, the

body of work using the PEM models, including complexity bounds and algorithm design techniques

are applicable to our analysis and algorithm design.

4.2.1 Measuring Lg and Bg

The SPT model incorporates operation latency and bandwidth when estimating the runtime of

an algorithm on a particular architecture. Thus, we use microbenchmarks to measure the latency

and bandwidth of global memory on each of our GPU platforms. We measure the latency as the

average time, in clock cycles, to perform one (coalesced) global memory access, when M = 1.

Bandwidth, however, is the peak number of elements that can be accessed when bandwidth bound

(i.e., when M is large). Thus, we run benchmarks that perform global memory accesses (and as

little additional work as possible), for varying M values.

The simplest experiment to measure the latency (Lg) and bandwidth (Bg) of global memory

is to have a single kernel that copies arrays. For this microbenchmark, each thread copies N

elements from one array in global memory to another (also in global memory). Thus, as we increase

oversubscription (Mo), we increase the amount of work being done. We perform all accesses in a

28

Figure 4.1: Impact of oversubscription (Mo) and ILP (MI) on global memory access time. Results
on Algoparc with N = 216 integers per thread. Once M = 8, peak global memory bandwidth is
reached.

coalesced manner, resulting in a total of 2N memory accesses per thread, so

Ag =
2 ·N · Mo

P
.

We expect the runtime of this microbenchmark, in clocks cycles, to be

T = Lsync +
2NMo

P
max

(

1

Bg
,

⌈

Lg

M

⌉)

.

We manually control oversubscription (Mo) and ILP (MI), allowing us determine the impact

of each on execution time. We vary Mo by controlling the number of thread-blocks the kernel uses.

To increase MI , we have threads load MI elements into registers before writing them into the copy

array.

Figure 4.1 displays the average runtime of this microbenchmark onAlgoparc when each thread

copies 216 integer elements (32-bits each) from one global memory array into another, for varying

Mo and MI values. We note that, since the number of total accesses grows with Mo, linear

growth implies constant throughput. Thus, the inflection point where each curve ceases to be flat

is the point where Bg is reached. Figure 4.1 clearly indicates that this inflection point occurs when

Mo ·MI = 8. Thus, on Algoparc, when M = 8, multiplicity ceases to hide latency, implying that

Lg = 8
Bg

. We measure Bg using the maximum throughput achieved and we repeat this experiment

for our other hardware platforms (see Table 4.2 for the resulting parameter values).

29

4.3 Shared memory accesses

As discussed in Section 1.2, shared memory requires a unique access pattern to avoid bank conflicts

and achieve peak throughput. Several previous works have presented models of GPUs that include

analysis of this access pattern [61, 62, 47]. While these models can help us estimate the number of

shared memory accesses performed by algorithms with predictable access patterns, many algorithms

have data-dependent access patterns, resulting in an unknown number of bank conflicts. Thus, we

model shared memory accesses separately from bank conflicts and combine them to estimate total

accesses. If we ignore bank conflicts, any thread is able to access any location of shared memory

in unit time, allowing us to use the simple CREW PRAM model to determine As. This simplifies

our analysis of shared memory and allows us to employ various other techniques to estimate bank

conflicts. Thus, we use an additional parameter, β, captures the performance implication of shared

memory bank conflicts.

We define β to be the average number of sequential memory accesses per parallel shared memory

request, that is, one plus the average number of bank conflicts (i.e., 1 ≤ β ≤ w). We estimate

the total number of shared memory accesses as β · As. Note that each kernel Ki may have a

different shared memory access pattern and therefore its own βi value. Since we estimate bank

conflicts separately from memory accesses, we can compute β in a variety of ways, depending

on the kernel begin analyzed. For deterministic algorithms, we can analytically compute β for

each kernel by either analyzing the access pattern directly or using the Discrete Memory Machine

(DMM) model [61] (discussed in Section 3.2.4). However, for arbitrary data-dependent access

patterns, it remains an open problem to determine the expected number of bank conflicts. For

the data-dependent algorithms that we analyze in this work, we compute β empirically using the

nsight performance profiler [66]. We note that, since β is only dependent on the memory access

pattern (i.e., the algorithm and input data), we can measure β once and use the result to estimate

algorithm performance on a range of different hardware platforms. We leave probabilistic analysis

of bank conflicts as an interesting open problem for future work.

4.3.1 Measuring Ls and Bs

Since we estimate bank conflicts separately from shared memory accesses, we create a microbench-

mark that incurs no bank conflicts to measure shared memory latency, Ls, and peak bandwidth,

Bs. To emphasize the contribution of shared memory, we perform X accesses in shared memory

for each element. Thus, the execution time of this microbenchmark is expected to be

T =
NMoX

P
max

(

1

Bs
,

⌈

Ls

M

⌉)

.

Figure 4.2 shows the results of this microbenchmark on Algoparc, with N = 215 and X = 100,

30

Figure 4.2: Impact of oversubscription (Mo) and ILP (MI) on shared memory access time on
Algoparc with N = 215 elements per thread and X = 100.

for varying Mo and Mp. As with global memory, we see that, once M becomes large enough, we

become bound by peak bandwidth (Bs). We note that, when ILP (MI) is 1 or 2, we never reach

Bs. This is explained by the overhead associated with the benchmark itself. Since shared memory

accesses are so fast, additional computation such as loop operations impact performance. However,

for MI > 2, we clearly see that Bs is reached when 16 < Mo · Mp < 24. Using this we estimate

shared memory latency to be Ls =
20
Bs

for Algoparc.

4.4 Register operations

Registers constitute the fastest level of the GPU memory hierarchy, though they are thread-private

and the access pattern must be known at compile time. The shfl() hardware instruction allows

threads within a warp to access each others registers, however, so we estimate the asymptotic

number of register operations performed by a given kernel using the CREW PRAM model, allowing

communication between groups of w threads. Thus, the lower bounds and analytical techniques

presented in prior work on the PRAM model applies to our analysis of register operations, with

the caveats that the pattern of accesses to different registers must be known at compile time (i.e.,

static) and only threads within a warp share data.

4.4.1 Measuring Lr and Br

We measure the impact of multiplicity on register computation using a microbenchmark similar to

that for shared memory. We vary Mo and MI while performing X register operations on each of

N elements. As with the results of our shared memory benchmark, the overhead of the experiment

itself makes it difficult to isolate the cost of individual operations, so, to get a more accurate

estimate, we also increase N with MI , thereby having each thread work on N ·MI elements. This

31

Figure 4.3: Impact of oversubscription (Mo) and ILP (MI) on time to perform register operations
on Algoparc with N = 215 · MI elements per thread and X = 500. Since memory accesses
increase with M, multiplicity continues to hide latency as long as runtime remains flat.

helps ensure that the experimental overheads remain constant regardless of M. We estimate the

runtime of this benchmark as

T =
NXM

P
·max

(

1

Br
,

⌈

Lr

M

⌉)

.

Figure 4.3 plots the runtime of this benchmark on Algoparc with X = 500 and N = 215 ·MI ,

using 32-bit integer elements. Since we increase work with M, we expect runtime to remain flat

while multiplicity continues to hide latency. However, once runtime starts increasing, we have

reached peak bandwidth and runtime is limited by Br. Using these results, we measure Br = 0.86

on Algoparc. Recall that Br is the number of operations per clock cycle, per core. Thus, if

Br = 1, a register operation can be performed every cycle, which we expect to be the maximum

throughput for register operations. Our measured Br is 14% less than this, which we attribute

to noise resulting from the microbenchmark. We use the estimate Br = 1 for all modeling and

experiments hereafter. Thus, we can then estimate Lr =
6
Br

= 6 on Algoparc.

4.5 Thread-block synchronization

As discussed in Section 1.2, the number of threads in a thread-block (TB) is variable, and we

defined this value as b. All threads in a TB have access to the same shared memory partition and

run on the same SM. Therefore, the explicit intra-TB synchronization, syncthreads, is a valuable

tool for communication and fine-grain synchronization. While the SPT model does not consider the

impact it may have on scheduling, the syncthreads operation has a fixed cost, so we incorporate

it into the model instantiation.

32

Figure 4.4: Average time per syncthreads operation, when performing a fixed N = 105 register
additions per block, for different values of Mo, on Algoparc.

4.5.1 Measuring Ly and By

We measure the time to perform a syncthreads operation using microbenchmarks that repeatedly

call syncthreads while performing a small amount of additional work in registers (needed to

prevent compiler optimization from eliminating the calls to syncthreads). Figure 4.4 plots the

average time per syncthreads, for varying oversubscription (Mo). We see that, as we increase

Mo, the time to perform each syncthreads is reduced, until a plateau is reached and the time

per syncthreads remains constant. This pattern is similar to the performance profile of memory

accesses when varying M.

This allows us to measure Ly and By for each of our hardware platforms. We note that, since

the syncthreads command, by its very nature, cannot be independent, ILP does not apply and

MI = 1. Therefore, we estimate the time required, in clock cycles, to perform Ay syncthreads

operations to be

Ty = Ay ·max

(

1

By
,
Ly

Mo

)

,

We use this microbenchmark to measure Ly and By for each of our hardware platforms and present

the resulting values in Table 4.2.

4.6 Barrier synchronization

Between kernel executions, the SPT model assumes that a device-wide barrier synchronization is

performed. CUDA provides the cudaDeviceSynchronize() operation, which we refer to here-

33

Figure 4.5: Average runtime to perform N additions and a varying number of deviceSync op-
erations, for different values of Mo and MI , on Algoparc. Each deviceSync has a fixed cost,
regardless of other parameters.

after as deviceSync, that explicitly synchronizes all threads on the GPU. It is a blocking command

that is called from the host (CPU) and waits until all GPU threads currently running are com-

pleted1. The deviceSync operation corresponds directly to the synchronization stage of the SPT

model. Therefore, for a given algorithm on the GPU, we can determine |K| by the number of

deviceSync operations it performs.

We measure the time to perform a deviceSync, Lsync, with a microbenchmark that varies the

number of deviceSync calls while having each thread perform a fixed amount of work (additions in

global memory). Figure 4.5 plots the average runtime of this microbenchmark, for several different

values ofMo. Results indicate that each deviceSync operation has a fixed cost that is independent

of other parameters, which corresponds to the way we model barrier synchronization in the SPT

model. Figure 4.6 plots the average time spent per deviceSync operation and shows that, as we

increase the total deviceSync calls, the time converges to a constant value, which we estimate to

be the time to perform deviceSync (i.e., Lsync). We run these microbenchmarks on each of our

hardware platforms and include the measured Lsync values in Table 4.2.

4.7 Computing multiplicity

Recall from Section 3.1.4 that we compute multiplicity, M, by determining oversubscription (Mo)

and ILP (MI). Specifically, we say that M = Mo · MI . On GPUs two main factors limit the

1Since CUDA version 6, cudaDeviceSynchronize() can be called from the GPU, which causes the calling thread
to wait for all kernels that it spawned to finish. However, there are many limitations to this “dynamic parallelism” [65],
so we do not consider it in our model.

34

Figure 4.6: Average time spent per deviceSync, for varying total number of deviceSync opera-
tions, and for different values of Mo, on Algoparc. As we increase the number of deviceSync
operations, the time per sync converges to a constant, which we estimate to be Lsync.

oversubscription, Mo, of a kernel:

1. shared memory usage – each SM has a limited amount of shared memory, so if each TB uses

too much, it limits the number of TBs that can run simultaneously. Specifically, if each TB

has b threads and each thread stores E elements in shared memory, oversubscription is limited

to:

Mo ≤
M

b · E · P

where M and P are the total shared memory and number of compute cores on the entire

GPU, respectively.

2. register usage – similar to shared memory, using too many registers per thread can limit

oversubscription. If each thread uses r registers, oversubscription is limited to:

Mo ≤
R

b · r · P

where R is the total registers on the entire GPU and b is the number of threads per TB.

Thus, we can compute the oversubscription of kernel K as

Mo = min

(

M

b · E · P
,

R

b · r · P

)

Unfortunately, we cannot directly estimate ILP (MI) for a given algorithm without considering

35

the algorithm and implementation itself. Thus, we rely on fine-grain analysis to determine MI .

We note, however, that if such fine-grain analysis is infeasible, the SPT model can be used with

MI = 1 and the effects of oversubscription will still be incorporated into runtime estimation.

4.8 Estimating GPU Execution Time

The instantiation of the SPT model on our GPU platforms lets us analyze an arbitrary algorithm

to determine what types of operations most impact overall performance. Furthermore, the latency

and bandwidth values obtained with our microbenchmarks enable us to estimate the runtime of the

algorithm on a specific GPU. However accurate runtime estimates require accurate counts of the

number times the algorithm performs each operation (Aφ, for each of φ ∈ {g, s, r, y}). We propose

a two-phase analysis that allows us to get an accurate operation counts without having to analyze

every aspect of a given implementation. For each kernel Ki of an algorithm, we first determine

an asymptotic bound for Ai,g, Ai,s, Ai,r, and Ai,y by analyzing the kernel using an asymptotic

model that captures the memory access pattern of each memory type (the PEM model for Ai,g,

CREW PRAM for Ai,s and Ai,r, and simply counting for Ai,y). With the resulting asymptotic

bounds, we identify the portions of the kernel execution that correspond to the asymptotically

dominating terms, for each type of operation. We then perform a fine-grain analysis of the portions

of the kernel that correspond to these asymptotically dominating terms to estimate the associated

constant factors and give us a precise estimate of Ai,g, Ai,s, Ai,r, and Ai,y. We similarly determine

the ILP, Mi,I associated with these dominating terms. Finally, we compute oversubscription, Mi,o

based on the amount of of shared memory and number of registers used by each TB. Combining

all of these terms, we compute an estimate of the runtime of kernel Ki (in clock cycles) to be

Ti = Ti,g + Ti,s + Ti,r + Ty,i, where

Ti,g = Ai,g ·max

(

1

Bg
,
Lg

Mi

)

,

Ti,s = Ai,s ·max

(

1

Bs
,
Ls

Mi

)

,

Tir = Ai,r ·max

(

1

Br
,
Lr

Mi

)

,

Ti,y = Ai,y ·max

(

1

By
,

Ly

Mi,o

)

.

We repeat this process for all kernels and estimate the total algorithm runtime as

T = |K| · Lsync +

|K|
∑

i=1

Ti

36

Table 4.2: Hardware details and measured parameters for our three GPU platforms. Parameters
marked with * are empirically measured.

Parameter (units) Description Algoparc Gibson Uhhpc

P (total cores) Total compute cores 1664 1536 2880

M (total 4-byte elements) Total shared mem. 312K 128K 240K

R (total 4-byte elements) Total registers on GPU 832K 512K 960K

*Lg (clock cycles) Global mem. latency 269.5 267.6 291.2

*Ls (clock cycles) Shared mem. latency 85.84 123.1 111.9

*Lr (clock cycles) Register op. latency 6 10 10

*Ly (clock cycles) syncthreads latency 234 304 289

*Bg (elts. per clock, per core) Global mem. bandwidth 0.0301 0.0279 0.0275

*Bs (elts. per clock per core) Shared mem. bandwidth 0.233 0.130 0.131

*Br (elts. per clock per core) Register op. bandwidth ∼ 1 ∼ 1 ∼ 1

*By (elts. per clock per core) syncthreads bandwidth .0493 .0364 .0394

*Lsync (clocks cycles) Time of deviceSync 7800 10850 8640

37

CHAPTER 5

CASE STUDY: MATRIX MULTIPLICATION

General matrix-matrix multiplication (gemm) is one of the most fundamental and frequently per-

formed dense linear algebra operations. Given an n× k matrix A and a k ×m matrix B, we wish

to find the n×m matrix, C, defined as C = A× B. There are many variations of this operation,

although in this work, we consider only the simple gemm of the form C = A×B. For more details

on about the gemm operation and related algorithms, see general resources on linear algebra [74]

and algorithms [17].

5.1 State-of-the-art GPU Matrix Multiply

There are libraries that provide efficient implementations of commonly-used linear algebra algo-

rithms, such as general matrix-matrix multiplication (gemm), for specific hardware architectures.

On the GPU, many implementations focus on optimizations that reducing global memory accesses

and increasing parallelism. The gemm operation is well-suited for GPUs because it is easily paral-

lelizable and requires little synchronization. Furthermore, the classic gemm algorithm is compute

bound, requiring O(n3) computations to multiply two n × n matrices. Nevertheless, there are

several optimizations that can improve gemm performance on GPUs, such as tiling [74]. Tiling

improves performance by assigning a tile of the output matrix C to a thread and then having it

repeatedly load batches of elements into cache to perform matrix multiplication on. The results of

each batch multiplication are stored as partial results. Once all batches have been processed, the

final result is written back to memory.

In this work, we focus on the state-of-the-art gemm implementation that is available with

the magma library [77]. The algorithm they use, which we refer to hereafter as magma-gemm, is

optimized to take advantage of all levels of the GPU memory hierarchy. Since our instantiated SPT

model focuses on memory access times, we expect it to be able to accurately predict the impact of

optimizations like tiling. We first present an overview of the magma-gemm algorithm. Then, we

generate runtime estimates with our SPT model and compare them with empirical results.

5.1.1 Algorithm details

To attain the parallelism needed to achieve high performance on the GPU, the magma-gemm

algorithm employs the standard parallelism technique of tiling the output matrix, C. The magma-

gemm algorithm assigns each thread-block (TB) to one tile of the C matrix (of size NTBX×NTBY),

as illustrated in Figure 5.1. The parameters NTBX and NTBY , therefore define the number of rows

of A and columns of B that each thread-block processes, respectively. We note that, since NTBX

38

and NTBY are hard-coded constants, as n and m grow, the number of thread-blocks used increases.

The process for each tile is the same, so we simply describe how a single TB computes its tile.

m

m

k

k

nn

NTBY

λ

λ

NTBX

NTBY

NTBX

B

A C

Figure 5.1: Illustration of the work done by a single TB in the magma-gemm algorithm.

A TB computes its tile in a series of batches to make use of shared memory and registers and

reduce global memory accesses. As shown in Figure 5.1, the TB begins by loading a batch of

NTBX · λ elements from A and NTBY · λ elements from B into shared memory. We note that the

magma-gemm implementation uses NTBX = NTBY , so we define NTB = NTBX = NTBY and use

it to simplify analysis. Thus, each TB loads 2 ·NTB · λ elements into shared memory. Each thread

of the TB then loads a portion of the batch into registers, multiplies them, and adds the result to a

set of partial sums it keeps in registers. The TB continues until all k
λ batches have been processed,

then each thread writes its result from registers to the final output array, C, in global memory. For

more details about this algorithm, we refer interested readers to the magma documentation and

published works [77, 20, 63].

5.2 Algorithm analysis

We now analyze the magma-gemm algorithm in the context of our SPT model (detailed in Chap-

ter 3). We consider each type of operation individually, and combine the results to develop an

overall performance estimate. For each type of operation, we i) determine the asymptotically dom-

39

inating terms, ii) perform fine-grain analysis to determine constant factors, and iii) combine the

result with hardware constants (measured in Chapter 4). Finally, we determine M by estimating

the oversubscription, Mo and ILP, MI of the algorithm, allowing us predict runtime.

Matrix-matrix multiplication requires little synchronization between threads. The magma-

gemm algorithm requires only a single kernel, simplifying our analysis and letting us estimate

runtime as

T = Lsync + Tg + Ts + Tr + Ty.

5.2.1 Global memory accesses

One key aspect of the magma-gemm algorithm, tiling, allows blocks of memory to be loaded into

shared memory to reduce the overall number of global memory accesses. Each TB loads NTB · λ

elements from A and NTB · λ elements from B. This allows for coalesced accesses and prevents

repeated reading of these elements when performing the multiplication. Each TB repeats this for
k
λ batches, for a total global memory reads per TB of

2 ·NTB · λ · k

λ · w
,

where each coalesced read accesses w consecutive elements. There are a total of n
NTB

· m
NTB

= n·m
(NTB)2

tiles (and therefore TBs), thus the number of global memory accesses to load all batches is

2 ·NTB · λ · k

λ · w
·

n ·m

(NTB)2
=

2 · n ·m · k

NTB · w
.

Once the results are computed, each tile must be written back to global memory to create the

final C matrix, for a total number of coalesced global memory writes of

(NTB)
2

w
·

n ·m

(NTB)2
=

nm

w
.

There are P total processors and each coalesced access enables a warp (w threads) to read blocks

of w elements. Determining the constant factors associated with Ag is simple for this algorithm.

Each read occurs only once and the final matrix C is only written once, so

Ag =
1

P/w
·

(

2 · n ·m · k

NTB · w
+

nm

w

)

=
2 · n ·m · k

P ·NTB
+

n ·m

P
.

40

5.2.2 Shared memory accesses

Once a TB loads a batch of data into shared memory, each thread reads NTB ·λ
b elements from

the blocks of A and B (in shared memory) and stores them in registers, where b is the number

of threads per TB. Once loaded into registers, each thread multiples the elements and stores the

resulting partial sum in registers as well. Since the multiplication operation itself happens in

registers, each element in shared memory is only accessed a constant number of times. Thus, the

number of parallel shared memory accesses is, asymptotically, equivalent to global memory, except

for writing the final C array, which happens directly from registers to global memory. We note

that this algorithm is completely bank conflict-free, so β = 1. Unlike global memory, however,

the constant factors associated with the asymptotic terms are not all 1. Each element in shared

memory is accessed once when writing from global memory to shared memory, and again when

reading shared memory and storing it in registers. Therefore,

As = 4 ·
n ·m · k

P ·NTB
.

5.2.3 Register operations

The majority of work done by magma-gemm occurs in registers. For each batch (blocks from A

and B) loaded into shared memory, each thread loads a portion into registers and performs matrix

multiplication on them. If each TB has b threads and stores 2NTB · λ elements in shared memory

per batch, each thread loads 2·NTB ·λ
b elements into registers. Once loaded, each thread performs

matrix multiplication, requiring Θ
(

(NTB)2·λ
b

)

operations. Each thread performs its own matrix

multiplication, so the entire TB must perform (NTB)
2 · λ accesses per batch. Recall that each TB

loads k
λ blocks and there are a total of n·m

(NTB)2
thread-blocks. Thus, the number of register accesses

is

Ar = Θ

(

1

P
·

(

(NTB)
2 · λ ·

k

λ
·

n ·m

(NTB)2

))

= Θ

(

n ·m · k

P

)

.

We note that this is the lower bound for the naive gemm algorithm in the CREW PRAMmodel [17].

To determine the constant factors associated with Ar, we need to consider the code to count

register operations themselves. While counting the total register operations of a given program can

be difficult, we are only concerned with operations associated with the asymptotically dominating

term above. Within the innermost loop of the gemm algorithm, the magma-gemm implementation

uses the specialized hardware operation, fma (fused multiply-add), thereby requiring only one

operation. Thus, the constant factor associated with the dominating term for register operations

is 1. This illustrates that, by considering constant factors and register operations, our SPT model

41

is able to capture the effects of low-level optimizations as well. With a leading constant factor of

1, the total register operations is

Ar =
n ·m · k

P

5.2.4 Thread-block synchronizations

While the magma-gemm algorithm only requires one deviceSync operation, threads within each

TB must synchronize periodically. Since all threads work on the same blocks of shared memory

(both loading and reading), they must use syncthreads. Specifically,before and after loading

each pair of blocks from global memory to shared memory, a TB calls syncthreads. Each TB

loads a total of k
λ pairs of blocks (batches), and there are n·m

(NTB)2
thread-blocks. For each block,

each TB reads each element into shared memory and writes it out, thus

Ay =
2 · k · n ·m

P · (NTB)2 · λ
.

5.2.5 Multiplicity, M

To determine M, we compute oversubscription, Mo and ILP, MI . We note that, while Mo remains

constant for the entire kernel, each type of memory access may have different values of MI , so we

determine it for each.

Oversubscription, Mo

Recall from Section 4.7 that oversubscription can be limited by either shared memory usage or

register usage. Since magma-gemm uses both, we compute the limitation to Mo caused by each,

based on the algorithm parameters. Each TB of b threads stores 2 · NTB · λ elements in shared

memory. If the GPU can store a total of M elements in shared memory,

Mo ≤
M

(2 ·NTB · λ · (P/b))
=

M · b

P · 2 ·NTB · λ

Each thread stores elements in a number of registers to enable fast computation: elements

loaded from block A, elements loaded from block B, and partial sums to be eventually written to

the final output matrix C. Per thread, the number of elements loaded from A and B into registers

is 2·NTB ·λ
b . Each thread also keeps (NTB)2

b partial sums in registers. Thus, the use of registers limits

Mo to

Mo ≤
R · b

P · (2 ·NTB · λ+ (NTB)2)
,

where R is the total registers available on the GPU. For many modern GPUs, such as all three of

42

our hardware platforms, R and M are roughly the same (see values for our hardware platforms in

Table 4.2. Since each thread uses more registers than shared memory, we say that Mo is limited

by register usage and use that value to compute Mo when estimating performance.

ILP, MI

Estimating the ILP of a given set of operations requires that we consider the algorithm and imple-

mentation details and estimate the average number of independent operations that can be performed

by a single thread. For the magma-gemm algorithm, threads are operating on many different pairs

of elements with very little dependence between operations. When accessing both global and shared

memory, each thread simply reads elements and stores them elsewhere (either in shared memory or

registers). Thus, when computing Tg and Ts, we say that MI is equal to the number of elements

each thread accesses, i.e.,

MI =
2 ·NTB · λ

b

Thus, when computing Tg and Ts,

M = Mo · MI

=
R · b

P · (2 ·NTB · λ+ (NTB)2)
·
2 ·NTB · λ

b

=
2 ·R · λ

P · (2 · λ+NTB)

In practice, R is quite large (> 500K elements), so ILP is large enough that shared memory

and global memory accesses are bandwidth-bound on our hardware platforms. Registers, however,

cannot benefit from as much ILP in this algorithm. To see this, we consider the matrix multipli-

cation operation that each thread performs in registers. We denote ai, bi, and ci, as the elements

that a thread stores from matrix A, B, and C, respectively. Assuming that each thread operates

on x2 elements from A and B, the matrix multiplication performs the following pattern:

c1
+
= a1 · b1

c1
+
= a2 · b2

· · ·

c1
+
= ax · bx

c2
+
= a1 · bx+1

c2
+
= a2 · bx+2

· · ·

43

Figure 5.2: Measured runtime, compared with our model estimate, for n = m = 104 and varying k
on Algoparc.

We can see that the same ci register is being accessed for x consecutive steps, preventing

the operations from being independent and reducing ILP. Specifically, we only have 2 independent

operations every x steps, so we say that ILP is approximately 1 (i.e.,MI = 1) for register operations.

5.3 Verifying Model Estimate

We put together all of the results of our analysis of the magma-gemm algorithm to develop a single,

parameterized runtime estimate for each of our hardware platforms. Thus, our overall performance

estimate of runtime is T = Lsync + Tg + Ts + Tr + Ty, where

Tg =

(

2 · n ·m · k

P ·NTB
+

n ·m

P

)

·max

(

1

Bg
,
Lg

M

)

,

Ts =

(

4 ·
n ·m · k

P ·NTB

)

·max

(

1

Bs
,
Ls

M

)

.

Tr =

(

n ·m · k

P

)

·max

(

1

Br
,

Lr

1 · Mo

)

,

Ty =

(

2 · k · n ·m

P · (NTB)2 · λ

)

·max

(

1

By
,
Ly

Mo

)

,

where M = 2·R·λ
P ·(2·λ+NTB) and Mo =

R·b
P ·(2·NTB ·λ+(NTB)2)

.

44

Figure 5.3: Measured runtime and our model estimate, for n = m = k = 104 and varying NTB

on Algoparc. The dotted line shows our model if take into account the impact of using local
memory when each thread requires too many registers.

Figure 5.4: Measured runtime and our model estimate, for n = m = k = 104 and varying NTB

on Algoparc. The dotted line shows our model if take into account the impact of using local
memory when each thread requires too many registers.

5.3.1 Accuracy of runtime estimate

We verify the accuracy of our performance model by simply running magma-gemm on each of

our hardware platforms for varying matrix sizes (n, m, and k). We use the magma hard-coded

values of NTB = 96, λ = 16, and b = 256. Figure 5.2 plots our performance estimate and measured

runtimes, averaged over 10 iterations, for n = m = 104 and varying k, on Algoparc. These results

indicate that our SPT model accurately estimates the average runtime of magma-gemm, with an

average error of 3.8% and 5.7% on Algoparc and Gibson, respectively.1

1Unfortunately, we were unable get the magma library working on the Uhhpc platform.

45

5.3.2 Modeling algorithm parameters

Our performance estimate of the magma-gemm algorithm relies on several parameters that are

hard-coded to specific values in the magma implementation. To determine how accurate our model

is with respect to these parameters, as well as to evaluate how they impact overall performance,

we run a series of experiments that vary these parameters. We modify the source code of magma-

gemm to vary the NTB parameter value and measure algorithm runtime for fixed n = m = k matrix

sizes. Figures 5.3 and 5.4 display the measured runtime, compared with our model estimate, for

varying NTB parameter values and fixed n = m = k = 104, λ = 16 and b = 256, on Algoparc and

Gibson, respectively. These results indicate that, except for very small or large values of NTB, our

runtime estimate is accurate. Interestingly, it further shows that, for the Algoparc platform, the

hard-coded NTB = 96 is not ideal, and we achieve better performance when NTB = 128. As we see

in Figure 5.3, our runtime estimate accurately predicts this and it is confirmed by the measured

runtime.

We see that, when NTB becomes large, our model significantly under-estimates the runtime.

Recall that magma-gemm uses (NTB)2+2·NTBλ
b registers per thread. Thus, whenNTB becomes large,

each thread uses many of registers. Since there are a limited number of hardware registers, when

a thread requires too many, the GPU instead uses local memory for excess register storage [65].

Local memory is a portion of global memory that is cached in shared memory. To estimate the

impact of local memory on magma-gemm runtime, we compute the number of registers used, per

thread, for each NTB. When the total registers used exceeds 255 (the hardware limit per thread),

we say that a portion of register operations require shared memory accesses (i.e., local memory).

Assuming that all registers require the same number of accesses, we estimate the number of register

operations that require shared memory accesses to be Ar ·
r−255

r , where r is the total registers used

per thread. The dotted line in Figure 5.3 shows our new model estimate that includes the cost of

local memory accesses. We see that it much more accurately predicts magma-gemm runtime for

large NTB values.

5.4 Conclusion

In this chapter we applied the SPT model, defined in Chapter 3, to the analysis of matrix-matrix

multiplication on our GPU platforms. We considered the state-of-the-art library implementation of

naive general matrix multiplication available with the magma library [77]. By comparing empirical

runtime with the runtime estimate from the SPT model on our Algoparc and Gibson platforms,

we found that the model accurately predicts runtime. Furthermore, results indicate that our anal-

ysis with the SPT model determines performance bottlenecks and is able to determine parameter

configuration for peak performance.

While our analysis of the magma-gemm algorithm indicates that it suffers from no glaring

46

performance bottlenecks, the algorithm itself is sub-optimal. The naive algorithm used by the

magma library requires O(n3) total operations, although advances have been made that reduce

this to O(n2.373) [81]. These “fast matrix multiplication” algorithms, however, are significantly

different from the naive approach, so developing an efficient version for GPU architectures may be

challenging. Furthermore, optimization techniques such as tiling do not apply to these algorithms

and it is unknown how to achieve I/O-efficiently. Nevertheless, the asymptotic improvements

these fast matrix multiplication algorithms provide can result in significant practical performance

improvements if they can make efficient use of GPU architectures. Thus, a promising area of future

work is to use the SPT model to develop a GPU-efficient fast matrix multiplication algorithm.

47

CHAPTER 6

CASE STUDY: SEARCHING

Searching encompasses a broad class of problems that are frequently seen as a subproblem in other

applications. For a typical searching problem, we are provided with an input of N items and a

series of queries, Q. We are asked to search through the input to answer each query. In this chapter,

we consider the simple predecessor search on the GPU for two cases: if the input N is large and is

stored in global memory and 2) if the input is small and is stored in shared memory.

We formally define the batched predecessor search problem as:

Definition 6.0.1 Given a list N of N keys N [0], N [1], · · · , N [N − 1], sorted in non-decreasing

order, and a set Q of Q queries, the batched predecessor search problem asks to find for each q ∈ Q

the largest i, such that N [i] ≤ q.

Batched predecessor search can be (sequentially) solved optimally in the standard RAM model

in O(Q logN) time by running the classical binary search algorithm on N for each query q ∈ Q.

In the P -processor CREW PRAM model (described in Section 1.3), a straightforward and optimal

parallelization consists in performing each binary search concurrently, achieving O(QP logN) time.

6.1 Searching in Global Memory

In this section we consider the batched predecessor search problem when the sorted set of search keys

N is in global memory (i.e., when N is large and does not fit in shared memory). Since we are only

concerned with performing queries, we do not consider dynamic search structures and can focus on

implicit search layouts [46] only. Implicit search layouts are ways of organizing the elements of a

list to facilitate searching. Many well-known search layouts have been proposed [15, 25, 17] with

differing benefits. For this work, we consider three layouts: a naive sorted list, a level-order binary

search tree (BST) layout, and a static B-tree layout. Searching each layout results in a different

memory access pattern, which may impact performance.

6.1.1 Naive Sorted List

For a given list N containing N search keys in global memory, a simple sorted list can be searched

efficiently using a standard binary search technique [46]. Thus, we can solve the batched predecessor

search of Q queries by performing binary searches concurrently. Since this section focuses on the

performance of searching different memory layouts, we refer to the process of searching this layout

as sorted.

On the GPU, this batched predecessor search is performed in a single kernel, with Q threads

each performing a single query. N is stored in global memory so each thread performs binary search

48

by accessing elements in global memory. Recall from Section 1.2 that global memory is accessed

in blocks of w elements by a warp of w threads. To achieve peak performance, we must make use

of all w elements in each block that we access. However, naive binary search exhibits very little

spatial locality of data accesses, as the distance between subsequent search elements is large (until

the end of the search). A naive binary search requires ⌈logN⌉ steps, accessing a key at each step,

where the distance between each key being accessed decreases by a factor 1
2 per step. Thus, it is

not until the last logw steps that we can use more than 1 element per block accessed, resulting

in (⌈logN − logw⌉+ 1) global memory accesses per query. Thus, the total number of uncoalesced

accesses is to search Q queries on the sorted layout is

Q

P
· (⌈logN − logw⌉+ 1).

Since all threads are performing their own binary search, we estimate that all threads will access

different blocks, leading to completely uncoalesced accesses (each warp accesses w blocks per read).

Thus, we estimate the total global memory accesses to be

Ag =
Q

P/w
· (⌈logN − logw⌉+ 1)

=
Q

P/w
·

(⌈

log
N

w

⌉

+ 1

)

We see that uncoalesced accesses reduce parallelism (and thereby increase the runtime) by a

factor w. We note, however, that the additional memory accesses caused by uncoalesced accesses

are all issued independently, increasing ILP (MI) by a factor w. Since little additional work is done

in registers or shared memory, we estimate the total runtime of performing batched predecessor

search on the sorted layout to be

T =
Q

P/w
·

(⌈

log
N

w

⌉

+ 1

)

·max

(

1

Bg
,

⌈

Lg

M · w

⌉)

+ Lsync.

where Lsync is included because syncthreads is called once after the batched predecessor query

kernel. This algorithm uses no shared memory and few registers, so global memory accesses are

bandwidth bound (i.e.,
(

1
Bg

>
⌈

Lg

M·w

⌉)

).

6.1.2 Level-order Binary Search Tree

A simple layout that facilitates easy searching is the level-order binary search tree (BST) layout.

The BST layout is defined by the breadth-first (level-order) left-to-right traversal of a complete

binary search tree. Given the index i of node v in the BST layout, the indices left and right

children of v are 2i + 1 and 2i + 2, respectively. Note that the layout indices start at 0 (e.g.,

the root of the BST is at index 0, with left and right children at indexes 1 and 2, respectively).

49

This layout provides two benefits over the standard sorted list: i) index calculation is very simple

when searching and ii) the beginning of each query (i.e., the top of the BST) has a high amount of

data locality, regardless of the query, allowing us to cache the beginning of the layout and improve

performance. We note that the BST layout has been shown to provide good performance on CPUs

due to cache prefetching [42, 12], though it is not clear that this applies to GPUs.

When analyzing the batched predecessor problem on the BST layout, we can use the fact that

all queries must access elements at the top of the tree structure. If the top of the BST is cached

in shared memory, the number of global memory accesses is reduced and performance is improved.

Thus, when performing batched predecessor search on a BST layout, each thread-block (TB) first

loads the top of the BST layout into shared memory. Each TB can store a total ofMTB = M
P/b = Mb

P

elements in shared memory, where M is the total shared memory on the whole GPU (values for

our platforms are in Table 4.2) and b is the number of threads per TB. Initially loading first MTB

elements into shared memory takes MTB

b = M
P global memory accesses, and once it is loaded, each

query requires ⌈logN − logMTB⌉ global memory accesses. As with the sorted layout, all accesses

are uncoalesced, so we estimate the total accesses for Q queries to be

Ag =
M

P
+

Q

P/w
·

(⌈

log
N

MTB

⌉

+ 1

)

.

On all of our hardware platforms, MTB = 214 when using 32-bit integers. Since the top

log (MTB) levels of the tree are searched in the shared memory cache and there is only one kernel

call, T = Tg + Ts + Lsync, where

Tg =

(

M

P
+

Q

P/w
·

⌈

log
N

MTB

⌉)

·max

(

1

Bg
,

⌈

Lg

M · w

⌉)

,

Ts =

(

M

P
+

Q

P
· ⌈logMTB⌉

)

·max

(

1

Bs
,

⌈

Ls

M

⌉)

.

Note that when Q > M
w log (N/MTB)) global memory accesses are dominated by querying. Similarly,

when Q > M
log (MTB) , querying dominates shared memory accesses as well. We assume that Q is

large, so the time to cache the first MTB elements into shared memory is small, compared to query

time.

6.1.3 B-tree Layout

While the BST layout reduces the number of global memory accesses by allowing the top of the

tree structure to remain in cache when searching, at the bottom of the BST there is no cache

locality, resulting in excess memory accesses. The B-tree layout [15] avoids this by building a

50

layout specifically targeting the memory access block size of a given architecture. Each node of a

complete B-tree contains exactly B elements and every internal node has exactly B + 1 children.

The B-tree layout is defined by the breadth-first left-to-right traversal of a B-tree. This layout

is a generalization of the level-order BST layout (a BST layout is a B-tree layout with B = 1).

Thus, as with the BST layout, index computation is simple and the top portion of the tree can

be stored in cache. However, the B-tree layout also lets us use all w elements from every global

memory access.

For the GPU, we focus our analysis on the performance of the batched predecessor search of

a B-tree layout where B = w. This lets us read each node in the B-tree with a single global

memory access. We can then search through the node in shared memory. The depth of a B-tree

is ⌈logB+1N⌉, and, as with the BST layout, we first load the top MTB elements of the tree into

shared memory for each TB. Thus, the number of global memory and shared memory accesses per

query is
⌈

logw+1
N

MTB

⌉

and ⌈logw+1N · logw⌉, respectively. Thus, for a batch of Q predecessor

queries, we estimate the total accesses to be

Ag =
M

P
+

Q

P/w
·

⌈

logw+1

N

MTB

⌉

,

As =
M

P
+

Q

P
· ⌈logw+1N · logw⌉.

No additional work is performed in registers, so T = Tg + Ts + Lsync, where

Tg =

(

M

P
+

Q

P/w
·

⌈

logw+1

N

MTB

⌉)

·max

(

1

Bg
,

Lg

M · w

)

,

Ts =

(

M

P
+

Q

P
· ⌈logw+1N · logw⌉

)

·max

(

1

Bs
,
Ls

M

)

.

As with the BST layout, when Q is sufficiently large, the time spent querying is much larger than

the time needed to load the top of the B-tree layout into shared memory.

6.1.4 Empirical Performance Results

Our analysis with the SPT model indicates that both the BST and B-tree layouts should signif-

icantly reduce the number of global memory accesses needed to search, compared with a sorted

layout. In this section, we create each of these layouts and perform batched predecessor search,

comparing the performance with the estimate obtained from our model. We evaluate the perfor-

mance on each of our hardware platforms (detailed in Table 4.2) for different parameter values.

Figures 6.1, 6.2, and 6.3 plot the measured and estimated runtime to perform a batch of predecessor

queries on each of the three search layouts, for varying Q, on Gibson, Uhhpc, and Algoparc,

respectively. These results indicate that our runtime estimate is accurate, despite not attempting

to model the cache system directly. Furthermore, we do not perform any type of probabilistic

51

Figure 6.1: Measured and estimated runtime when querying different search tree layouts on
Gibson with N = 228 and varying number of queries (Q).

Figure 6.2: Measured and estimated runtime when querying different search tree layouts on
Uhhpc with N = 228 and varying number of queries (Q).

analysis on the access patterns of each query. We see that, on Algoparc, our runtime estimate

has an average error rate of 5.71%, 21.65%, and 24.33%, compared with the measured runtime of

querying sorted, BST, and B-tree, respectively. We attribute the higher error on the B-tree

and BST layouts to the effects of the cache system. Our estimate simply says that a portion of the

tree is stored in cache and we ignore the other, more complex, cache interactions. On Uhhpc and

Gibson, however, we see that our runtime estimate is the most accurate on B-tree and BST, with

an average error of 2.94%% and 6.51%, respectively, on Uhhpc, and 5.67% and 8.09%, respectively,

on Gibson. Our model underestimates the runtime of querying the sorted layout, however, with

an average error of 35.77% and 28.84% on Uhhpc and Gibson, respectively. We postulate that this

is due to the fact that these platforms have older, Kepler generation GPUs with fewer mechanisms

to mitigate the performance loss due to uncoalesced accesses and branch divergence.

52

Figure 6.3: Measured and estimated runtime when querying different search tree layouts on Al-
goparc with N = 228 and varying number of queries (Q).

6.2 Searching in Shared Memory

In this section we consider the problem of performing a batch of Q predecessor search operations

on a list of N sorted keys, stored in shared memory. Focusing on keys stored in shared memory

lets us ignore many of the details of the GPU architecture that complicate analysis. Furthermore,

batches of predecessor searches can be performed concurrently, avoiding the need for deviceSync

operations and allowing us to only consider a single kernel. Thus, in terms of the SPT model

(detailed in Section 3), we are only concerned with computing the time spent accessing queries

from global memory (Tg) and searching in shared memory (Ts). No additional work needs to be

done in registers and no syncthreads operations are necessary. We note that, regardless of the

search method used within shared memory, each query is only accessed once in global memory, so

Ag = Q
P . Furthermore, oversubscription (Mo) and ILP (MI) are independent of the access pattern

used to search shared memory. Searching requires dependent memory accesses, so MI = 1 and,

since all N keys are stored in shared memory, oversubscription is limited to Mo =
M ·t
N ·P .

Since global memory accesses, Ag and multiplicityM are independent of the queries themselves,

the only thing that impacts the performance of batched predecessor search in shared memory is

the access pattern of shared memory itself. Recall from Chapter 4 that the SPT model does not

model bank conflicts directly, and instead defines β as the average number of conflicts per shared

memory access. Therefore, we only use the SPT model to evaluate the number of explicit memory

accesses and rely on direct analysis of the memory access patterns of our different search algorithms

to determine the number of bank conflicts. We first consider a naive binary search approach. We

53

Algorithm 1: Pseudo-code for binary search.

BinarySearch(N , q):
index = ⌊N/2⌋
δ = ⌈N/4⌉
for ⌈logN⌉ times do

if q ≥ N [index] then
index = min(index + δ, N − 1)

else
index = max(index - δ, 0)

δ = ⌈δ/2⌉
end
if q < N [index] then

index = index - 1
return index

then introduce two new search algorithms: one completely bank conflict-free and one that limits

bank conflicts in an effort to achieve peak performance.

6.2.1 Naive Binary Search

There are many small variations on how to implement binary search, each leading to a different

worst-case input for the algorithm. We define here a simple version for concreteness of exposition,

noting that our analysis can be performed for any of the variations. Algorithm 1 shows pseudo-code

for the standard binary search algorithm for a single query q. The min and max functions are used

to prevent out-of-bounds memory accesses, but in our implementations we instead pad the input

to eliminate this extra computation.

Let Parallel Binary Search (PBS) be the straightforward parallel solution to the batched prede-

cessor search problem by running Algorithm 1 for each query q ∈ Q concurrently. In the P -processor

CREW PRAM model (discussed in Section 2.1), the PBS algorithm takes optimal Θ(Q logN) work

and Θ
(

Q
P logN

)

time. However, if data N is stored in shared memory of the GPU, the serializa-

tion of memory accesses due to bank conflicts violates the PRAM assumption that access to each

memory location takes unit time. Thus, the above bound is not representative for the worst-case

runtimes on GPUs For simplicity of exposition we also assume that w is a power of 2. Although

this is the case for most modern GPUs, our results extend to other values of w via straightforward,

but tedious analysis.

Analysis of the PBS algorithm

The PBS algorithm uses executes a single kernel that performs all Q queries on the list N in shared

memory. Clearly, if the queries are in global memory, Ag = Q
P . However, searching is performed in

shared memory, so we focus our analysis on β and As. Our analysis combines both bank conflicts

54

are shared memory accesses, so we denote βAs as the total number of shared memory accesses

performed by the PBS algorithm, as a function of Q, N , P , and w.

Theorem 6.2.1 For every sorted sequence N , |N | = N ≥ 2w2, there exists a set of queries Q,

|Q| = Q ≥ p, for which

βAs = Ω

(

w ·
Q

P
log

N

w2

)

.

This theorem states that, in the worst case, the PBS algorithm performs additional accesses due

to bank conflicts, resulting in performance loss on the GPU (compare to the PRAM complexity

Θ(QP logN)). The proof of this theorem relies on the following lemma:

Lemma 6.2.2 For every sorted sequence N , |N | = N ≥ 2w2, there exists a query set Q, |Q| =

Q = w, for which the total shared memory accesses required to run the PBS algorithm using w

threads of a warp is at least

βAs = Ω

(

w · log
N

w2

)

.

Proof For simplicity, we construct the query set Q so that each query q ∈ Q is an element of N .

Recall from Section 1.2.2 that with w memory banks, a bank conflict occurs when separate threads

within a warp access shared memory cells N [i] and N [j], such that i 6= j and i ≡ j (mod w).

Since the PBS algorithm is deterministic, for a given sorted sequence N , the access pattern of each

thread is a function of the query q ∈ Q that the thread is processing. More specifically, in the k-th

iteration of the binary search loop (k = 1, 2, . . . , logN), a thread may access one of 2k−1 possible

memory addresses. Let r = 2 logw + 1. Then for the w queries, in the r-th iteration, there are w2

memory addresses that each of w threads may be accessing. Therefore, by the pigeonhole principle,

among these w2 addresses, there exists a subset of w distinct memory addresses that reside in the

same memory bank. We can choose Q so that these w distinct memory addresses are accessed by

the w threads in the r-th step, thus resulting in a w-way bank conflict.

Consider an arbitrary pair of threads ti and tj within the same warp, running on the above

input Q. Let them access memory addresses i and j, respectively, in the r-th step. Since i and j are

distinct, |i− j| ≥ N/2r. This implies that (1) we can set each query to one of N/2r possible entries

of N and still cause w-way bank conflicts in iteration r; and (2) any choice of these values will

result in each thread accessing distinct addresses in each of the final log(N)−r iterations (including

iteration r). Of these N/2r choices, we choose each query so that in the rest of the algorithm all

threads take the same branch of the if statement.

Let the addresses accessed by ti and tj in any iteration k ≥ r be i+ δk and j + δk, respectively.

Since every pair of threads accesses the same bank in round r, i ≡ j (mod w), and it follows

that i + δk ≡ j + δk (mod w). Thus, for logN − r + 1 rounds, our input Q causes w-way bank

55

Figure 6.4: Worst-case example for the first logN − logw iterations of the PBS algorithm, when
N is a multiple of w2 (Corollary 6.2.1).

conflicts, resulting in a total number of shared memory accesses of at least Ω(w · (logN − r+1)) =

Ω
(

w · log N
w2

)

.

Proof (of Theorem 6.2.1) A typical (deterministic) GPU implementation breaks downQ queries

into Q/w groups of w queries each, and each group is processed in SIMD fashion by one of the

P/w warps. Note, that only P/w out of Q/w groups can be processed simultaneously. The PBS

algorithm for the GPU assigns w queries to each warp of w threads, for a total of Q
w warps. By

Lemma 6.2.2, each warp performs Ω
(

w · log N
w2

)

accesses, thus

βAs = Ω

(

Q/w

P/w
·

(

w · log
N

w2

))

= Ω

(

w ·
Q

P
log

N

w2

)

.

It is well known that inputs that are multiples of w tend to be very bad in terms of bank

conflicts [50, 21, 11]. The following corollary shows a slightly stronger lower bound when N is a

multiple of w2:

Corollary 6.2.1 For every sorted sequence N , such that |N | = N ≥ w2 and N ≡ 0 (mod w2),

there exists a query set Q, |Q| = Q ≥ p, for which

βAs = Ω

(

w ·
Q

P
log

N

w

)

.

Proof If N ≡ 0 (mod w2), then all possible memory addresses that each thread might access in

the first r′ = logw + 1 iterations reside in memory bank 0 (see Figure 6.4). Thus, there exists a

set of queries that cause w-way bank conflicts starting from the iteration r′ = logw + 1 instead of

iteration r = 2 logw + 1 proven in Lemma 6.2.2. The rest of the proof is similar to the proofs of

Lemma 6.2.2 and Theorem 6.2.1.

56

Figure 6.5: Illustration of the shared memory access pattern for stage 1 of the PBS-CF algorithm
(δ ≥ w).

This tells us that, in the worst case, the access pattern of the PBS algorithm can result in a factor

w performance loss due to bank conflicts.

6.2.2 Conflict-Free PBS

To avoid the performance loss due to bank conflicts, we present a modified PBS algorithm, which we

call Parallel Binary Search - Conflict Free (PBS-CF), that is free of shared memory bank conflicts.

To do so, we divide the PBS algorithm into two stages, and for each stage we design a solution to

eliminate all bank conflicts. We define each stage based on the parameter δ, which we define as

the step distance at each iteration of the binary search. At each iteration, δ is decreased by half,

until, after logN iterations, δ = 1. Stage 1 consists of the first (logN − logw) iterations, during

which δ ≥ w. Stage 2 consists of the remaining iterations. The access pattern and reason for bank

conflicts differ between the two stages, so we must develop a different conflict-free solution for each

pattern.

For Stage 1, the PBS-CF algorithm assigns each thread a separate shared memory bank. This

is accomplished by giving each thread an initial offset equal to its threadID within the warp. The

resulting access pattern is illustrated in Figure 6.5. We note that to extend this approach to a

general case for any size N , we must alter the δ calculation so that δ is a multiple of w at every

iteration of Stage 1. After the first logN − logw iterations, however, it is impossible for δ to be a

multiple of w, thus we must use a different method of avoid bank conflicts in Stage 2. To completely

avoid bank conflicts, we perform a linear search of the final w elements within the search space.

While this is not work-efficient, we avoid all bank conflicts, making our entire PBS-CF algorithm

bank conflict-fee. Thus, for this algorithm, the total number of shared memory accesses is

As =

(

Q

P
· (logN − logw + w)

)

.

57

Figure 6.6: Illustration of the shared memory access pattern for stage 2 of the PBS-CL algorithm
(δ < w), for a worst-case example.

Since only shared memory accesses vary between different searching methods, we estimate the

runtime of PBS-CF to be

T = Tg + Ts + Lsync

=
Q

P
·max

(

1

Bg
,
Lg

M

)

+

(

Q

P
·

(

log
N

w
+ w

))

·max

(

1

Bs
,
Lg

M

)

+ Lsync,

where M = M ·t
N ·P .

6.2.3 Conflict-Limited PBS

Because the PBS-CF algorithm is completely conflict-free, it always requires the same number

of memory accesses per query. However, during stage 2 it is not work optimal, requiring O(w)

memory accesses (and operations) to search w elements. The PBS algorithm, on the other hand,

is work optimal, requiring only Θ(logw) iterations to search the last w elements. In the worst

case, however, it incurs w-way bank conflicts at each of these iterations, leading to O(w logw) total

memory accesses, a factor Θ(logw) more than PBS-CF. We present a hybrid algorithm PBS-CL

(Parallel Binary Search - Conflict Limited) with the goal to minimize bank conflicts while remaining

work optimal.

PBS-CL uses the same conflict-free stage 1 (the first logN − logw iterations) as PBS-CF.

However, it uses a hybrid approach for stage 2 that introduces few bank conflicts while keeping

the number of iterations minimal Θ(logw). Recall that, for the PBS-CF algorithm, each thread

accesses a different memory bank during stage 1 (specifically, each thread accesses bank i where

i ≡ threadId (mod w)). Upon starting stage 2, the offset between each thread is preserved, causing

58

them to each access a different bank. If we then perform a binary search, with all threads utilizing

the same δ value, we can preserve these offsets and reduce the number of bank conflicts while

remaining work optimal, requiring only Θ(logw) iterations.

Figure 6.6 illustrates which cells may be accessed at each iteration of stage 2 of the PBS-CL

algorithm, in the worst case. For the first iteration of stage 2, δ = w
2 , and, since w is a power of 2

and

(threadId+
w

2
) ≡ (threadId−

w

2
) (mod w),

there will be no conflicts (and thus only 1 parallel access). For the second iteration, however, there

is potential for at most a 2-way conflict. For the third iteration, the worst case would have one

4-way conflict, and so on. Thus, as illustrated in Figure 6.6, the worst-case number of memory

accesses for stage 2 is:

logw−1
∑

i=0

2i = w − 1

Thus, in the worst case, PBS-CL requires O(QP log N
w + Qw

P) accesses, which is equivalent to PBS-

CF. However, in the best case, PBS-CL will experience no bank conflicts, resulting in O(QP logN)

accesses.

6.2.4 Empirical Performance Comparison

We implement the PBS, PBS-CF, and PBS-CL algorithms and evaluate their performance empir-

ically on our three hardware platforms (details in Table 4.1). Since our GPUs have limited shared

memory per SM, we use a relatively small search list (N), though we can use a large number of

queries (Q). Figure 6.7 contains the execution times of our three implementations for varying N

sizes and 500 million random queries on the Gibson platform. These results indicate that, for

most N sizes, PBS-CF has the highest execution time. However, as we increase N , the naive PBS

performance degrades more quickly than our other two implementations. We attribute this to an

increasing number of bank conflicts. PBS-CL attains the benefits of both of the other algorithms:

it performs well when N is small, yet it does not suffer from many bank conflicts and so performs

well when N is large as well. Across all of our experiments, PBS-CL achieves a maximum speedup

of 2.98 over the naive PBS algorithm.

6.3 Conclusion

In this Chapter we considered the predecessor search problem on GPU architectures. Specifically,

we looked at the batched predecessor search: given N keys and Q queries, find the predecessor

of each query q in the list of N keys. We considered the cases when (i) N is large and the keys

59

Figure 6.7: Execution time results of our three batched predecessor search implementations for
varying numbers of search keys and Q = 500M on Gibson.

are stored in global memory and (ii) N is small and the keys are stored in shared memory. In

global memory, we looked at different memory layouts (sorted, BST, and B-tree) and analyzed how

they impact the total number of memory accesses performed. Results indicate that the SPT model

accurately estimate overall runtime, indicating that the major performance factors of GPUs are

captured by the model.

Searching constitutes a broad class of problems, each with different difficulties and potential

solutions. Many of these solutions rely on data structures, some of which are difficult to apply

to many-core architectures. Thus, an interesting area of future work would be to consider other

searching problems and, using the SPT model, design GPU-efficient data structures. We discuss

specific data structures and search problems, as well as other directions of future work in Chapter 8.

60

CHAPTER 7

CASE STUDY: SORTING

Sorting is a primitive operation that is a building block of countless other algorithms. Many

algorithms assume a sorted input and thus rely on sorting to provide consistent input to other

algorithms. Sorting can be accomplished by a wide range of algorithms, however, for this work we

focus on comparison-based sorting algorithms. In this section, we consider several state-of-the-art

sorting algorithms for the GPU and analyze them with the SPT model, defined in Chapter 3 and

instantiated for our GPU platforms in Chapter 4. First, in Section 7.1 we analyze state-of-the-art

GPU-efficient library implementations of pairwise mergesort. We identify performance bottlenecks

inherent to these algorithms and conclude that a multiway mergesort algorithm can alleviate these

bottlenecks. Next, in Section 7.2 we look at the multiway mergesort algorithm developed with the

AGPU model (discussed in Section 3.2.4) and presented by Koike and Sadakane [47]. While we

do not have access to their code, our analysis indicates that their algorithm also suffers from per-

formance bottlenecks. Thus, in Section 7.3 we introduce GPU-MMS, our GPU-efficient multiway

mergesort algorithm that provides a series of improvements over the algorithm presented by Koike

and Sadakane. Finally, in Section 7.4 we compare the empirical performance of GPU-MMS with

several sorting implementations available with state-of-the-art GPU libraries.

7.1 Pairwise Mergesort

Thrust [34] and ModernGPU [11] (MGPU) currently provide the fastest comparison-based sorting

implementations and are both based on the pairwise mergesort algorithm [17]. We focus our

analysis on the the MGPU mergesort, although the analysis of the Thrust mergesort is similar, as

these algorithms are designed with the same goals in mind: 1) achieving as much parallelism as

possible, 2) performing only coalesced global memory accesses, and 3) reducing bank conflicts with

heuristics. We note that both MGPU and Thrust are highly optimized with a likely significant

impact on performance. However, since our analysis identifies both asymptotically dominating

terms as well as their associated constant factors, we expect it to predict performance accurately.

7.1.1 MGPU algorithm overview

The latest MGPU (version 2.10) mergesort assigns a fixed number of elements, E, to each thread,

regardless of input sizeN . MGPU uses E = 11 or E = 15, depending on the specific GPU hardware.

Threads are grouped into tread-blocks of b = 128 threads each. The algorithm begins with the

“base-case” by sorting b · E elements in shared memory using b threads. This is accomplished by

a pairwise mergesort in shared memory, using log (bE) merge rounds. At all subsequent merge

61

rounds, an increasing number of TBs work together on each pair of merge lists, while E remains

constant. At the final merge round, N
E threads all work together on the same pair of merge lists,

each of size N
2 . To enable all threads to work together, MGPU relies on partitioning, requiring that

the following three phases are performed at each merge round:

• Block-partition - for each TB, find partitions in two merge lists using the Mergepath [29]

method,

• Thread-partition - load block partitions into shared memory and find partitions within it for

each of the b threads,

• Merge - each thread merges the elements in its respective partition of shared memory and

writes the result back to global memory.

7.1.2 Algorithm Analysis

We first consider the number of kernels |K| that this algorithm uses, and see if there are any ways we

can simplify analysis to avoid analyzing each kernel individually. As discussed above, the algorithm

begins with a single kernel that sorts the base case of bE elements. We call this first kernel Kbase.

Each of the subsequent ⌈logNbE⌉ kernels perform the same series of steps: 1) find block-partitions

for each TB, 2) load partition into shared memory, 3) find thread-partitions for each thread, 4)

merge, and 5) write results back to global memory. Since each of these kernels performs the same

series of steps and uses the same number of threads and TBs, we can consider them all as a single

kernel by simply defining

Aφ =

⌈log N
bE

⌉
∑

i=1

Ai,φ

for each φ ∈ Φ. This results in two kernels to analyze: the base case, Kbase, and the combined

merge kernels, Kmerge. We analyze each kernel in the context of each operation φ ∈ Φ separately.

Recall from Chapter 4 that, for our GPU platforms, we say that Φ = {g, s, r, y}, where g, s, r, and

y represent accessing global memory, accessing shared memory, performing register operations, and

calling syncthreads, respectively.

Global memory accesses

For the base case kernel, Kbase, we can very simply determine the number of global memory accesses.

Each element is read from global memory, sorted in blocks of bE in shared memory, and written

back to global memory. All accesses are coalesced and, since each element is read once and written

62

once,

Abase,g =
2N

P

For the merge kernel, Kmerge, we have to consider two phases of each merge round: finding

block-partitions and merging. First, each TB (of which there are N
bE) performs a binary search

global memory to find an independent partition using the method detailed by Green et al. [29].

Since the merge list sizes grow with each merge round, the number of accesses to find partitions

increases. Thus, the total accesses required for partitioning for each TB, across all merge rounds,

is:

⌈logN⌉
∑

i=⌈log bE⌉

i =
(⌈log2N⌉ − ⌈logN⌉)− (⌈log2 bE⌉ − ⌈log bE⌉)

2

≈

⌈

log2 N
bE

⌉

− ⌈logNbE⌉

2
.

There are N
bE thread-blocks, and accesses are not coalesced, resulting in P

w -way parallelism.

Thus, the number of parallel global memory accesses for block-partition, across all merge rounds,

is

1

P/w
·
N

bE
·

(

⌈

log2 N
bE

⌉

− ⌈logNbE⌉

2

)

=
Nw

(⌈

log2 N
bE

⌉

− ⌈logNbE⌉
)

2bEP

Once block-partitions are found, each thread-block loads its partition into shared memory,

merges, and writes it back. These accesses are coalesced, for a total of 2N
P parallel accesses per

merge round. There are log N
bE merge rounds, so the total accesses to merge, across all rounds, is

2N
⌈

log N
bE

⌉

P

Combining this with the block-partition phase, we get

Amerge,g =
2N
⌈

log N
bE

⌉

P
+

Nw
(⌈

log2 N
bE

⌉

− ⌈logNbE⌉
)

2bEP
.

Shared memory accesses

As with our analysis of global memory accesses, we analyze Kbase and Kmerge separately. At the

base case, MGPU sorts blocks of E elements in registers and merges them in shared memory to

create sorted blocks of bE elements. For each merged element, MGPU reads once and writes once.

The associated access pattern is also data-dependent, so we include the bank conflict parameter,

63

i.e.,

Abase,s = β

(

2N

P
⌈log (b)⌉

)

At each round of Kmerge, bE elements are loaded into shared memory and each of the b threads

finds an independent partition by performing binary search in shared memory. The search list is

always size bE, requiring ⌈log bE⌉ shared memory accesses per thread. There are a total of N
E

threads, and each access is only a read, so the thread-partition step takes β N
PE ⌈log (bE)⌉ shared

memory accesses. Each thread then merges its partitions in shared memory, spending 2 shared

memory accesses per element (read and write), for a total of β 2N
P

⌈

log N
bE

⌉

accesses. Combining

these phases, we have

Amerge,s = β1
N

PE
⌈log (bE)⌉+ β2

2N

P

⌈

log
N

bE

⌉

Note that we define separate β values for each phase, as the access patterns differ. We empirically

measure β1 and β2 in Section 7.1.3 and incorporate the resulting values into our SPT model to

develop a runtime estimate.

Register operations

The exact number of register operations performed by an algorithm is highly dependent on compiler

details and is difficult to determine. However, for MGPU, most work is performed in shared memory.

We assume that every operation performed on elements in shared memory will be dominated shared

memory access time, so we do not include them in Ar. The only additional work performed in

registers is the sorting of blocks of E elements at the base case. This is done using a odd-even

sorting network [46], requiring ∼ E2

2 “swaps,” per block. Each swap takes 3 register operations, so

we estimate that

Ar =
N

PE
·
3E2

2
=

3NE

2P

Thread-block synchronizations

One strength of the MGPU algorithm is the relatively few synchronizations that it performs. It is

designed to maximize parallelism and minimize communication between threads. At each merge

round, there are only two points that intra-TB synchronization is required: before and after loading

shared memory. Therefore, we can easily determine that

Ay =
N

P

(⌈

log
N

bE

⌉

+ 1

)

64

7.1.3 Estimating runtime

To compute the runtime estimate for each of our hardware platforms, we first determine multiplicity,

M. Since MGPU mergesort uses few registers, multiplicity M is limited only by shared memory

usage. Each thread stores E elements in shared memory, and the GPU has a total shared memory

of size M , thus M = M
PE . ILP (MI), however, depends on optimizations and varies for each

phase. MGPU mergesort employs a global memory read/write optimization proposed by [58] that

effectively doubles MI . For all other operations, we say that MI = 1. All M values remain the

same throughout MGPU execution, so we combine the Kbase and Kmerge calculations to get the

following runtime estimate

T = Tg + Ts + Tr + Ty + |K| · Lsync ,

Tg =
2N

P

(

⌈

log
N

bE

⌉

+
w
(⌈

log2 N
bE

⌉

− ⌈logNbE⌉
)

4bE
+ 1

)

max

(

1

Bg
,
Lg

2M

)

,

Ts =
2N

P

(

β1⌈log (bE)⌉

E
+ β2

⌈

log
N

E

⌉)

max

(

1

Bs
,
Ls

M

)

,

Tr =
3NE

2P
·max

(

1

Br
,
Lr

M

)

,

Ty =
N

P

(⌈

log
N

bE

⌉

+ 1

)

max

(

1

By
,
Ly

Mo

)

.

where |K| =
⌈

log N
bE

⌉

+ 1.

We determine β1 = 3.1 and β2 = 2.2 by using the nvprof tool [65] to empirically measure the

average number of bank conflicts. These are simply estimates obtained with random inputs and

certain permutations may result in more or fewer bank conflicts, though they are independent of

hardware platform. We investigate this further in Section 7.4 by generating inputs that result in

many bank conflicts.

7.1.4 Experimental Performance

Combining the above analysis with the parameters that we measured with our microbenchmarks,

listed in Table 4.2, we can predict the execution time of MGPU mergesort on our three hardware

platforms, estimate optimal parameter values (e.g., E), and identify bottlenecks. Figure 7.1 shows

our throughput estimate as E varies, on theAlgoparc platform, along with the average throughput

measured when running MGPU. These results indicate that our estimate correctly predicts the

best value for E to be 31, despite MGPU using E = 15 for Maxwell generation GPUs, like that

on Algoparc. Our overall execution time estimate is also accurate, with an average error of only

7.48%.

Our performance analysis also allows us to determine the relative impact of each level of the

65

Figure 7.1: Estimated and measured MGPU mergesort throughput when varying E (elements per
thread) on Algoparc, for N = 100M .

Figure 7.2: Estimated percentage of MGPU mergesort runtime due to each type of operation on
Algoparc, for varying N and E = 31.

memory hierarchy on overall performance. Figure 7.2 shows the estimated percentage of the total

execution time due to global memory accesses, shared memory access, register operations, and

synchronization, on Algoparc with E = 31. On all three platforms, our estimate indicates

that between 65% and 80% of execution time is due to global memory accesses, which is not

surprising since, for our hardware, Bs ≈ 5Bg. This said, the remaining portion of execution time

is attributed to shared memory accesses, indicating that improving shared memory usage can

significantly improve performance. We measure β for merging and partitioning phases to be 3.1

and 2.2, respectively, indicating that bank conflicts contribute roughly 15-20% to overall execution

time. We conclude that MGPU suffers from two primary performance bottlenecks: global memory

bandwidth and shared memory bank conflicts.

66

Using both E = 15 (used by MGPU) and E = 31 (found to be optimal for Algoparc), we

evaluate performance as we vary N . Figure 7.3 contains both measured and predicted throughput

values on Algoparc. These results indicate that, for inputs smaller than 20M elements, our

model estimate is higher than the measured throughput. We attribute this to the fact that our

performance estimate is determined by terms that asymptotically dominate and therefore ignores

constants associated with low-order terms, which may have a significant impact on performance

when N is small. For large inputs, however, our performance model accurately estimates average

MGPU sorting throughput. Additionally, as estimated, MGPU gains a significant performance

increase when using E = 31 on Algoparc. We note that the “stepwise” performance profile is

due to the ceiling function around the number of merge rounds. The model estimate incorporates

ceilings functions and thus accurately predict this behavior.

Figure 7.3: Estimated and measured MGPU mergesort throughput when varying N on Algoparc,
for both E = 15 and E = 31.

7.2 Koike and Sadakane’s multiway mergesort

The results in the previous section show that the performance of a state-of-the-art comparison-

based sorting algorithm for the GPU, MGPU, is limited in part by global memory bandwidth.

The use of pairwise mergesort leads to O(log2N) merge rounds, where N elements must be read

from (and written to) global memory at each round. This naturally suggests the use of a multiway

mergesort algorithm to reduce the number of merge rounds.

Like standard (pairwise) mergesort, multiway mergesort relies on repeated merge rounds. How-

ever, at each round, K sorted lists are merged into a single list. In the external memory model [4],

multiway mergesort achieves optimal I/O complexity when K = M
B , where M is the size of internal

memory and B is the access block size [46]. To achieve this I/O efficiency, multiway mergesort must

access only blocks of B elements while storing only a limited number of elements in internal mem-

67

unsorted input

base case

mergemerge merge

merge

sorted output

w

Figure 7.4: High-level illustration of the multiway mergesort algorithm used by Koike and
Sadakane [47]. Example depicts multiway mergesort process if K = 3.

ory. Sequentially, this is accomplished by using a minHeap and an output buffer [46]. Multiway

merging in parallel, however, is difficult and may require increased internal computation. Koike

and Sadakane [47] present a multiway mergesort designed for GPUs. We start with an overview of

their algorithm and a brief analysis to identify its potential performance bottlenecks.

7.2.1 Algorithm Overview

Using their AGPU model (discussed in Section 2.1.3, Koike and Sadakane [47] propose a GPU-

efficient multiway mergesort to reduce global memory accesses. While we do not have access to

their code, we analyze their multiway mergesort algorithm using the SPT model to evaluate the

overall performance and identify if their approach overcomes the bottlenecks seen with MGPU.

starts by sorting blocks of w elements in internal memory (“base case”). Groups of K sorted

lists are then merged until the entire input is sorted. At each merge round, partitions are needed

if there are not enough independent merge lists to satisfy all thread-blocks, where each thread-

block contains w = 32 threads. Figure 7.4 illustrates a high-level view of this multiway mergesort

algorithm. Since groups of K lists are merged at each round, partitions are found across all K

lists using a search method based on the technique proposed by Hayashi et al. [32] that requires

O(K log n) memory accesses per partition, where n is the size of each list.

The merging of K lists by w threads is accomplished with the use of a variation of a minHeap

structure. This structure stores 2w elements in sorted order at each node, where all elements satisfy

the heap property (every element in a node u is smaller than every element in its children v and w).

This guarantees that the smallest elements are stored in the root, allowing the w threads to write

68

a block of w elements to global memory. Re-filling the root is done by merging the elements of its

children and placing the smallest resulting elements in the root. This leaves a non-full child node,

and the process is repeated until a leaf node is reached. Each leaf node corresponds to one of the

K input lists, so w new elements are read from the corresponding list. Koike and Sadakane store

2w elements in each node to guarantee correctness of their methods that empty and refill nodes.

7.2.2 Algorithm Analysis

As with our analysis of MGPU, we can simplify our analysis by noting that the multiplicity,

M, remains the same throughout each kernel call. Unlike MGPU, however, we now have |K| =
⌈

logK
N
w

⌉

+1 kernel calls. As with MGPU, we analyze the base case Kbase separate, while combining

all merge kernels into Kmerge. We compute Aφ, for each φ ∈ {g, s, r, y}.

Global memory accesses

As with MGPU mergesort, for the base case, each element is read once and written once, so

Abase,g =
2N

P
.

For each merge round, thread-blocks find partitions (if there are fewer lists than thread-blocks) and

then merge groups of K lists, for a total of
⌈

logK
(

N
w

)⌉

rounds. Koike and Sadakane use w threads

per thread-block, so the total number of thread-blocks is P ·M
w . Thus, partitions are only needed

when there are fewer than KPM
w lists, and only PM

w We note that this is only dependent on small

hardware constants, and not N . We assume that this is negligible for a large N and, to simplify

analysis, we ignore the number of memory accesses due to partitioning. Merging requires that each

element be read from and written to global memory once (i.e., 2N
P accesses) for each merge round,

so

Amerge,g =
2N

P

⌈

logK
N

w

⌉

Shared memory accesses

Koike and Sadakane [47] use bitonic mergesort [46] to sort blocks of w elements in this base case.

While this avoids bank conflicts, is not work-efficient, requiring 2w log2w shared memory accesses

to sort a block of size w. There are no bank conflicts (i.e., β = 1), so

Abase,s =
N

Pw
· 2w log2w =

2N

P
log2w

Each thread-block merges groups ofK lists in shared memory using the variation of the minHeap

described in the algorithm overview above. Every time a block of w smallest elements is extracted,

69

Figure 7.5: Estimated percentage of Koike and Sadakane’s multiway mergesort is due to global
memory and shared memory accesses, on Algoparc with N = 229 for varying K values.

two nodes of 2w elements each are merged at each level of the heap using bitonic merge [46]. Thus,

for every w elements output from the heap, (4w logw logK) shared memory accesses are performed,

for a total of
(

4N
P logw⌈logK⌉

)

accesses per merge round. All accesses are bank-conflict free and

there are
⌈

logK
N
w

⌉

merge rounds, thus

Amerge,s =
4N

P
logw⌈logK⌉

⌈

logK
N

w

⌉

≈
4N

P
(logw⌈logN⌉ − 1) .

Register operations

Unlike MGPU, Koike and Sadakane [47] perform the base case in shared memory, rather than

registers, so all work is done in global or shared memory. We, therefore, assume that all operations

are dominated by memory access time and ignore register operation time, i.e., Tr = 0.

Thread-block synchronizations

For all kernel calls, Koike and Sadakane [47] use b = 32 (i.e., each TB has 32 threads). Since each

TB has only one warp, all threads are in SIMT lock-step. This removes the need for any calls to

syncthreads, so Ty = 0.

7.2.3 Estimating runtime

We are unable to obtain an implementation of the algorithm presented in [47], so we cannot

accurately determine ILP (MI). We, therefore, assume MI = 1, since each operation of the

bitonic merge network is dependent on the result of the previous operation. We can, however,

estimate oversubscription (Mo), since it is based on shared memory usage. Each warp works on

its own heap structure, with each heap having 2K − 1 nodes. Each node contains 2w elements,

70

so oversubscription is limited to Mo = M
4KP−2P . If we assume that Mo and MI are the same for

Kbase and Kmerge, we estimate the total runtime as

T ≈ Tg + Ts + |K|Lsync ,

Tg ≈
2N

P

(⌈

logK
N

w

⌉

+ 1

)

max

(

1

Bg
,

⌈

Lg

M
4KP−2P

⌉)

,

Ts ≈
4N

P

(

logw⌈logN⌉+
log2w

2

)

max

(

1

Bs
,

⌈

Ls

M
4KP−2P

⌉)

.

where M is the total shared memory available on the GPU.

While, without the code, we cannot measure the empirical performance of this algorithm, we

can use the result of our performance estimate to determine potential bottlenecks. Using the hard-

ware parameters in Table 4.2, we compare Tg and Ts estimates for each of our hardware platforms

to determine which operations most impact performance. Figure 7.5 contains the estimated cost

of Tg and Ts for varying K, using N = 229 4-byte elements and the hardware parameters corre-

sponding to Algoparc. Our performance estimate indicates that, when K is very small, global

and shared memory have similar contributions. However, as K grows, the relative impact of Ts

quickly increases. When K = 32, more than 75% of total execution time is due to shared memory

accesses. Furthermore, on Algoparc, when K ≥ 3 and K ≥ 6, oversubscription decreases and

access time to shared memory and global memory become bound by latency, respectively. Thus,

in order to obtain the I/O-efficient benefits of multiway mergesort (i.e., large K), oversubscription

(and therefore multiplicity) becomes reduced and performance degrades.

We conclude that, while the multiway mergesort of Koike and Sadakane can significantly reduce

global memory accesses, the performance bottleneck then becomes the shared memory, in spite of

the algorithm not incurring any shared memory bank conflicts. This is due to the use of a lot of

shared memory per thread, which in turn limits multiplicity when K becomes large, negating any

benefits of a large value of K.

7.3 Improved multiway mergesort: GPU-MMS

Using the SPT model, we have identified performance bottlenecks that degrade performance of each

of the GPU sorting algorithms analyzed thus far. The main bottlenecks for the MGPUmergesort are

global memory bandwidth and shared memory bank conflicts. The multiway mergesort proposed

by Koike and Sadakane [47] addresses these bottlenecks, however, its performance is limited by the

large number of shared memory accesses and low multiplicity. In this section, we present GPU-

MMS, our GPU-efficient multiway mergesort algorithm that avoids the performance bottlenecks

of both of these algorithms.

71

7.3.1 Algorithm overview

We use the algorithm by Koike and Sadakane as a starting point, but present several improvements

that address its performance bottlenecks. In a nutshell, GPU-MMS maximizes multiplicity and

ILP while reducing both shared memory and global memory accesses. We present the following

improvements over the algorithm of Koike and Sadakane to out-perform MGPU mergesort.

Improved heap structure

We first focus our design on reducing the shared memory usage to increase M and thereby improve

performance for larger values of K. Recall that the heap used by Koike and Sadakane stores 2w

elements at each node, requiring 4Kw − 2w elements in shared memory per heap. We present an

improved heap structure, which we call a minBlockHeap, that requires half the shared memory,

while still allowing all w threads to work cooperatively and access only blocks of w elements at

a time from global memory. Unlike the heap of Koike and Sadakane, the minBlockHeap stores

only w elements at each node. Let v be a node in our minBlockHeap, we denote the i-th element

stored in v as v[i] (i.e., v contains elements from v[0] to v[w − 1]). The elements in each node is

sorted and all elements satisfy the heap property: for nodes v and u, if v is the parent of u, then

v[w − 1] < u[0]. We note that, since the elements in each node is sorted, this requirement implies

that every element in v is smaller than every element in u. Furthermore, if this property is satisfied,

the root node contains the w smallest elements in the minBlockHeap.

When merging, we write all elements of the root node out to global memory in a coalesced

manner, leaving the root empty. We define the fillEmptyNode operation that fills an empty node

(i.e., a node without any elements in its list). Consider v to be an empty node with non-empty

children u and x. W.l.o.g. assume that u[w − 1] > x[w − 1]. The fillEmptyNode(v) operation is

performed as follows: merge the lists of u and x, fill v with the w smallest elements, fill u with the w

largest elements, and set x as empty. Since, prior to merging, u had the largest element (u[w− 1]),

its new largest element has not changed and the heap property holds for u. We continue down the

tree by calling fillEmptyNode(x) until we reach a leaf, which we fill by loading w new elements

from global memory. Figure 7.6 provides an example of this process on a minBlockHeap with

w = 4.

This structure provides two benefits over the heap used by Koike and Sadakane. First, it reduces

the shared memory used by each heap to 2Kw − w elements, effectively doubling the number of

threads that can be used (i.e., Mo), compared with the heap of Koike and Sadakane. Second, the

number of elements merged is reduced from 4w and 2w at each level, cutting the amount of work

to merge nodes in half.

72

2 5 6 8 3 4 7 20

11 9 1012 15 30 13 14 21 22 24 25 23 31 45 62

v

x u

Loaded from global memory

fi
ll
E
m
p
ty
N
o
d
e(
v
)

2 5

6 8

3 4

7 20

11 9 1012 15 30 13 14 21 22 24 25 23 31 45 62

v

x u

Figure 7.6: Example a minBlockHeap structure with w = 4. We perform a fillEmptyNode
operation on node v by merging its children, leaving x empty.

Merging in registers

A primary drawback of using a minBlockHeap type structure is that, since w threads are merging

pairs of w elements, a work-efficient sequential merge cannot be used. [47] employ a bank-conflict-

free bitonic merge network in shared memory, increasing shared memory accesses by a factor logw.

To reduce the cost of this work-inefficient merge, we develop a merge step for GPU-MMS that

operates in registers. While this means that GPU-MMS is also work-inefficient, the extra work is

done in low-latency registers that have higher peak bandwidth. We accomplish this register merge

with the use of shfl(), a hardware instruction that lets threads within a warp access each others’

registers. CUDA [65] provides a shflxor() command that lets thread i access the register of thread

j, where j = i⊕x, for some bitmask x. We use this access pattern to efficiently implement a bitonic

merge network.

Independent merging

In addition to increasing Mo we increase MI with the following optimization to the minBlockHeap.

After we remove the smallest w elements from the root node, all w threads working on the heap

identify the path of merge nodes from the root to the leaf. To do this, we simply descend through

the heap, comparing the (w − 1)-th element at each pair of nodes, and following the path of the

node that contains the smallest. This gives us the path of 2 · logK nodes that need to be merged.

While identifying this path, each thread loads 1 element each from each node on the path and its

sibling, for a total of 2 logK elements. Since each merge operation is independent, we interleave

the operations, thereby increasing ILP (MI) by a factor logK. This comes at the cost of using

additional registers. However, this is not an issue on our hardware, so shared memory remains the

primary factor limiting multiplicity.

73

Increased base case

MGPU mergesort sorts its base case of bE elements using pairwise mergesort, though this results in

bank conflicts, reducing performance. Koike and Sadakane [47] avoid bank conflicts in the base case

by letting each thread sort w elements within its own memory bank, resulting in smaller base case.

We increase the base case by sorting w2 items in shared memory by using the bank conflict-free

algorithm based on the work of Afshani and Sitchinava [3]. We have each thread load w elements

into shared memory, thus creating a w × w matrix that is shared by w threads. We then employ

a variant of Shearsort [3] to sort this matrix as follows: each thread loads a row of w elements

into registers, sorts it internally (with a bitonic sorting network), and writes it back into shared

memory in ascending or descending order, based on thread id. Each thread then loads a “column”

of data into registers, sorts it, and writes it back. We repeat this logw times, sort rows once more,

and then write the w × w matrix back into global memory. By carefully defining indices, we can

avoid shared memory bank conflicts when accessing both rows and columns. While this requires

more internal work than the base case in [47], our base case is larger (w2 elts), thus reducing the

number of merge rounds.

With this method, our base case sorts blocks of w2 elements and has complexities:

Abase,g =
2N

P

Abase,s =
N

Pw
4w logw =

4N

P
logw

Abase,r =
N

Pw
2w log2w logw =

2N

P
log3w

7.3.2 Performance Analysis

Aside from shifting O(logw) work from shared memory to registers, GPU-MMS does not signif-

icantly improve asymptotic performance over Koike and Sadakane’s mergesort. However, GPU-

MMS improves many of the constant factors that have a practical impact on execution time.

Global memory accesses

The improvements thatGPU-MMS provides over Koike and Sadakane’s multiway mergesort results

in a significant reduction in the number of shared memory accesses, while increasing Mo and MI ,

which we identified as bottlenecks. However, we do not reduce the number of global memory

accesses. Thus, for GPU-MMS,

Abase,g =
2N

P

Amerge,g =
2N

P

⌈

logK
N

w

⌉

.

74

Since M remains the same for both kernels,

Ag = Abase,g +Amerge,g =
2N

P

(⌈

logK
N

w

⌉

+ 1

)

Shared memory accesses

The new base case that GPU-MMS uses is presented in Section 7.3.1, along with a discussion of

the number of shared memory accesses it requires, i.e.,

Abase,s =
N

Pw
4w logw =

4N

P
logw.

In addition to the new base case, the GPU-MMS algorithm uses the minBlockHeap structure

and performing merging in registers, significantly reducing the number of shared memory accesses,

compared with Koike and Sadakane’s mergesort. As discussed in Section 7.3.1, during merging, for

every block of w elements written out from the root of the minBlockHeap, 2 nodes from every

level of the tree are loaded into registers from shared memory, merged in registers, and written back

to the heap. There are logK levels in the heap, each node contains w elements, and each element is

read once and written once, so, for every w elements merged, we perform 4w logK shared memory

accesses. There are a total of
⌈

logK
N
w2

⌉

merge rounds, thus

Amerge,s =
N

Pw
4w⌈logK⌉

⌈

logK
N

w2

⌉

≈
4N

P

⌈

log
N

w2

⌉

,

and, as we have no bank conflicts and M remains constant,

As = Abase,s +Amerge,s =
4N

P
logw +

4N

P

⌈

log
N

w2

⌉

≈
4N

P

⌈

log
N

w

⌉

,

which we note is O(NP logN), which is the lower bound for sorting in the CREW PRAM model [17].

Register operations

From Section 7.3.1, we have that

Abase,r =
N

Pw
2w log2w logw =

2N

P
log3w.

Furthermore, by performing merging in registers using the shfl operations, we reduce the

number of shared memory accesses, while increasing the number of register operations. For each

block of w elements merged (i.e., written from the root of a minBlockHeap), we merge pairs of

nodes in registers using a bitonic merge network. Each node contains w elements, so the bitonic

merge network performs a total of 2w logw swaps. We use w threads, and each swap consists of 3

75

operations: shfl(), min(), and max(), for a total of 6 logw register operations per thread. For

every w elements written to global memory, we merge logK pairs of nodes, so across all
⌈

logK
N
w2

⌉

merge rounds,

Amerge,r =
6N

P

⌈

log
N

w2

⌉

logw

Thread-block synchronizations

The GPU-MMS algorithm uses only 32 threads per TB, so all threads in a TB are implicitly

synchronized after every operation. Therefore, syncthreads is not necessary and we do not use

it, i.e., Ay = 0.

7.3.3 Estimating runtime

Since our heap uses less memory, M = M
2KP−P (a factor 2 increase compared with Koike and

Sadakane [47]). Furthermore, by pipelining merges, we are able to increase MI for both shared

memory and register accesses by a factor logK. Thus, combining the analysis of each type of

operation for the GPU-MMS algorithm, we have

T = Tg + Ts + Tr + |K|Lsync

Tg =
2N

P

(⌈

logK
N

w2

⌉

+ 1

)

·max

(

1

Bg
,
Lg

M

)

,

Ts =
4N

P

⌈

log
N

w

⌉

·max

(

1

Bs
,

Ls

M logK

)

,

Tr =
6N

P

(⌈

log
N

w2

⌉

logw +
log3w

3

)

·max

(

1

Br
,

Lr

M logK

)

.

where |K| =
⌈

logK
N
w2

⌉

+ 1.

Recall from Section 7.2 that we estimated that Koike and Sadakane’s multiway mergesort

saw performance loss when K > 4 on our hardware platforms. This was because operations

because latency-bound due to multiplicity falling too low. The GPU-MMS algorithm, however,

has improved bothMo andMI . Therefore, we compare our runtime estimate for each algorithm for

varying K values. Figure 7.7 shows our performance estimate and measured execution time of our

GPU-MMS implementation, on Algoparc, for varying K values and N = 228. Results indicate

that, as expected, GPU-MMS achieves significantly increase overall performance, especially when

K is larger. However, even with the increased Mo and MI , the ideal K value is still either 8 or

16 on Algoparc. On our other two hardware platforms, both our analysis and empirical results

indicate that K = 8 leads to the best performance. Thus, in all experiments that follow we use

K = 16, K = 8, and K = 8 on Algoparc, Gibson, and Uhhpc, respectively, unless otherwise

noted.

76

Figure 7.7: Estimated throughput of GPU-MMS, compared with the measured performance on
Algoparc with N = 228 for a range of K values. Estimated throughput also shown for Koike and
Sadakane’ multiway mergesort [47].

Figure 7.8: Estimated percentage of GPU-MMS execution time that is due each aspect of the
algorithm, on Algoparc with K = 16, for varying input sizes N .

To verify that our GPU-MMS algorithm does not suffer from the performance bottlenecks

that we see with MGPU mergesort and the Koike and Sadakane’s multiway mergesort [47], we

look at the estimated execution time of each component of GPU-MMS. Figure 7.8 shows the

percentage of estimated GPU-MMS execution time of several different types of operations. We see

that, unlike the MGPU mergesort and Koike and Sadakane’s mergesort, no single type of operation

dominates execution time. Furthermore, register operations make up a significant portion of overall

execution time, indicating that, unlike MGPU and Koike and Sadakane’s mergesort, GPU-MMS

performance is not bound memory accesses.

77

Figure 7.9: Comparison of average throughput for each sorting algorithm on inputs of random
integers on Algoparc (middle), Gibson (left), and Uhhpc (right).

7.4 Comparison of Empirical Performance

The analysis in the previous section indicates that our GPU-MMS algorithm provides key advan-

tages over the Thrust and MGPU pairwise mergesorts, as well as the multiway mergesort presented

by Koike and Sadakane [47]. In this section, we compare GPU-MMS performance with three lead-

ing GPU sorting libraries: Thrust 1.8.1 [34], MGPU 2.10 [11], and CUB 1.6.4 [57]. As discussed

in Section 7.1, Thrust and MGPU provide two of the fastest comparison-based sorts available for

the GPU. CUB provides the highest-performing radix sort. Although CUB is not a comparison-

based sort, and is therefore limited to sorting keys that can be represented by small integers, we

include it in some of our experiments for completeness. We also include results from an I/O-efficient

samplesort implementation [50] in some of our experiments.

Sorting random inputs

Figure 7.9 shows the throughput achieved by each sorting algorithm when applied to fully random

inputs of increasing sizes, using 4-byte integers, on each of our hardware platforms. These results

show that GPU-MMS out-performs all other comparison-based sorting algorithms for most input

78

sizes. As expected, CUB, being a radix sort, achieves much higher throughput across all input

sizes. The samplesort implementation performs significantly worse than all its competitors across

the board. On Algoparc, we see that, even when we use the improved E = 31, GPU-MMS

out-performs MGPU for most input sets and when E = 15, it out-performs MGPU across all

input sizes by 32.27% on average. We obtain similar results on our other hardware platforms, with

GPU-MMS out-performing the next-fastest comparison-based sort across input sizes on Gibson

and Uhhpc by 23.26% and 11.48% on average, respectively.

Figure 7.10: Average throughput vs. input size of conflict-heavy inputs on the Gibson platform.

Impact of Bank Conflicts

One additional feature of GPU-MMS is that it is free of shared memory bank conflicts, for any

input. MGPU and Thrust, however, have memory access patterns that depend on the input.

Since the memory access patterns of MGPU and Thrust are deterministic, we are able to generate

an input permutation that will cause these algorithms to incur large numbers of bank conflicts.

Figure 7.10 contains the results of runningGPU-MMS, Thrust, and MGPU on such a conflict-heavy

input on the Gibson platform. These results indicate that our conflict-heavy inputs significantly

degrade Thrust and MGPU performance, whileGPU-MMS (being conflict-free) exhibits worst-case

performance regardless of input. We repeat this experiment across all of our hardware platforms

and find that GPU-MMS out-performs Thrust and MGPU by an average of 67.14% on conflict

heavy inputs.

79

7.5 Conclusion

In this Chapter, we applied the SPT model to the analysis of comparison-based sorting algorithms

for the GPU. We considered several state-of-the-art GPU sorting algorithms and, using the SPT

model, identified key performance bottlenecks. We developed GPU-MMS, a GPU-efficient multiway

mergesort algorithm that mitigates or avoids the performance bottlenecks that we identified for

other algorithms. Empirical results indicate that GPU-MMS outperforms the fastest current library

comparison-based sorting implementations by up to 67% on our GPU platforms.

An important remaining open problem is to be able to analytically determine the number of

bank conflicts (β) in algorithms with data-dependent access patterns. This problem is a very

challenging one. Our current approach is to estimate this quantity by running an implementation

of an algorithm and measuring the number of bank conflicts using the profiler. Observe that this

approach does not undermine the above application, because the number of bank conflicts is a

function of the algorithm, the input, and the number of memory banks in the hardware. Since the

latter changes only every decade or so (and is currently the same for all current GPUs) the algorithm

can be run on a single hardware to estimate β and will remain the same on other hardware. We

further discuss this and other areas of future work in Chapter 8.

80

CHAPTER 8

CONCLUSIONS

It is clear that, as the push toward computer systems that deliver higher computational throughput

continues, parallelism is becoming increasingly important. Even today, many supercomputers [6, 26]

and community clusters use many-core coprocessors to meet the processing needs of users. Un-

fortunately, many users of such systems lack the expertise to make efficient use of them, causing

computational resources to be wasted. This underscores the importance of developing parallel algo-

rithms and easy-to-use libraries that can efficiently run on a wide range of architectures. Currently,

however, there is simply too much variance among architectures and they are too complex to fall

under a unified model that can be used to develop algorithms that suit them all.

In this work, we attempted to address this issue, although we concede that the model we present

is necessarily complex due to the intricacies of these architectures. Nevertheless, in this work we

have shown that our general model can accurately estimate the runtime of a given algorithm on any

of our GPU hardware platforms. Furthermore, the unifying features that we identify among a range

of high-performance architectures, is a step in the direction of better understanding these systems.

While these complex processing architectures may never be accurately modeled by something as

simple as RAM or PRAM models, the SPT model, presented in this dissertation, reduces the

optimization space and underscores just a few parameters that may help us develop algorithms

that make more efficient use of them. We demonstrated this fact on three of the most fundamental

problems in computer science.

8.1 Many-core Architectures

In this dissertation, we instantiated the SPT model on our three GPU platforms, with hardware

details in Table 4.2. However, the general SPT model that we defined in Chapter 3 is general and

applicable to a range of many-core architectures. While GPUs are some of the most common many-

core systems in use today, there exist other such architectures and more variations may be available

in the future. Processing units such as Intel Xeon Phi [38], AMD GPUs, and custom many-core

units in modern supercomputers are all architectures that differ significantly from the NVIDIA

GPUs considered in this dissertation, though the SPT model may be applicable. Furthermore,

different generations of NVIDIA GPUs have significant architectural changes, especially to the

memory systems. For example, the Pascal generation architectures introduced significant changes

to the global and shared memory latency and bandwidth values. Thus, the trade-off between

different types of operations (e.g., memory accesses) depends on the architecture itself. Different

architectures may also provide new hardware primitives for specific operations. For example, the

new Volta generation of NVIDIA GPUs provides a hardware unit that performs a 4 × 4 matrix-

81

matrix multiplication operation in a single clock cycle. This type of hardware unit can have a major

impact on the performance of many algorithms and it may be beneficial to develop algorithms that

make efficient use of these units. Thus, when we instantiate the SPT model on such a hardware

platform, we may include this matrix multiplication operation in the list of relevant operations, Φ,

that we consider during algorithm analysis.

The generality of the SPT model makes it able to incorporate unique or unusual features of a

particular architecture without having to develop new models. To demonstrate this, we would like

to apply the SPT model to a range of other architectures and evaluate its accuracy in estimating

runtime for a series of algorithms. In particular, it would be interesting to evaluate the efficacy of

the model on architectures with unique features, such as the 4× 4 matrix multiplication hardware

unit available with Volta GPUs.

8.2 Developing Efficient Algorithms

The case studies we considered for this work range from simple, compute bound problems such as

matrix-matrix multiplication to more complex, data-dependent algorithms such as pairwise merge-

sort. However, there are a broad range of other problems that lack algorithms that are efficient

for many-core architectures, such as GPUs. Many existing algorithms to these problems are not

easily applicable to many-core architectures because they (i) are inherently sequential, (ii) require

a high degree of communication between processors, or (iii) rely on data structures that use a large

amount of memory.

Many problems have efficiently solutions that are inherently sequential. For example, the single-

source shortest path (SSSP) problem can be efficiently solved with Dijkstra’s algorithm [17] in

O(E + V log V) on a graph with V vertices and E edges. However, this algorithm is inherently

sequential due to its use of a priority queue and the requirement of V synchronization steps. A series

of other algorithms that solve SSSP are more applicable to many-core architectures [60, 80, 18],

though there are complex performance tradeoffs that must be considered. For future work, we

propose using the SPT model to analyze these algorithms and identify the interplay between these

performance tradeoffs.

Communication-bound algorithms include a number of solutions to fundamental problems. The

fast Fourier transform (FFT) [17] is one such communication-bound algorithm that is one of the

most frequently used algorithms today. While libraries, such as CUFFT [64], provide efficient many-

core implementations of these algorithms, the large number of synchronizations may significantly

degrade performance. As demonstrated in the case studies of this dissertation, the SPT model

identifies such performance bottlenecks and aides us in developing algorithms that avoid them.

Therefore, a promising avenue of future work would be to analyze such communication-bound

algorithms to identify improvements or develop new algorithms that are better suited to many-core

architectures.

82

As discussed in Chapter 3, using too many resources (e.g., memory) per thread can reduce

multiplicity and degrade performance on many-core architectures. Therefore, algorithms that use

large data structures or require large amounts of additional memory may not achieve peak perfor-

mance. This makes it difficult to efficiently use techniques such as dynamic programming, which

may be essential to efficiently solving a given problem. As a result, many algorithms developed

for many-core systems avoid more complex structures and instead use more brute-force techniques

that may result in sub-optimal performance. It is important to identify such instances and provide

alternative solutions using analytical tools such as the SPT model.

8.3 Future Work

The SPT model is a general performance model for many-core architectures and therefore has many

applications. In this section, we identify some particularly interesting areas of future work. In the

previous sections we discussed more broad directions of future work, so we now focus on specific

algorithms or applications that are particularly interesting or promising.

8.3.1 Linear Algebra

While our analysis showed that the state-of-the-art matrix multiplication library implementation

is well-suited for our GPU platforms, it relies on the naive gemm algorithm. To our knowledge,

thus far only one work has attempted to implement a fast matrix multiplication algorithm on

GPUs [51], and they use the simple variant that achieves O(n2.81) work complexity [75]. Thus, an

interesting direction of future work would be to use our SPT model to analyze more advanced fast

gemm algorithms to determine if they can be efficiently implemented on many-core systems. This

poses a particular challenge, as it is not known how to perform these “fast” matrix multiplication

algorithms I/O efficiently.

As discussed in Section 8.1, the NVIDIA Volta generation GPUs have a 4×4 matrix multiplica-

tion operation as a hardware primitive. Thus, an interesting area of future work would be analyze

the impact of such an operation on overall gemm performance, and determine if our SPT model

accurate captures such an impact. Furthermore, many other linear algebra algorithms make use

of matrix multiplication. Thus, a potentially fruitful direction of future work may be to identify

other linear algebra algorithms that can benefit from this hardware primitive, or to develop new

algorithms that can make use of it.

8.3.2 Searching

Searching is a broad area and many potentially useful data structures have been developed to

facilitate efficient searching. Persistent search trees [22, 10, 8] are one class of data structures that

are useful in solving a range of problems. However, persistent structures typically require a large

83

amount of additional space [10], making them potentially unsuitable for many-core architectures.

Thus, identifying methods of reducing the space complexity of such structures may be useful in

developing data structures that are efficient for many-core architectures.

In the case studies presented in this dissertation, we determined that global memory accesses

are frequently a factor that dominates overall runtime. Therefore, I/O-efficient algorithms may

perform well on many-core architectures like GPUs. Searching can be performed I/O-efficiently

using buffer tree structures [7, 72], although they have yet to be efficiently implemented on GPUs

or other many-core architectures.

8.3.3 Sorting

Sorting has been extensively studied and the state-of-the-art library implementations perform well,

as seen in Chapter 7. However, in this dissertation we only considered comparison-based sorting

algorithms. Thus, we would like to use our SPT model to analyze the CUB [57] and Thrust [34]

radix sort implementation to determine if there are any ways of improving performance. Addi-

tionally, analyzing GPU-MMS performance on other many-core architectures may lead to further

improvements.

84

BIBLIOGRAPHY

[1] clBLAS. https://github.com/clMathLibraries/clBLAS. Accessed: 2018-02-10.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. Performance,

design, and autotuning of batched GEMM for gpus. In Proceedings of the 31st International

Conference, ISC High Performance, pages 21–38, 2016.

[3] Peyman Afshani and Nodari Sitchinava. Sorting and permuting without bank conflicts on

gpus. In Proc. of ESA, pages 13–25, 2015.

[4] A. Aggarwal and J.S. Vitter. The input/output coplexity of sorting and related problems.

Commun. ACM, 31(11), 1988.

[5] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammar-

ling, J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable linear algebra library for

high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on Super-

computing, Supercomputing ’90, pages 2–11, 1990.

[6] Tatsumi Aoyama, Ken-Ichi Ishikawa, Yasuyuki Kimura, Hideo Matsufuru, Atsushi Sato, To-

mohiro Suzuki, and Sunao Torii. First application of lattice qcd to pezy-sc processor. Procedia

Comput. Sci., 80(C):1418–1427, June 2016.

[7] Lars Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, September 2003.

[8] Lars Arge, Andrew Danner, and Sha-Mayn Teh. I/o-efficient point location using persistent

b-trees. J. Exp. Algorithmics, 8, December 2003.

[9] Lars Arge, Michael Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental parallel

algorithms for private-cache chip multiprocessors. In Proc. of SPAA, pages 235–246, Munich,

Germany, 6 2008.

[10] Mikhail J. Atallah, Michael T. Goodrich, and S. Rao Kosaraju. Parallel algorithms for evalu-

ating sequences of set-manipulation operations. J. ACM, 41(6):1049–1088, 1994.

[11] Sean Baxter. Modern GPU, 2013.

[12] Kyle Berney, Henri Casanova, Alyssa Higuchi, Ben Karsin, and Nodari Sitchinava. Beyond

binary search: parallel in-place construction of implicit search tree layouts. In Proc. of IPDPS,

2018.

85

[13] Nicola Bombieri, Federico Busato, and Franco Fummi. A fine-grained performance model for

gpu architectures. In Design, Automation & Test in Europe Conference & Exhibition (DATE),

2016.

[14] Bryan Catanzaro, Alexander Keller, and Michael Garland. A decomposition for in-place matrix

transposition. In Proc. of PPoPP, 2 2014.

[15] Douglas Comer. The ubiquitous b-tree. ACM Computing Surveys, 11:121–137, 1979.

[16] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87,

pages 1–6, 1987.

[17] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[18] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-efficient parallel

gpu methods for single-source shortest paths. In Proceedings of the 2014 IEEE 28th Interna-

tional Parallel and Distributed Processing Symposium, IPDPS ’14, pages 349–359, 2014.

[19] Frank Dehne and Hamidreza Zaboli. Deterministic sample sort for GPUs. volume

abs/1002.4464, 2010.

[20] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov,

and Ichitaro Yamazaki. Accelerating numerical dense linear algebra calculations with gpus.

Numerical Computations with GPUs, pages 1–26, 2014.

[21] Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manfedelli. Fast scan algorithms

on graphics processors. In ICS, 2008.

[22] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data struc-

tures persistent. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of

Computing, STOC ’86, pages 109–121, 1986.

[23] P. Enfedaque, F. Auli-Llinas, and J.C. Moure. Implementation of the DWT in a GPU through

a register-based strategy. IEEE Trans. PDS, PP(99), 2014.

[24] N. Fauzia, L. N. Pouchet, and P. Sadayappan. Characterizing and enhancing global memory

data coalescing on GPUs. In Proc. of CGO, pages 12–22, 2015.

[25] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In

40th Symposium on Foundations of Computer Science, pages 285–298, 1999.

86

[26] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng Huang, Chao

Yang, Wei Xue, Fangfang Liu, Fang-Li Qiao, Wei Zhao, Xunqiang Yin, Chaofeng Hou, Chen-

glong Zhang, Wei Ge, Jian Zhang, Yangang Wang, Chunbo Zhou, and Guangwen Yang. The

sunway taihulight supercomputer: system and applications. SCIENCE CHINA Information

Sciences, 59(7):072001:1–072001:16, 2016.

[27] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The queue-read queue-write

pram model: Accounting for contention in parallel algorithms. SIAM J. Comput., 28(2):733–

769, February 1999.

[28] Oded Green, Robert McColl, and David A. Bader. GPU merge path: a GPU merging algo-

rithm. In Proc. of ICS, pages 331–340, 2012.

[29] Oded Green, Saher Odeh, and Yitzhak Birk. Merge path - A visually intuitive approach to

parallel merging. CoRR, abs/1406.2628, 2014.

[30] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stanimire Tomov, Khairul

Kabir, and Jack Dongarra. Unified Development for Mixed Multi-GPU and Multi-coprocessor

Environments Using a Lightweight Runtime Environment. In Proceedings of the 2014 IEEE

28th International Parallel and Distributed Processing Symposium, IPDPS ’14, pages 491–500,

2014.

[31] Azzam Haidar, Jack Dongarra, Khairul Kabir, Mark Gates, Piotr Luszczek, Stanimire Tomov,

and Yulu Jia. Hpc programming on intel many-integrated-core hardware with magma port to

xeon phi. Scientific Programming, 23, 2015.

[32] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Weighted and unweighted selection algo-

rithms for k sorted sequences. In Proceedings of the 8th International Symposium on Algorithms

and Computation, pages 52–61, London, UK, UK, 1997. Springer-Verlag.

[33] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quan-

titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,

2011.

[34] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010. Version 1.7.0.

[35] S. Hong and H. Kim. An analytical model for a gpu architecture with memory-level and

thread-level parallelism awareness. In Proc. of the 36th Intl. Symp. on Computer Architecture

(ISCA), pages 152–153, 2009.

[36] C. Iancu, S. Hofmeyr, F. Blagojevic, and Y. Zheng. Oversubscription on multicore processors.

In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages

1–11. IEEE, 2010.

87

[37] Joseph JaJa. Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[38] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance Program-

ming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[39] K. Kaczmarski. Experimental B+-tree for GPU. In Proc. of ADBIS, volume 2, pages 232–241,

Rome, Italy, 2011.

[40] K. Kaczmarski. B-tree optimized for GPGPU. In Proc. of OTM 2012, pages 843–854, Rome,

Italy, 9 2012.

[41] Ben Karsin, Henri Casanova, and Nodari Sitchinava. Efficient batched predecessor search in

shared memory on GPUs. In Proc. of HiPC, pages 335–344, 2015.

[42] Paul-Virak Khuong and Pat Morin. Array layouts for comparison-based searching. ACM

Journal of Experimental Algorithmics, 22(1), 2017.

[43] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, T. Kaldeway, V. Lee, S. Brandt, and

P. Dubey. FAST: fast architecture sensitive tree search on modern CPUs and GPUs. In Proc.

of SIGMOD, Indianapolis, Indiana, USA, 6 2010.

[44] David B. Kirk. Programming Massively Parallel Processors. Elsevier Science, 2012.

[45] JS. Kirtzic, O. Daescu, and TX. Richardson. A parallel algorithm development model for the

GPU architecture. In Proc. of Intl Conf. on Parallel and Distributed Processing Techniques

and Applications, 2012.

[46] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and

Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[47] A. Koike and K. Sadakane. A novel computational model for GPUs with applications to

efficient algorithms. International Journal of Networking and Computing, 5(1):26–60, 2015.

[48] K. Kothapalli, R. Mukherjee, S. Rehman, S. Patidar, P. Narayanan, and K. Srinathan. A per-

formance prediction model for the cuda gpgpu. In Proc. of the Intl. Conf. on High-Performance

Computing (HiPC), 2009.

[49] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning GEMM kernels for the Fermi

GPU. IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2057, November

2012.

[50] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In Proc. of IPDPS, pages 1–10,

April 2010.

88

[51] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Strassen’s matrix multiplication on gpus. In Pro-

ceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems,

ICPADS ’11, pages 157–164, 2011.

[52] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning GEMM for GPUs. In

Proceedings of the 2009 International Conference on Computational Science, ICCS’09, Baton

Roube, LA, May 25-27 2009. Springer.

[53] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A unified

graphics and computing architecture. IEEE Micro, 28, 2008.

[54] L. Ma, K. Agarwal, and R.D. Chamberlain. A memory access model for highly-threaded

many-core architectures. Future Generation Computer Systems, 30:202–215, 2014.

[55] L. Ma, R.d. Chamberlain, and K. Agarwal. Analysis of classic algorithms on GPUs. In Proc.

of HPCS, 2014.

[56] L. Ma, R.D. Chamberlain, and K. Agarwal. Performance modeling for highly-threaded many-

core GPUs. In Proc. of ASAP, 2014.

[57] Duane Merrill. Cub: Cuda unbound, 2015.

[58] Duane Merrill and Andrew Grimshaw. Parallel Scan for Stream Architectures. Technical

Report CS2009-14, Department of Computer Science, University of Virginia, 2009.

[59] Bruce Merry. A performance comparison of sort and scan libraries for GPUs. Parallel Pro-

cessing Letters, 4, 2016.

[60] Ulrich Meyer and Peter Sanders. Delta-stepping: A parallel single source shortest path algo-

rithm. In Proceedings of the 6th Annual European Symposium on Algorithms, ESA ’98, pages

393–404, 1998.

[61] K. Nakano. Simple memory machine models for GPUs. In Proc. of IPDPSW, pages 794–803,

May 2012.

[62] K. Nakano. The hierarchical memory machine model for GPUs. In Proc. of IPDPSW, pages

591–600, 5 2013.

[63] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma gemm for fermi

graphics processing units. Int. J. High Perform. Comput. Appl., 24(4):511–515, November

2010.

[64] NVIDIA. CUDA CUFFT library, 2007.

89

[65] NVIDIA. CUDA programming guide 7.0, 2015.

[66] NVIDIA. Nsight, 2015.

[67] NVIDIA. CUDA cuBLAS library, 2018.

[68] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,

and Wen-mei W. Hwu. Optimization principles and application performance evaluation of a

multithreaded GPU using CUDA. In Proc. of PPoPP, pages 73–82. ACM, 2008.

[69] Shubhabrata Sengupta, Mark Harris, and Michael Garland. Efficient parallel scan algorithms

for GPUs. NVIDIA Technical Report NVR-2008-003, 12 2008.

[70] A. Shekhar. Parallel binary search trees for rapid IP lookup using graphic processors. In Proc.

of IMKE, pages 176–179, 12 2013.

[71] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A performance analysis framework for identifying

potential benefits in gpgpu applications. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’12, pages 11–22, 2012.

[72] Nodari Sitchinava and Norbert Zeh. A parallel buffer tree. In Proceedings of the Twenty-fourth

Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages

214–223, 2012.

[73] Jyothish Soman, Kishore Kothapalli, and P. J. Narayanan. Discrete range searching primitive

for the GPU and its applications. J. Exp. Algorithmics, 17:4.5:4.1–4.5:4.17, October 2012.

[74] Gilbert Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Belmont, CA,

2006.

[75] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354–356, August

1969.

[76] T. Abdelrahman T. Han. hiCUDA: High-level GPGPU programming. In Proc. of TPDS,

volume 22, pages 78–90, 2010.

[77] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra solvers

for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10, pages 1–8. IEEE

Computer Society, 2010.

[78] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,

August 1990.

[79] Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense linear algebra. In

Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pages 31:1–31:11, 2008.

90

[80] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.

Owens. Gunrock: A high-performance graph processing library on the gpu. SIGPLAN Not.,

51(8):11:1–11:12, February 2016.

[81] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In

Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,

pages 887–898, 2012.

[82] H. Wong. Demystifying GPU microarchitecture through microbenchmarking. In Proc. of

ISPASS, pages 235–246, 3 2010.

[83] Yao Zhan and J.D. Owens. A quantitative performance analysis mdoel for gpu architectures.

In Proc. of HPCA, pages 382–393, 2011.

91

